
Paper3D: Bringing Casual 3D Modeling
to a Multi-Touch Interface

Patrick Paczkowski∗ Julie Dorsey∗ Holly Rushmeier∗ Min H. Kim†

∗Yale University †KAIST

(a) Modeling mode (b) Assembly mode (c) 3D model output

Multi-touch
gestures

3D components

Figure 1. An overview of our novel 3D modeling technique, designed for a multi-touch interface to create 3D models on a tablet device.
(a) Users fold 2D sheets of paper in the modeling mode, using gesture-based modeling tools such as folding, bending, extending, and
cutting. (b) A set of modeled 3D components is assembled together through pinning and taping, resulting in (c) a complex 3D scene.

ABSTRACT
A 3D modeling system that provides all-inclusive function-
ality is generally too demanding for a casual 3D modeler to
learn. In recent years, there has been a shift towards develop-
ing more approachable systems, with easy-to-learn, intuitive
interfaces. However, most modeling systems still employ
mouse and keyboard interfaces, despite the ubiquity of tablet
devices, and the benefits of multi-touch interfaces applied
to 3D modeling. In this paper, we introduce an alternative
3D modeling paradigm for creating developable surfaces, in-
spired by traditional papercrafting, and implemented as a
system designed from the start for a multi-touch tablet. We
demonstrate the process of assembling complex 3D scenes
from a collection of simpler models, in turn shaped through
operations applied to sheets of virtual paper. The modeling
and assembling operations mimic familiar, real-world oper-
ations performed on paper, allowing users to quickly learn
our system with very little guidance. We outline key design
decisions made throughout the development process, based
on feedback obtained through collaboration with target users.
Finally, we include a range of models created in our system.

Author Keywords: 3D Modeling; Multi-Touch Interface;
Papercraft; Folding; Developable Surfaces

ACM Classification Keywords: I.3.5–Computational Ge-
ometry and Object Modeling
∗e-mail: {patrick.paczkowski;julie.dorsey;holly.rushmeier}@yale.edu
†e-mail (corresponding author): minhkim@kaist.ac.kr

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’14, October 5–8, 2014, Honolulu, HI, USA.
Copyright 2014 ACM 978-1-4503-3069-5/14/10...$15.00.
http://dx.doi.org/10.1145/2642918.2647416

INTRODUCTION
Creating shapes is an essential operation in 3D computer
graphics. Packages such as Blender or Maya provide many
modeling techniques, e.g., polygonal modeling, modeling
with NURBS or subdivision surfaces. However, learning how
to use the majority of existing 3D modeling packages is chal-
lenging, hindering widespread use. An additional difficulty
commonly experienced by users is the communication of
3D modeling coordinates through the standard user interface.
Typical input devices (such as mice) and displays provide
2D input and output. These devices are inadequate for spec-
ifying 6 degree-of-freedom (DoF) position and orientation.
Conversely, haptic devices with a full 6-DoF (e.g., Geomagic
Touch) are inaccurate and difficult for novice users to operate
due to a lack of haptic feedback on the tip of the pointer.

Recently, motion sensing interfaces with higher DoF have
been commercialized, such as LeapMotion and Microsoft’s
Kinect, but these still suffer from lack of accuracy, undercon-
strained input and lack of haptic feedback. By contrast, input
devices with multi-touch interfaces have evolved in recent
years, with products like the Apple iPad and the Samsung
Galaxy Tab. Though each input touch is still two-dimensional,
the combination of two or more touches has resulted in ges-
tures with more information than the input of a traditional,
single-point device. Due to their ubiquity and intuitiveness,
these devices are particularly powerful for casual users.

In the field of 3D modeling, research problems such as 3D
transformations on a multi-touch device have been recently
studied, and there are domain-specific modeling systems for a
multi-touch interface. However, systems specifically focused
on casual 3D modeling by users with little modeling expe-
rience (e.g., sketch-based interfaces) are still fairly limited
either in scope, learnability or modeling representation. This
paper presents a novel 3D modeling paradigm tailored for
such use, and fully leverages the benefits of a multi-touch
interface.

1

http://dx.doi.org/10.1145/2642918.2647416

Inspired by traditional papercraft art forms such as origami,
we devised a modeling technique in which deformations
mimic physically-based operations commonly performed on
sheets of paper, such as folding, bending, cutting, pinning
and taping. We used the simple, yet powerful principles of
these ancient art techniques as a foundation, and extended it
into a broader, practical technique for modeling developable
surfaces. We designed and integrated this technique from
the ground up for a multi-touch device. We evolved the sys-
tem design in collaboration with both casual and experienced
users. Figure 2 demonstrates a range of 3D models created
using our system. Our contributions are as follows:

• A new modeling paradigm inspired by papercrafting, and
extended by operations related to other physical actions;

• An implementation of Paper3D, based on this new paradigm,
designed from the ground up to use multi-touch gestures;

• A discussion of the user-guided design decisions made
throughout the evolution of our system;

• A validation of the effectiveness and usability of our system
through extensive user feedback;

• A demonstration of a range of models and scenes designed
by users of our system.

PREVIOUS WORK
This section surveys previous work in the fields of computing
interfaces, 3D modeling and papercraft simulators.

Multi-Touch Interfaces
It is difficult to specify 3D coordinates using a 2D graphi-
cal interface (e.g., trackball, stylus, mouse), a limiting fac-
tor for intuitive graphical and modeling software. In recent
years, indirect 3D graphical interfaces have gained popular-
ity (e.g., Microsoft Kinect, LeapMotion, Geomagic Touch,
etc.). Though these devices enable 6-DoF tracking, the lack
of haptic feedback still limits their intuitiveness [9].

