TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MARCH 2018 1

PaperCraft3D: Paper-Based 3D Modeling
and Scene Fabrication

Patrick Paczkowski, Julie Dorsey, Holly Rushmeier, and Min H. Kim Member, IEEE

Abstract—A 3D modeling system with all-inclusive functionality is too demanding for a casual 3D modeler to learn. There has been a
shift towards more approachable systems, with easy-to-learn, intuitive interfaces. However, most modeling systems still employ mouse
and keyboard interfaces, despite the ubiquity of tablet devices and the benefits of multi-touch interfaces. We introduce an alternative
3D modeling and fabrication paradigm using developable surfaces, inspired by traditional papercrafting, and we implement it as a
complete system designed for a multi-touch tablet, allowing a user to fabricate 3D scenes. We demonstrate the modeling and
fabrication process of assembling complex 3D scenes from a collection of simpler models, in turn shaped through operations applied to
virtual paper. Our fabrication method facilitates the assembly of the scene with real paper by automatically converting scenes into a
series of cutouts with appropriately added fiducial markers and supporting structures. Our system assists users in creating occluded
supporting structures to help maintain the spatial and rigid properties of a scene without compromising its aesthetic qualities. We
demonstrate several 3D scenes modeled and fabricated in our system, and evaluate the faithfulness of our fabrications relative to their

virtual counterparts and 3D-printed fabrications.

Index Terms—multi-touch interface, 3D modeling, fabrication, papercraft.

1 INTRODUCTION

REATING 3D objects, through acquisition, modeling
C and physical fabrication, historically has been limited
to professional users. For instance, 3D laser scanners or
professional modeling tools were traditionally used for
creating virtual models, while high-end, commercial 3D
printers were used to fabricate these models as physical
objects. Recently, the affordability and accessibility of these
professional tools for modeling and printing have dra-
matically increased. 3D modeling and fabrication are now
popular among casual users with little modeling experience.
However, modeling and fabrication techniques still limit
user creativity. We present a new modeling and fabrication
system aimed at casual users'.

3D Modeling. In 3D modeling, all-inclusive functionality is
generally overwhelming for a casual user. Packages such as
Blender or Maya provide many modeling techniques, e.g.,
polygonal modeling, modeling with NURBS or subdivision
surfaces. However, learning how to use the majority of ex-
isting 3D modeling packages is challenging. An additional
difficulty is the communication of 3D modeling coordinates
through the standard user interface. Typical input devices,
e.g., mice and pens, and screens provide 2D input and out-
put. 2D devices are inadequate for specifying 6 degree-of-
freedom (DoF) position and orientation. Conversely, devices

e P Paczkowski,]. Dorsey, H. Rushmeier are with the Department of
Computer Science, Yale University, New Haven, CT, 06511.

e M.H. Kim, the corresponding author, is with the School of Computing,
KAIST, Daejeon, South Korea, 34141. E-mail: minhkim@kaist.ac.kr

Manuscript received April 30, 2017; revised July 26, 2017.

1. The modeling part was published in conference proceedings of
ACM UIST [1], this paper is a revised and extended version of the
conference paper to additionally introduce the fabrication of 3D model
designed with developable surfaces.

with a full 6-DoF (e.g., Geomagic Touch) are inaccurate and
difficult for novice users to operate.

Motion sensing interfaces with higher DoF have ap-
peared, such as LeapMotion and Microsoft’s Kinect, but
these suffer from lack of accuracy, and lack of haptic feed-
back. By contrast, input devices with multi-touch interfaces
have evolved in recent years, with products like the Apple
iPad and the Samsung Galaxy Tab. Though each input touch
is still two-dimensional, the combination of two or more
touches has resulted in gestures with more information than
the input of a traditional, single-point device. Due to their
ubiquity and intuitiveness, these devices are particularly
powerful for casual users.

In 3D modeling, problems such as 3D transformations
on a multi-touch device have been studied, and there are
domain-specific modeling systems for a multi-touch inter-
face. However, systems specifically focused on casual 3D
modeling by users with little modeling experience (e.g.,
sketch-based interfaces [2]) are still fairly limited either in
scope, learnability or modeling representation. This paper
presents a novel 3D modeling paradigm tailored for such
use to fully leverage the benefits of a multi-touch interface.

3D Fabrication. Similar challenges exist in 3D. For casual
users, producing a personally designed physical model is
both entertaining and fulfilling. For professionals, rapid
fabrication is a natural prototyping stage in many fields.
Being able to hold and look at a physical model can provide
a level of immersion that a digital model does not.

Despite the popularity of 3D printing, it is still chal-
lenging for casual modelers. Part of the issue is that there
are constraints on what can be reliably 3D printed. Many
models need adjustments to successfully print. There are
strict limitations in size and resolution that may prevent the
user from producing a model at the right scale or level of

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MARCH 2018 2

Multi-touch gestures 3D origami components

’ 5 0
K
(b)

(a) Modeling mode

Assembly mode

(c) Designed 3D model

(d) Real 3D object

Fig. 1. An overview of our novel 3D modeling technique, designed for a multi-touch interface to create 3D models on a tablet device. (a) A user
folds 2D sheets of paper in the modeling mode, using gesture-based modeling tools such as folding, bending, extending, and cutting. (b) A set of
modeled 3D components is assembled together through pinning and taping, resulting in (c) a complex 3D model. (d) The user can create a real 3D
scene object from the designed 3D model through our computer-aided paper crafting, resulting in (d) a real 3D scene.

detail. Lastly, 3D printing or other fabrication tools, such
as Pepakura [3], are suited for printing individual models
stripped of a global coordinate system, and of the spatial
relationship between individual models in a scene.

