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Haze Formation Model
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Depth-Dependency on Airlight
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• The amount of scattering depends on the depth of an object.

homogeneous haze



Related Work: Haze Estimation
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Dark channel prior
[He et al. 2009]

Color-line prior
[Fattal 2014]

Non-local haze-line prior
[Berman et al. 2016]

Color attenuation prior
[Zhu et al. 2015]

CNN
[Ren et al. 2016]



Related Work: Haze Regularization
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Matting Laplacian
[Levin et al. 2008, He et al. 2009]
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Grid Markov random fields
[Fattal 2008, Tan 2008, Berman et al. 2016]

Augmented GMRF
[Fattal 2014]Guided filtering

[He et al. 2013]

• MRF-based methods do not use depth-implied non-
local information.

• Image editing methods severely depend on natural 
image properties.



Key Insight

• There is no method that depth-inferred 
information is used for regularization.

• We employ depth cue in regularization

to achieve high-quality scene recovery.
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HAZE ESTIMATION
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Dehazing Model
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• Haze does not change largely within a local region.
• Transmission values are piecewise smooth.

Properties of Transmission
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Problem Formulation
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input dark channel

Atmospheric Light Estimation
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atmospheric light map



Transmission Estimation in a Linear Subspace
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Outlier Rejection: Color Ambiguity
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• Ambiguous to separate haze.

( )( ), 0.2 I A radÐ <x



Outlier Rejection: Saturation
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• Higher luminance than atmospheric vector.

( )( ) ( )lum I lum A>x



Initial Estimate
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• Outliers
• Blocky artifacts



HAZE REGULARIZATION
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Regularization with Traditional MRFs

19

input initial estimate
regularized

with grid MRFs dehazed

• Blurry artifacts where there is an abrupt change in depths



Traditional Grid MRF Estimation
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Inaccurate Propagation
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PatchMatch Algorithm
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• Finds similar patches with Euclidean distance.
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PatchMatch Algorithm
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PatchMatch algorithm



PatchMatch Algorithm
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haze scene radiance

• Haze is more dominant than scene radiance.
• Haze is proportional to depth.
• NNF associates iso-depth pixels. 



Iso-Depth NNFs
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Our Novel Insight for Regularization
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Iso-depth neighbor-fields

• We use our novel information for regularization.



Our MRF with Iso-Depth Neighbor-Fields
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Our MRF with NNFs Estimation

28

 x



Our NNF-MRF Propagation
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 x x

• Neighbors associated by NNFs are in similar depths.



Regularization with Our NNF-MRF
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input initial estimate refined transmission map dehazed

• Sharp edge-discontinuities are preserved.



RESULTS
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Grid MRFs vs. Ours
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Dehazing with traditional grid MRFs Dehazing with our NNF-MRFs



Grid MRFs vs. Ours
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Image Editing Methods vs. Ours
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Image Editing Methods vs. Ours
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Impact of Angle Outlier Rejection
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Impact of Saturated Outlier Rejection
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Qualitative Comparison
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Qualitative Comparison
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Qualitative Comparison
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Qualitative Comparison
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Quantitative Comparison (Datasets)
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Ground truth
haze-free images

Synthetic
hazy image

Ground truth
depth maps

Datasets from Scharstein and Szeliski [2002], Zhang et al. [2009], and Kim et al. [2013]



Quantitative Comparison
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Quantitative Comparison
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Quantitative Comparison
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Quantitative Comparison
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Quantitative Comparison (Error Plots)
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• Best performance in dehazed images.
• Strongly competitive in transmission maps.

He [2009] Fattal [2014] Berman [2016] ours

dehazed 0.1862 0.1180 0.1567 0.1152

transmission 0.1181 0.0839 0.0783 0.0836
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Conclusion
• A simple but powerful marginalization-based 

transmission estimation method.

• A non-local regularization method with the novel iso-
depth prior that enables to yield a more accurate 

transmission map.

• Outperforms state-of-the-art methods both qualitatively 
and quantitatively.

48



Acknowledgements
• Korea NRF grants (2016R1A2B2013031 and 

2013M3A6A6073718) and additional support by an ICT 
R&D program of MSIP/IITP (B0101-16- 1280)

49



THANK YOU

50