From their inception, it was clear that multi-touch interfaces,
pioneered by Lee et al. [11], offer significant advantages with
their wide range of natural inputs, such as pinch gestures.
Multi-touch devices (Apple iPad, Microsoft Surface, etc.) are
now widespread. In this work, we used a multi-touch graph-
ical interface for a 3D modeling system. The intuitiveness
of such devices does not fully eliminate the ambiguity of
mapping 2D screen inputs into a 3D coordinate space, but we
have found that users, particularly casual modelers, find these
devices more natural.

3D Modeling Systems
This section surveys available 3D modeling alternatives.

Desktop Modeling Systems. Commercial desktop systems
such as AutoCAD, Maya or SolidWorks provide extensive
modeling capabilities suited for various industries. These
tools are geared towards professionals who can go through ex-
tensive periods of training. More accessible, alternative mod-
eling systems have gained in popularity, such as SketchUp
(an easy to use system for architects) and ZBrush (a digital
sculpting tool, relatable to traditional sculpting). It would be
interesting to study how these systems might benefit from a
multi-touch interface. For creating complex curved surfaces,
desktop systems often rely on the specification of indirect

(a) (b)

(c) (d)

(e) (f)

Figure 2. Six models created in our system (3D geometry shown
only): (a) a book on a podium, (b) a lamp, (c) a papercraft tiger,
(d) an armoire, (e) ribbons, and (f) an origami paper crane.

control points (e.g., NURBS), which can take time to learn to
use effectively.

Gesture-Based Modeling Systems. Most modeling tech-
niques have one-point-based interaction – e.g., dragging a
point or set of points to squash or stretch, grabbing something
and moving it. There have been various papers describing
and evaluating methods for transforming objects with multi-
touch, e.g., [1, 3, 6, 12, 13]. However, this is just one small
aspect of a modeling system. Some researchers have begun to
explore how a multi-touch interface could be used to model
primitive and abstract shapes [2, 8] or to interact with 3D
objects [6]. De Araùjo et al. [4] introduced a semi-immersive
environment for preliminary conceptual modeling without
haptic feedback. While their experience was satisfactory, the
modeling system itself proved insufficient for precise con-
trol of 3D geometry. Walther-Franks et al. [21] performed a
preliminary study by augmenting Blender, the 3D modeling
tool, with a multi-touch interface. The multi-touch operations
received positive feedback, but are mainly limited to object
animation functions, rather than geometric modeling tools.

Recently, Autodesk launched a set of mobile products for mod-
eling and design, including 123D Design and 123D Sculpt

2

– notably simplified tools compared to their desktop coun-
terparts. However, the modeling functions and interaction
in these systems are still typical of one-point-based desk-
top modeling/sculpting systems – beyond view manipulation,
little is done to take advantage of a multi-touch interface. Sev-
eral domain-specific modeling systems have been created for
multi-touch interfaces, such as Eden (for constructing organic
sets) [10], Sun et al.’s system for architectural design [19], and
Wilson et al.’s physics simulator [22]. However, these systems
are not suitable for casual, general-purpose modeling, and are
primarily targeted at domain-specific professional users.

Papercraft Simulators
Papercrafting is a set of art forms that use paper as an artistic
medium to create physical 3D objects. In particular, origami,
the traditional Japanese art of paper folding, has been exten-
sively studied from a computer science and applied math per-
spective. Origami simulators have been implemented in vari-
ous forms, including Maya plugins [17], stand-alone applica-
tions employing desktop interfaces [20], and others [14, 15].
Rather than producing a faithful simulation of origami, we
use the time-honored principles of origami as a stepping stone
to create a novel 3D modeling paradigm and system to design
freeform 3D objects and scenes. Similar to the way sketch-
ing inspired the Teddy system by Igarashi et al. [7], we take
inspiration from simple interactions with physical paper.

To summarize, our main goal is to propose a novel 3D model-
ing technique inspired by papercrafting and implemented as
an intuitive system designed for a multi-touch interface. The
following sections present details of Paper3D.

THE PAPER3D MODELING SYSTEM
To create an effective multi-touch modeling system, we ob-
served that paper folding – a simple, physical process virtually
anyone can identify with – has strong synergy with a multi-
touch interface on a flat-surface device. We built on folding
with additional physically inspired operations including cut-
ting, bending, pinning and taping. We then further expanded
the system to allow the assembly of sets of individually de-
fined component objects into complex scenes. This form of
inspiration allows us to focus purely on developable surfaces.

In the traditional papercraft art form of origami, a person
begins with a single, square sheet of paper. Only three types of
folds are permitted: mountain folds (forming a ridge), valley
folds (forming a trough), and creases. Many combination
folds exist (e.g., reverse, rabbit-ear, squash), but these are
simply compositions of the three basic folds. Origami, and
particularly the work of [15] inspired several initial modeling
functions in our system. However, our work evolved into
a modeling technique with broader functionality, extending
far beyond the constraints of traditional origami or origami
simulators. We give an overview of our modeling technique.

This section gives a high-level overview of Paper3D (interface
shown in Figure 3), followed by an in-depth description of
the system’s modeling and assembly tools in the next section.

