VCLab

 

RESEARCH AREAS   PEOPLE   PUBLICATIONS   COURSES   ABOUT US
Home / Courses / CS681

indicator

 

CS681: Computational Imaging

Fall 2017

 

Instructor

Min H. Kim, [Room] 3429, [email]

Course Description

 

This course provides an introduction to color in computer graphics, with a in-depth look at two fundamental topics underlying today’s color imaging systems: digital color imaging techniques and numerical visual perception models. Digital color imaging to be covered includes the fundamentals of radiometry and colorimetry, ray tracing, characterization and image processing pipeline, high-performance imaging, compressive sensing, and color management systems. Numerical visual perception modeling techniques will include the fundamentals of psychophysics and human vi- sual perception, color appearance models, and image processing techniques based on visual perception. In the second half of the semester, students will work on an individ- ual project of their choice, either involving numerical modeling of visual perception or software development that applies visual perception.

Time and Place

Tuesday and Thursday 10:30AM—11:45AM, Rm. 3444, Bldg. E3-1

Teaching Assistant

Giljoo Nam, [e-mail]

Main Textbook

Roy S. Berns (2000) Principles of Color Technology, 3rd Ed., John Wiley & Sons

Optional Readings

Dorsey et al. (2008) Digital Modeling of Material Appearance, 1st Ed., Morgan Kaufmann
R.W.G. Hunt (2004) The Reproduction of Colour, 6th Ed., John Wiley & Sons
M.D. Fairchild (2005) Color Appearance Models, 2th Ed., John Wiley & Sons
E. Reinhard et al. (2008) Color Imaging, 1st Ed., A K Peters
E. Reinhard (2010) High Dynamic Range Imaging, 2th Ed., Elsevier
N. Ohta and A. Robertson (2005) Colorimetry, 1st Ed., John Wiley & Sons

Prerequisites

There are no official course prerequisites.

Course Goal

Establish in-depth knowledge of color science and digital imaging technology
Achieve your novel project about color image processing

Tentative Schedule

 
  Week Date Lecture   Slides Assignments
  1 08/29 Introduction to color (1)   KLMS  
    09/01 Introduction to color (2)   KLMS  
  2 09/05 Introduction to color (3)   KLMS  
    09/07 Introduction to color (4)   KLMS KLMS
  3 09/12 Radiometry   KLMS  
    09/14 Color reproduction (1)   KLMS  
  4 09/19 Color reproduction (2)   KLMS  
    09/21 Visual perception (1)   KLMS KLMS
  5 09/26 Visual perception (2)   KLMS  
    09/28 Psychophysics (1)   KLMS  
  6 10/03 Mid-Autumn Festival Day      
  7 10/10 Psychophysics (2)   KLMS  
    10/13 Color appearance modeling   KLMS  
  8 10/17 Mid-term exam (9:00am--12:00pm, E3-1, Rm. 3444)      
  9 10/24 Material appearance (1)   KLMS 
    10/26 Material appearance (2)   KLMS 
  10 10/31 Material appearance (3)   KLMS  
    11/02 Material appearance (4)   KLMS KLMS
  11 11/07 Digital color imaging (1)   KLMS 
    11/09 Digital color imaging (2)   KLMS  
  12 11/14 Digital color imaging (3)   KLMS  
    11/16 No lecture      
  13 11/21 High-dynamic-range imaging (1)   KLMS 
    11/23 High-dynamic-range imaging (2)   KLMSKLMS
  14 11/28 No lecture      
    11/30 Hyperspectral imaging (1)   KLMS  
  15 12/05 Hyperspectral imaging (2)   KLMS  
    12/07 Light-field imaging   KLMS  
  16 12/14 Final exam (9:00am--12:00pm, E3-1, Rm. 3444)      
             

Grading

Attendance (10%), midterm/final exams (50%), assignments (30%), quizzes (10%)

Resources

Computer Graphics papers
Computer Vision papers
UCL Vision Database

http://kesen.realtimerendering.com/
http://www.cvpapers.com/
http://cvrl.ioo.ucl.ac.uk/

Hosted by Visual Computing Laboratory, School of Computing, KAIST.

KAIST