

Dehazing using Non-Local Regularization with Iso-Depth Neighbor-Fields

Incheol Kim Min H. Kim KAIST School of Computing

Single Image Dehazing

Input

Output (ours)

Haze Formation Model

Haze Formation Model

Depth-Dependency on Airlight

• The amount of scattering depends on the depth of an object.

Related Work: Haze Estimation

Dark channel prior [He et al. 2009]

Color attenuation prior [Zhu et al. 2015]

CNN [Ren et al. 2016]

Non-local haze-line prior [Berman et al. 2016]

Related Work: Haze Regularization KAIST

- MRF-based methods do not use <u>depth-implied non-</u> local information.
- Image editing methods severely depend on natural image properties.

Augmented GMRF [Fattal 2014]

Key Insight

• There is no method that depth-inferred information is used for regularization.

 We employ <u>depth cue in regularization</u> to achieve high-quality scene recovery.

HAZE ESTIMATION

Dehazing Model

Haze formation model $I(\mathbf{x}) = t(\mathbf{x})J(\mathbf{x}) + (1-t(\mathbf{x}))A$

hazy image attenuated scene radiance

airlight

Properties of Transmission

- Haze does not change largely within a logal region. Transmission values are piecewise smooth. ullet
- ightarrow

Problem Formulation

 $I(\mathbf{x}) = t(\mathbf{x})J(\mathbf{x}) + (1 - t(\mathbf{x}))A$

hazy image attenuated scene radiance

airlight

Atmospheric Light Estimation KAIST

 $I(\mathbf{x}) = t(\mathbf{x})J(\mathbf{x}) + (1 - t(\mathbf{x}))\underline{A}$

input

dark channel

atmospheric light map

Transmission Estimation in a Linear Subspace A

$$I(\mathbf{x}) = t(\mathbf{x})J(\mathbf{x}) + (1-t(\mathbf{x}))A$$

$$\int_{G} \int_{I(x)} \int_{I(x)} \int_{R} I(\Omega) \int_{R} I(\Omega$$

Outlier Rejection: Color Ambiguity IST

• Ambiguous to separate haze. $\angle (I(\mathbf{x}), A) < 0.2 \ rad$

Outlier Rejection: Saturation

Higher luminance than atmospheric vector.
 lum(I(x)) > lum(A)

Initial Estimate

- Outliers
- Blocky artifacts

HAZE REGULARIZATION

Regularization with Traditional MRFSAIST

• Blurry artifacts where there is an abrupt change in depths

Traditional Grid MRF Estimation KAIST

$$E(t) = \sum_{x} \left\{ E_{\text{data}}(t(x)) + \sum_{y \in N_{x}} E_{\text{smooth}}(t(x), t(y)) \right\}$$

Inaccurate Propagation

PatchMatch Algorithm

 $dist(s_1, s_2) =$

$$\sqrt{\sum_{i,j} (\mathbf{R}_1(i,j) - \mathbf{R}_2(i,j))^2 + (\mathbf{G}_1(i,j) - \mathbf{G}_2(i,j))^2 + (\mathbf{B}_1(i,j) - \mathbf{B}_2(i,j))^2}$$

• Finds similar patches with Euclidean distance.

PatchMatch Algorithm

PatchMatch algorithm

PatchMatch Algorithm

- Haze is more dominant than scene radiance.
- Haze is proportional to depth.
- NNF associates iso-depth pixels.

Iso-Depth NNFs

% of (difference < 0.2) = 86%

Our Novel Insight for RegularizationKAIST

Iso-depth neighbor-fields

• We use our novel information for regularization.

Our MRF with Iso-Depth Neighbor-Fields

Our MRF with NNFs Estimation KAIST

$$E(t) = \sum_{x} \left\{ E_{data}(t(x)) + \sum_{y \in N_{x}} E_{smooth}(t(x), t(y)) \right\}$$

Our NNF-MRF Propagation

• Neighbors associated by NNFs are in similar depths.

Regularization with Our NNF-MRF KAIST

Sharp edge-discontinuities are preserved. •

RESULTS

Grid MRFs vs. Ours

Dehazing with our NNF-MRFs

Grid MRFs vs. Ours

Image Editing Methods vs. Ourskalst

Image Editing Methods vs. Ourskalst

Impact of Angle Outlier RejectionAIST

Impact of Saturated Outlier RejectionAIST

input

input

Quantitative Comparison (Datasets)KAIST

Ground truth haze-free images

Ground truth depth maps

Synthetic hazy image

Datasets from Scharstein and Szeliski [2002], Zhang et al. [2009], and Kim et al. [2013] ⁴²
VISUAL COMPUTING Lab

KAIST

hazy input

hazy input

hazy input

Quantitative Comparison (Error Plots)

dehazed transmission

- Best performance in dehazed images.
- Strongly competitive in transmission maps.

Conclusion

 A simple but powerful marginalization-based transmission estimation method.

 A <u>non-local regularization</u> method with the <u>novel iso-</u> <u>depth prior</u> that enables to yield a more accurate transmission map.

 Outperforms state-of-the-art methods both qualitatively and quantitatively.

Acknowledgements

 Korea NRF grants (2016R1A2B2013031 and 2013M3A6A6073718) and additional support by an ICT R&D program of MSIP/IITP (B0101-16- 1280)

THANK YOU