Intuitive, Gesture-Based Interactions
Paper3D is created from the ground up for a tablet device with
a multi-touch display (a third-gen. iPad). As such, the major-

Sub-mode buttons
(press and hold

for temp. switch,
tap for full switch)

Active sub-mode
in blue

Sheet of paper that will
be modeled into base model

List of base
models (current
model in red)

Delete or cut model

Access settings
Toolbar

View scene
(Go to assembly

mode) Undo operation Create new
sheet of paper

New/Open/Save Scene

Figure 3. Interface for the modeling mode of Paper3D. Radio
buttons (left) allow switching between submodes; the view sub-
mode is active. Model thumbnails (right) are used to select/edit
a different model. The bottom toolbar offers additional func-
tionality such as undoing. The assembly mode interface has dif-
ferent submodes but an otherwise similar interface.

ity of user interaction with the system occurs through intuitive
single- and multi-finger gestures. An intuitive interaction is
one that has an easily understandable gesture mapping, is
predictable and straightforward to replicate, and results in
immediate visual feedback to the user. In the context of mod-
eling, we focus on creating interactions that have a tangible,
direct effect on a model. All user gestures requires a specific
number of inputs – e.g., a 1-finger pan or a 2-finger pinch.
We use the notation ti to represent the normalized screen
coordinate of the (i+ 1)th gesture input, and define ti start

and ti end as the initial and new/final screen coordinates of
the user’s finger. The corresponding points projected along
the camera view direction onto the plane of current face f
are pi start and pi end. The primary gestures we used are
illustrated in Figure 4.

Scene Objects

Similar to a standard polygonal mesh, each individual object,
or 3D component in our system consists of interconnected
faces, edges and vertices. Each face is a convex, planar area
of the component model; its closed outline is composed of
n edges and vertices (n ≥ 3). Every edge has exactly two
vertices, and is classified as a boundary edge (belongs to a
single face, or two folded-over faces), a fold (between two
non-coplanar faces), or a crease (between two coplanar faces).
Two or more edges can have the same vertex; we refer to a
vertex belonging to two boundary edges as a corner.

Pan
(1 or 2 fingers)

Pinch
(2 fingers)

Single/Double Tap
(1 or 2 fingers)

Rotate
(2 fingers)

Long press
(1 finger)

Pinch
(3 fingers)

Figure 4. Examples of multi-touch gestures used in Paper3D.

3

System Modes
In Paper3D, there are two main stages of design (and corre-
sponding modes): a modeling stage and an assembly stage.
Figure 3 shows the interface of the modeling mode. Users
can transition between the modes at any point. The modeling
mode allows users to model sheets of source paper (one at a
time) into 3D components through creasing, folding, bending,
extending and cutting operations, as outlined in the previous
section. In the assembly mode, users can insert models, trans-
form them, and then intuitively group them together through
pinning and taping operations.

Owing to the range of operations in each mode, certain func-
tions require the same gesture. To remove ambiguity, the
interface of each mode has five radio buttons to the left of
the screen, grouping sets of operations into submodes. In
the modeling mode, the five submodes are extend, fold, bend,
crease/cut, and view (Figure 3). In the assembly mode, the
submodes are insert, transform, pin/tape, color, and view. If
desired, a user can rest a finger of their non-dominant hand on
a submode button, activating the submode only for as long as
they are holding the button. This can streamline operations –
e.g., by allowing quick viewing of a model between modeling
operations. In the modeling mode, thumbnails of existing
models can be used to select a different model for editing. In
the insert submode of assembly mode, these thumbnails can
be used to drag in copies of each model into the scene.

3D MODELING AND ASSEMBLY TOOLS
This section describes user operations available to model pa-
per in our system into 3D components, and subsequently
assemble and texture them to create 3D scenes. Implemen-
tations of our modeling operations typically involve uses of
functions SPLIT(f, l) (divides a face f into two new faces
along line l), ROTATE(f, l, θ) (rotates f about line l by an
angle θ), and TRANSLATE(f, l, d) (translates f a distance d
along line l).

Gesture-Based 3D Modeling Tools
Creating a 3D component begins with an initially flat sheet of
paper that can be resized and stretched using a pinch gesture,
which maps the two gesture inputs to the two opposite corners
of the sheet. Its shape may also be defined with a freeform
outline tool, or by choosing a predefined polygonal shape
(e.g., triangle, circle). (See Figure 5.)

(a) (b)

Shape slider

Figure 5. Creating a new sheet of virtual paper: (a) Users
can define a freeform outline for the paper with a single finger
pan. (b) Alternatively, a regular polygon can be selected using a
shape slider to control the number of vertices (see inset).

Planar Operations. Three fundamental operations available
to the user are creasing (dividing one or more faces into
two), extending (creating new, connected, coplanar faces),
and cutting (dividing part of a model along a crease). The
user defines a crease through two finger inputs p0 and p1,
panning to adjust its position and orientation. (See Figure
6a.) Upon releasing, the face is divided through a SPLIT()
operation into two new faces connected along the crease. A
outward pinch with fingers over a selected crease and one of
its connected faces cuts that side of the model, either removing
it or making it a separate component. (See Figure 6b.) To
extend the current sheet, as seen in Figure 6c, the user can
drag two fingers along the outward normal of any boundary
edge, creating a new face. Two of its vertices are of the
crossed boundary edge; the remaining ones are defined by the
two projected gestural inputs p0 and p1.

Extending. In addition to planar extending, we provide ad-
ditional extend tools. Users can bridge two edges using an
edge-to-edge extend, by placing a finger over one edge and
swiping the other edge towards the first (Figure 6d). A three-
finger pinch on a face will extend the paper along all the
boundary edges of a face simultaneously, along the normal
to the original face. The distance the fingers are spread apart
controls the width of the new faces, and the angle of the new
faces can be subsequently adjusted (Figures 6e and 6f). A
four-finger pinch performs an extend operation on all the faces
of the component simultaneously, allowing users to quickly
add thickness to their model. Any curved face is extended
along its original normal prior to the added curvature.

Folding. A one-finger drag over one of the adjoining faces
of a selected crease adjusts the angle of the crease (through
a call to ROTATE()), turning it into a folded edge, with the
angle defined by t0 projected onto the normal of the edge.
All faces connected to the rotating face (on the same side
of the crease/fold) are rotated together with it. The angle
of any existing crease or fold of the 3D component may be
adjusted in this way. In a corner fold operation, a user’s finger
is dragged across the screen over a corner of a face (selecting
it), and the user starts to fold over the face. (See Figure 6g.)
The folding line lfold is defined as the line perpendicular to
l(pstart, pend) and passing through the midpoint of pstart
and pend. The new, folded-over face ffolded is rotated 180◦

about lfold. Similarly, edge folding lets the user fold over
the paper by grabbing any boundary edge of the component
(Figure 6h), with its final position unambiguously defined
through a two-finger pan gesture. The midpoints of the two
start and end touches, p0 mid and p1 mid, define the folding
line lfold, and the new face ffolded is rotated 180◦ about lfold.
(See Figure 7a and 7b.)

Angled Folding and Bending. A pinch gesture on a multi-
touch device lets us define an angled corner folding tool,
allowing a user to simultaneously fold over a corner of the
sheet of paper, while also controlling the folding angle be-
tween the fixed and folded-over parts. The folding line lfold is
defined as the line perpendicular to LINE(p0 start, p1 end) and
passing through p1 end. (See Figure 7c.) The angle of rotation
of face ffolded is found using p0 end, the 3D point found by
projecting t0 end onto the plane passing through p0 start with

4

(a) Creasing
 Submode: Crease/Cut

(c) Extending
 Submode: Extend

(b) Cutting
 Submode: Extend

(d) Bridging Edges
 Submode: Extend

(e) Extending All Edges
 Submode: Extend

(f)  Rotating All Edges
 Submode: All

(h) Edge Folding
 Submode: Fold

(g) Corner Folding
 Submode: Fold

(i)  Corner Bending
 Submode: Bend

(j)  Symmetric Bending
 Submode: Bend

Figure 6. A selection of modeling tools in Paper3D: (a) creasing a sheet of paper, (b) cutting along an edge, (c) extending along an
edge of a face, (d) bridging edges of two faces, (e) extending all edges of a face, (f) rotating all faces generated in (e), (g) corner folding,
(h) edge folding, (i) corner bending, and (j) symmetric bending. Circles and arrows indicate the position and motion of user touches.

Algorithm 1 Corner bending
1: procedure CORNERBEND(forig, t0, t1)
2: p1 end ← PROJ(forig, t1)
3: worig ← LENGTH(p0 start − p1 end)
4: ln ← LINE(p0 start, p1 end)
5: lfold ← LINE(p1 end, NORMAL(ln))
6: if ISBENDABLE(forig, lfold) then
7: ffixed, ffolded ← SPLIT(forig, lfold)
8: ftemp ← FACE(VECTOR(ln), NORMAL(forig), p1 end)
9: p0 end ← PROJ(ftemp, t0)

10: BEND(ffolded, p0 end, p1 end, worig)
11: end if
12: end procedure
13:
14: procedure BEND(f, p0, p1, worig)
15: fbend prev ← f
16: lparts, θfolds ← COMPUTEBENDSTRIPS(p0, p1, worig)
17: for i← 0, nparts do
18: fbend prev, fbend curr ← SPLIT(fbend prev, lpart i)
19: ROTATE(fbend curr, lpart i, θfold i)
20: ADDTOSUBFACES(f, fbend curr)
21: fbend prev ← fbend curr

22: end for
23: end procedure

normal parallel to lfold. Angled edge folding is analogous,
except it starts on a boundary edge instead of a corner. In
corner bending, we extend angled folding to allow users to
curve parts of their model (Figure 6i). The angled face ffolded
is curved into n bend strips, through a recursive sequence of
n SPLIT() and ROTATE() operations. Dividing lines l1 to ln
are parallel to the initial dividing line lfold. Following [15],
we determine the line spacing and the angle of each rotation

by minimizing the energy function

E = αΣi(di − L)2 + βΣi(ai − ai+1)2,

where L is a constant equal to 1/k multiplied by the distance
between the line l and the selected corner at p0 start, and
di and ai are the widths of and angles between the bend
strips. Constants α = 0.6 and β = 0.4 were determined
experimentally. (See Figure 7d and Algorithm 1.) If the user’s
fingers are close together, the paper is curved into a cylindrical
shape (instead of using the energy minimization function),
connecting points p0 end and p1 end. Edge bending instead
bends over an edge of the model, but is otherwise identical.

Symmetric Folding and Bending. A symmetric bend is acti-
vated when a user pinches an inner region of the paper. As
the user’s two fingers are drawn together, the paper bends
upwards, forming a peak at the midpoint (Figure 6j). In the
implementation, we define worig as half the original distance
between the user’s initial, projected contact points p0 start

and p1 start. wbend and hbend are defined as the width and
height of half the bent portion of the paper, computed based
on the new/final contact points p0 end and p1 end. The original
face forig is first divided along the line passing through the
midpoint of p0 end and p1 end, and perpendicular to the line
through those points. The two resulting faces are translated
inwards by a distance equal to worig − wbend, and then each
is split into two new faces along the fold lines through points
p0 end and p1 end. Finally, the inner two faces f0 folded and
f1 folded are curved, such that they meet symmetrically at the
peak of the bend ppeak, and maintain their original dimen-
sions. (See Figure 7e and Algorithm 2.) The orientation of the
bend and the thickness and height of the bend are readjusted
in real-time in response to user input, until the user’s fingers
are lifted off the screen. Subsequently, the position of the
peak can be adjusted horizontally and vertically. Analogous

5

f1!
f2!

pend!

lfold!

pstart!

pmid!

(a) Corner folding!
p0_start!

p1_start!p1_end!

p0_end!
p0_mid!

p1_mid!

lfold!
f2!f1!

(b) Edge folding!

p0_start!

p1_start!

f2!

f1! lfold!

(c) Angled corner folding!

p0_start!

p0_end!

p1_end!
f2!

f1!

(d) Corner bending!

p0_start!

p1_start!

f2!

f1! lfold!

di!αi+1!
αi!

p0_start!

p0_end!

p1_end!

p0_start!

p1_end!

f2!f1!

p0_end!

(e) Symmetric bending!

p0_start! p1_start!p0_end! p1_end!

f11! f21!
f22!f12!

f1! f2!

lfold!

p0_start! p1_start!pmid!

f12! f22!f11! f21!

lfold!lfold!

d0!d0! d1! d1!p0_start! p1_start!

L!

L!

Figure 7. Technical details for a selection of tools in Paper3D. (a) and (b) show how the folding line lfold is calculated for corner and
edge folds. (c) illustrates how the two user inputs are projected onto a plane perpendicular to the current face, allowing the user to
specify both the fold angle and orientation. (d) shows how a curve is fit between the two projected input points, resulting in the curved
surface. (e) shows the effect a symmetric bend has on a face of the model, translating each half inwards as the bend is increased.

Algorithm 2 Symmetric bending
1: procedure SYMMETRICBEND(forig, t0, t1)
2: worig ← 0.5 ∗ LENGTH(p0 start − p1 start)
3: wbend ← MIN(0.5 ∗ LENGTH(p0 end − p1 end), worig)
4: hbend ← SQRT(worig

2 − wnew
2)

5: p0 end ← PROJ(forig, t0)
6: p1 end ← PROJ(forig, t1)
7: pmid ← 0.5 ∗ (p0 end + p1 end)
8: ppeak ← pmid + hbend ∗ NORMAL(forig)
9: ln ← LINE(p0 end, p1 end)

10: l0 fold ← LINE(p0 end, NORMAL(ln))
11: l1 fold ← LINE(p1 end, NORMAL(ln))
12: lmid fold ← LINE(pmid, NORMAL(ln))
13: if ISBENDABLEREGION(forig, l0 fold, l1 fold) then
14: f0, f1 ← SPLIT(forig, lmid fold)
15: dtrans ← (worig − wbend)
16: TRANSLATE(f0, ln, dtrans)
17: TRANSLATE(f1, ln,−dtrans)
18: f0 fixed, f0 folded ← SPLIT(f0, l0 fold)
19: f1 fixed, f1 folded ← SPLIT(f1, l1 fold)
20: BEND(f0 folded, p0 end, ppeak, worig)
21: BEND(f1 folded, p1 end, ppeak, worig)
22: end if
23: end procedure

to symmetric bending, a symmetric fold forms a peak at the
midpoint of the two points of contact, where the portion of
paper between the two pinched fingers is folded upwards,
creating a folded peak in the middle.

Transforming, Grouping and Texturing Tools
Once a selection of single-sheet components has been con-
structed using our system’s modeling operations and inserted
into the scene, they can be transformed and assembled into
more complex models using pinning and taping tools.

Pinning and Taping. A user pins two objects together by
first tapping on a face f0 of a model m0. This creates a pin

at projected location p0, with normal equal to f0’s normal.
A subsequent tap of face f1 of a second model m1 indicates
a desired location and alignment of the first model. The
two faces are pinned together; this is highlighted through
animation. If m0 has been pinned to the wrong side of f1, it
can be flipped over using a rotate gesture. Adjustments can
subsequently be made by translating within the plane of f1 or
rotating about the pin axis. (See Figures 8a and 8b.) Taping is
similar to pinning, except a user first taps an edge e0 of m0

(with two fingers, to distinguish from pinning), and then taps
an edge e1 of model m1. The same transformation occurs as
above, except now, e1 is constrained to lie on e0. The user can
rotate m0 about the axis of the tape (the line passing through
e1), or translate along this axis (Figures 8c and 8d).

Transforming and Duplicating. Individual and assembled
models can both be transformed through uniform scaling
(pinch gesture), translation within the plane of any face of the
model (two-finger pan), and rotation about any edge of the
model (one-finger pan). In addition, users can temporarily
drop a pin or tape onto a model (without grouping), and trans-
late and rotate about the pin/tape. Both individual models and
groups can be duplicated using a one-finger drag operation.

Coloring and Texturing. As part of the assembly mode, we
provide coloring and texturing tools to embellish the resulting
models. In the coloring/texturing submode, a color picker
allows users to select any desired color. Subsequently, a single
one/two/three-finger tap on a face of a model will change the
color of the face/model/group to the selected color. (See
Figure 8e.) A long press over a model sets the current color
to that of the indicated face. For texturing, the list of model
thumbnails is replaced by a list of texture thumbnails. Once a
texture is selected, it can be applied to a face/model/group in
the same way as a color. The texture mapping can be adjusted
using a pinch gesture. (See Figure 8f.)

6

(a) Pinning
 Submode: Pin/Tape

(b) Rotating Pinned Model
 Submode: Pin/Tape

(c)  Taping
 Submode: Pin/Tape

(d) Rotating Taped Model
 Submode: Pin/Tape

(e) Coloring
 Submode: Color

(f)  Texturing
 Submode: Color

Figure 8. A selection of assembly operations. (a) The user adds
a pin to the spine of the book. Tapping over the top of the book-
stand attaches the two together at the pin location. (b) Users
can then rotate the book about the pin, or translate the book in
the plane of the stand. (c) The user has added tape to the edge of
the loose book page; a two-finger tap over the spine of the book
then attaches the page to the spine, aligning the two edges. (d)
The alignment is adjusted. (e) The user can color an object us-
ing the color palette and a subsequent tap gesture. (f) Textures
can be mapped onto any surface using a pinch gesture.

IMPLEMENTATION DETAILS
Paper3D was implemented from the ground up for a tablet
device with a multi-touch display (a third generation iPad).
As such, the majority of user interaction with the system oc-
curs through single- and multi-finger gestures. Our system is
implemented in a mix of C++ and Objective C, with OpenGL
ES as the rendering API.

Object Storage
Each object instance in our system (i.e., vertices; edges; faces)
is stored dynamically, and has a unique identifier. Standard
map containers store pointers to these objects for easy access.
Each model stores three separate maps for its faces, edges and
vertices, respectively. As shown in Figure 9, each face stores
a map of its edges and an ordered list of its vertices, while
edges store pointers to their associated faces and vertices.

Modeling Updates
Figure 9 shows an example of how the internal data structures
of the system are updated after a crease operation. Original

v0! v1!

v3! v2!e2!

e0!

e3! f0! e1!

m1_before! m1_after!

v0! v1!

v3! v2!e2!

e4!

e3! f1!
e6!

f2!
e5!

e7!

v5!

v6!
e8!

face_map = {f0}!
edge_map = {e0, e1, e2, e3}!
vertex_map = {v0, v1, v2, v3}!
hidden_face_map = {}!
hidden_edge_map = {}!

f0!

e0! e1! e2! e3!

face_map = {f1, f2}!
edge_map = {e2, e3, e4, e5, e6, e7, e8}!
vertex_map = {v0, v1, v2, v3, v4, v5, v6}!
hidden_face_map = {f0}!
hidden_edge_map = {e0, e1}!

f0!

f1! f2!

e0!

e4! e5!

e1!

e6! e7! e2! e3! e8!

Figure 9. Overview of the object data structure in our system.
The right-hand side shows how the data structure is updated
when a face of the model is split (e.g., through folding).

face f0 is divided into new faces, f1 and f2. The outline of
f0 is split: vertices v0, v5, v6, v2, and v3 now make up the
outline of f1, while v5, v1 and v6 comprise the outline of f2.
We maintain a history of operations performed on the models,
as shown in the tree structures in the same figure. Each face
has a parent face and two children, all initially set to null.
In this example, the parent face f0 is labeled as hidden, and
its left and right children are set to f1 and f2, respectively,
while their parent is set to f0. Edges are divided and updated
similarly: e0 is split into e4 and e5, e1 is split into e6 and e7,
while a new edge e8 is created between f1 and f2. Parent
and child edges are updated, as are edge map containers. If
Figure 9 instead showed a corner bend operation, f2 would
subsequently be replaced by a curved surface, by recursively
dividing it into a set of bend strips of near-equal length and
parallel to edge e8. Undoing an operation simply involves
accessing the tree structures to determine the original objects.

RESULTS AND DISCUSSION
Paper3D went through a natural, user-guided evolution. Once
we had a stable, preliminary version of our system, we showed
our system to four modelers: three casual 3D modelers with
only about three months of modeling experience, and a pro-
fessional designer with extensive modeling experience. These
four modelers learned to use our system (5–10 hours of prac-
tice), and each created a selection of 3D models using Pa-
per3D, while providing us with feedback. This feedback
resulted in subsequent modifications to the system.

3D Modeling Results
Figure 10 displays a selection of models and scenes created
by the independent modelers using our system. Our best esti-
mate is they spent an average of 4–5 hours conceptualizing
and creating each scene. We attribute some of this to the
fact that throughout the modelers’ usage, we were making
periodic changes to the system in response to user feedback.
Figure 10a shows a papercraft-like jungle scene, with a collec-
tion of animals surrounded by plants and trees, easily created
with the modeling operations of our system. The modern
architectural interior in Figure 10b is composed of curved
surfaces that would have been difficult to create in an existing

7

(e)

(c)

(a) (b)

(d)

(f)

(g) (h)

Figure 10. A selection of 3D models and scenes created by users of our system. (a) A papercraft-like jungle scene; (b) a modern
architectural interior; (c) a library scene with a curved lounge chair; (d) an artsy design made out of intertwined, twisting ribbons;
(e) a manuscript on a podium, with a lamp lighting an armoire in the background; (f) a modern, curved skyscraper; (g) a David
Hockney inspired stage set; (h) a Queen Anne style house.

8

modeling system. Figure 10c shows a more traditional interior
of a library; again, note the nontrivial curvature of the lounge
chair and the lamps. Figure 10d displays an artsy design
made out of intertwined, twisting ribbons, and emphasizes
the simplicity with which natural forms of curvature can be
modeled in Paper3D. Another such example is illustrated by
the manuscript lying on the podium (Figure 10e), though the
other elements of this scene were also created with little effort
in Paper3D. The cross-section of the skyscraper in Figure 10f
contains an array of curves which were easily modeled us-
ing the bending functions in our system. Figure 10g shows
a David Hockney-like stage-set design; the paper-modeling
operations of our system are ideally suited for a model like
this one. Finally, though a system like SketchUp is tailored
to creating models such as the Queen Anne style house (Fig-
ure 10h), we demonstrate that users of Paper3D can also
successfully produce these types of models.

Discussion of System Evolution
We discuss a range of key design decisions that we made
throughout development of the system, both a result of user
feedback, and our own observations and insights.

Gesture Mapping. Though we used papercrafting as an in-
spiration, it was often not appropriate to directly simulate
certain interactions, but rather to use gestures appropriate in
the context of 3D modeling with a multitouch device. For
example, the crease gesture in Paper3D uses a pinch gesture
to define the orientation of the crease, even though this does
not mimic physically creasing paper. Similarly, a corner fold
uses a one finger pan – more natural on an iPad than grabbing
the corner by pinching. Other operations, however, such as a
symmetric bend, precisely mimic the physical interaction. In
some cases, gestures with three or more fingers (and in some
cases, only two fingers) led to significant screen occlusion,
affecting our choices.

Curved Surfaces. Bending paper is not only a very natural,
physically-realizable operation, but it can also be effectively
simulated on a multi-touch interface. Users can control two
degrees of freedom simultaneously, streamlining the curve
creation process. Paper3D is limited to creating developable
surfaces, by virtue of using sheets of paper as a starting point –
a conscious design decision, as doubly curved surfaces can be
intimidating for inexperienced modelers. Instead, a strength of
our system is making curved surface creation more accessible
to casual 3D modelers.

Rendering Folded Edges. It was important to us to give
users a visual sense that they are manipulating paper (as long
as the rendering quality does not affect performance). Narain
et al. [16] introduced a sophisticated simulation technique for
rendering folded and crumpled paper; however, this algorithm
could not run in realtime. Furuta et al. [5] provided a rendering
algorithm, but only for flat, not curved edges. In Paper3D, we
decided to render all folds as thin, curved areas between the
two adjoined faces. The radius of the curve is determined in
part by the relative ordering and computed offsets of layers
of folded-over faces. Folding a face over itself multiple times
results in increasingly thicker, more curved edges (Figure 11),
giving models a more volumetric appearance.

Figure 11. The representation of non-boundary edges in our
system, i.e., creases, mountain folds and valley folds.

USER EVALUATION
The user-guided evolution of Paper3D afforded a running
evaluation of our modeling system, following the long-term
evaluation method of Shneiderman and Plaisant [18]. Once
Paper3D evolved into its current form, we asked each of our
testers for a summary review of the system, detailing both
their experience with the tool, and how the system compares
to previously used modeling systems. We present their overall
impression of Paper3D, along with other notable feedback.

Overall Experience. All four modelers found their experi-
ence with the system to be very positive. One of the modelers
thought Paper3D was more enjoyable than Autodesk Maya,
since she was immediately able to learn all its functions and
features, whereas she found Maya to be overcomplicated, with
many features she had no idea how to use. The gesture-based
system was singled out as more intuitive than using a mouse.
The modelers found our system easier to learn, and objects
within it easier to manipulate. All modelers thought Paper3D
was enjoyable to use, and saw it as very accessible to people
with little or no prior modeling experience. Users considered
our system a competitive alternative to 3D modelers.

Mobility. The mobility of the iPad is an advantage over larger
display devices (e.g., an Eizo Multitouch Radiforce device).
The designer supported this, pointing out that Paper3D’s mo-
bility makes the modeling experience more enjoyable. Ad-
ditionally, she observed that Paper3D could be useful as a
casual, portable modeling tool for quick prototyping in the
early phase of design.

Precision. Our users observed that using a mouse provides
better precision than hand gestures, though in general, this
did not negatively affect their modeling process. This agreed
with our assumption that while the precision of a tablet device
may not be sufficient for a professional modeler, it should
suffice for a casual one. For enhanced precision, we provided
a range of snapping features (e.g., corner-to-corner snapping
during folding), and a secondary, orthogonal view for more
complex operations. In the future, we plan to add guides for
more accurate model selection, placement and grouping.

Number of Submodes. Though users did not mind having
too many submodes, optimizing their number is an area of
future work. Additionally, since more emphasis was placed on
developing the system’s gesture-based interface and modeling
paradigm, improving the general button and toolbar layout of
the present interface will be another future area of focus.

9

CONCLUSION AND FUTURE WORK
We have presented Paper3D, a novel 3D modeling system
designed specifically for multi-touch interfaces. Our iPad
application introduces a new style of modeling inspired by pa-
percrafting, with intuitive, familiar operations, such as folding,
bending, cutting, pinning, and taping. Our system is easily
learned by experienced and casual modelers alike, allowing
users to create a wide range of developable surfaces. We
validated our claims by asking modelers to test Paper3D and
use it to create a variety of models, while providing valuable
feedback for iterative development. Their final reviews of
the system were uniformly positive and encouraging. Several
interesting future directions of Paper3D remain, such as im-
proving input precision, experimenting with additional forms
of curvature, improving rendering efficiency and quality, ex-
tensions to support animation, and hardcopy output.

ACKNOWLEDGMENTS
Julie Dorsey acknowledges support from the National Science
Foundation under Award 1018470. Min H. Kim acknowl-
edges partial support from Korea NRF grants (2013R1A1A10-
10165 and 2013M3A6A6073718) and an ICT R&D program
of MSIP/IITP (10041313). We thank Yumiko Nakamura, Vic-
toria Nielsen, Marko Micic (Yale University), and Seijin Cha
(KAIST) for their invaluable feedback and modeled designs.

REFERENCES
1. Oscar Kin-Chung Au, Chiew-Lan Tai, and Hongbo Fu.

Multitouch gestures for constrained transformation of
3D objects. Comput. Graph. Forum, 31(2):651–660,
2012.

2. Samuel Hsiao-Heng Chang, Lachlan Stuart, Beryl Plim-
mer, and Burkhard Wünsche. Origami simulator: a
multi-touch experience. In CHI Extended Abstracts,
pages 3889–3894. ACM, 2009.

3. Aurélie Cohé and Martin Hachet. Beyond the mouse:
Understanding user gestures for manipulating 3d objects
from touchscreen inputs. Comput. Graph., 36(8):1119–
1131, December 2012.

4. Bruno R. De Araùjo, Géry Casiez, and Joaquim A. Jorge.
Mockup Builder: Direct 3D modeling on and above
the surface in a continuous interaction space. In Proc.
Graphics Interface, pages 173–180, 2012.

5. Yohsuke Furuta, Jun Mitani, and Yukio Fukui. A render-
ing method for 3D origami models using face overlap-
ping relations. In Proc. Smart Graphics 2009, volume
5531, pages 193–202. Springer, 2009.

6. Mark S. Hancock, M. Sheelagh T. Carpendale, and Andy
Cockburn. Shallow-depth 3D interaction: design and
evaluation of one-, two- and three-touch techniques. In
Proc. ACM CHI, pages 1147–1156, 2007.

7. Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka.
Teddy: A sketching interface for 3D freeform design. In
Proc. SIGGRAPH, pages 409–416, 1999.

8. Amit Joshi, Glen Robertson, Burkhard Wünsche, and
Beryl Plimmer. Bubbleworld builder - 3D modeling

using two-touch and sketch interaction. In Proc. GRAPP,
pages 116–122, 2010.

9. J. Keijser, S. Carpendale, M. Hancock, and T. Isenberg.
Exploring 3D interaction in alternate control-display
space mappings. In Proc. Symp. on 3D User Interfaces,
pages 526–531, 2007.

10. Kenrick Kin, Tom Miller, Björn Bollensdorff, Tony
DeRose, Björn Hartmann, and Maneesh Agrawala.
Eden: A professional multitouch tool for constructing
virtual organic environments. In Proc. ACM CHI, pages
1343–1352, New York, NY, USA, 2011. ACM.

11. S. K. Lee, W. Buxton, and K. C. Smith. A multi–touch
three dimensional touch–sensitive tablet. In Proc. ACM
CHI, pages 21–26, 1985.

12. Jingbo Liu, Oscar Kin-Chung Au, Hongbo Fu, and
Chiew-Lan Tai. Two-finger gestures for 6DOF manip-
ulation of 3D objects. Comput. Graph. Forum, 31(7-
1):2047–2055, 2012.

13. Anthony Martinet, Gery Casiez, and Laurent Grisoni.
The design and evaluation of 3D positioning techniques
for multi-touch displays. In Proc. the Symposium on 3D
User Interfaces, pages 115–118, 2010.

14. Jun Mitani. The folded shape restoration and the render-
ing method of origami from the crease pattern. In Proc.
Int. Conf. on Geometry and Graphics, pages 1–7, 2008.

15. Shin-Ya Miyazaki, Takami Yasuda, Shigeki Yokoi, and
Jun-Ichiro Toriwaki. An origami playing simulator in
the virtual space. J. of Vision and Computer Animation,
7(1):25–42, 1996.

16. Rahul Narain, Tobias Pfaff, and James F O’Brien. Fold-
ing and crumpling adaptive sheets. ACM Trans. on
Graph. (TOG), 32(4):51, 2013.

17. Elizabeth Jeanette Nitsch. When pigs fly: a study of
computer generated paper folding. M.S. thesis, Texas
A&M University, 2008.

18. Ben Shneiderman and Catherine Plaisant. Strategies for
evaluating information visualization tools: multidimen-
sional in-depth long-term case studies. In BELIV 06:
Proc. the 2006 AVI workshop on Beyond, 2006.

19. Qian Sun, Juncong Lin, Chi-Wing Fu, Sawako Kaijima,
and Ying He. A multi-touch interface for fast architec-
tural sketching and massing. In Proc. ACM CHI, pages
247–256, New York, NY, USA, 2013. ACM.

20. Tomohiro Tachi. Rigid-foldable thick origami. Origami,
5:253–264, 2011.

21. Benjamin Walther-Franks, Marc Herrlich, and Rainer
Malaka. A multi-touch system for 3d modelling and an-
imation. In Proc. Smart Graphics, pages 48–59, Berlin,
Heidelberg, 2011. Springer-Verlag.

22. Andrew D. Wilson, Shahram Izadi, Otmar Hilliges, Ar-
mando Garcia-Mendoza, and David S. Kirk. Bringing
physics to the surface. In Proc. UIST 2008, pages 67–76.
ACM, 2008.

10

	ABSTRACT
	INTRODUCTION
	PREVIOUS WORK
	Multi-Touch Interfaces
	3D Modeling Systems
	Desktop Modeling Systems.
	Gesture-Based Modeling Systems.

	Papercraft Simulators

	THE PAPER3D MODELING SYSTEM
	Intuitive, Gesture-Based Interactions
	Scene Objects
	System Modes

	3D MODELING AND ASSEMBLY TOOLS
	Gesture-Based 3D Modeling Tools
	Planar Operations.
	Extending.
	Folding.
	Angled Folding and Bending.
	Symmetric Folding and Bending.

	Transforming, Grouping and Texturing Tools
	Pinning and Taping.
	Transforming and Duplicating.
	Coloring and Texturing.

	IMPLEMENTATION DETAILS
	Object Storage
	Modeling Updates

	RESULTS AND DISCUSSION
	3D Modeling Results
	Discussion of System Evolution
	Gesture Mapping.
	Curved Surfaces.
	Rendering Folded Edges.

	USER EVALUATION
	Overall Experience.
	Mobility.
	Precision.
	Number of Submodes.

	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