To maintain the general spatial relations between scene
components in fabrication, we add a small number of
supporting structures. Building a robust structural model
would require a full physical simulation of the model. This
is inconsistent with the casual nature of our system. Instead
we use a simple, practical approach for placing supports
that are well-occluded in key user-specified views. Once
supports are added, we add assembly guides and associated
fiducial markers for accurate, guided assembly. The full
mesh is then unfolded, segmented and printed onto sheets
of paper. The guided user assembly of the scene is a simple,
sequential process.

Overview. This work presents a novel 3D modeling and
fabrication system tailored for creating inexpensive scenes
composed of developable surfaces. First, inspired by tra-
ditional papercraft, we devise a 3D modeling technique in
which deformations mimic physically-based operations on
sheets of paper. We use theses simple, powerful techniques
as a foundation, and extended them into a broader, practical
technique for modeling developable surfaces. We design
and integrate this technique on a multi-touch device [1].
We evolve the system design in collaboration with both
casual and experienced users. Second, using the simple, yet
powerful principles of traditional papercrafting, we extend
this foundation of 3D modeling into a broader, practical
technique for fabricating developable surfaces. We evolve
our 3D modeling system [1], extending it to producing fully-
textured fabricated scenes. Our method prepares the virtual
scene for printing on sheets of letter-sized paper using a
conventional printer. Through our fabrication process, we
are able to simultaneously maintain scene structure and aes-
thetics. Our contributions to 3D modeling and fabrication
are:

e A new modeling paradigm inspired by papercraft-
ing, and extended by operations related to other
physical actions;

e An implementation of a modeling system, based on
this new paradigm, designed from the ground up to
use multi-touch gestures;

e A new fabrication system for intuitive physical pro-
duction of virtual 3D scenes modeled with devel-
opable surfaces,

e An algorithm for adding supports to a 3D scene, to
maintain its structural stability and its aesthetics,

e A working implementation of our fabrication
methodology, fully integrated into a system for digi-
tal 3D modeling and fabrication.

2 RELATED WORK

This section surveys previous work on interfaces, 3D mod-
eling and papercraft simulators, and fabrication.

2.1 3D Modeling Alternatives
2.1.1 Multi-Touch Interfaces

It is difficult to specify 3D coordinates using a 2D graph-
ical interface (e.g., trackball, stylus, mouse). Indirect 3D
graphical interfaces have gained popularity (e.g., Microsoft
Kinect, LeapMotion, Geomagic Touch, etc.). Though these
devices enable 6-DoF tracking, the lack of haptic feedback
still limits their intuitiveness [4], [5]. From their inception,
it was clear that multi-touch interfaces, pioneered by Lee et
al. [6], offer significant advantages with their wide range of
natural inputs, such as pinch gestures.

Multi-touch devices (Apple iPad, Microsoft Surface, etc.)
are now widespread. This has resulted in pursuits such as
developing intuitive 3D transformations on a multi-touch
device [7]-[11]. Multi-touch devices have been explored
for casual 3D modeling [12], [13]. In this work, we also
use a multi-touch graphical interface for a 3D modeling
system. The intuitiveness of such devices does not eliminate
the ambiguity of mapping 2D screen inputs into 3D, but
we have found that users, particularly casual modelers, find
these devices more natural.

2.1.2 3D Modeling Systems

Desktop Modeling Systems. Commercial desktop systems
such as AutoCAD, Maya or SolidWorks provide extensive
modeling capabilities suited for industry. These tools are
geared towards trained professionals. More accessible, al-
ternative modeling systems have gained in popularity, such
as SketchUp and ZBrush.

Gesture-Based Modeling Systems. Most modeling tech-
niques have one-point-based interaction — e.g., dragging a
point or set of points. Various papers describe and evaluate
methods for transforming objects with multi-touch, e.g.,
[7]-[11]. However, this is just one small aspect of a modeling

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MARCH 2018 3

system. Some researchers have begun to explore how a
multi-touch interface could be used to model primitive and
abstract shapes [12], [13] or to interact with 3D objects [9]. De
Aratijo et al. [14] introduced a semi-immersive environment
for preliminary conceptual modeling without haptic feed-
back. While their experience was satisfactory, the modeling
system itself proved insufficient for precise control of 3D
geometry. Walther-Franks et al. [15] performed a prelimi-
nary study by augmenting Blender, the 3D modeling tool,
with a multi-touch interface. The multi-touch operations
are mainly limited to object animation functions, rather than
geometric modeling tools.

Autodesk launched a set of mobile products for model-
ing and design, including 123D Design and 123D Sculpt —
notably simplified tools compared to their desktop coun-
terparts. Li et al. [16] recently proposed a sketch-based
interactive modeling system based on an RGB-D sensor
input. Inexperienced users can create curved 3D surfaces
using sweeping strokes. However, these are still basically
one-point-based systems — beyond view manipulation, little
is done to take advantage of a multi-touch interface. Sev-
eral domain-specific modeling systems have been created
for multi-touch interfaces, such as Eden (for constructing
organic sets) [17], Sun et al.’s system for architectural design
[18], and Wilson et al.’s physics simulator [19]. However,
these systems are primarily targeted at domain-specific pro-
fessional users.

2.1.3 Papercraft Simulators

Papercrafting is a set of art forms that use paper to create
physical 3D objects. In particular, origami, the traditional
Japanese art of paper folding, has been extensively studied
from a computer science and applied math perspective.
Origami simulators have been implemented in various
forms [20]-[23]. Rather than producing a faithful simulation
of origami, we use the principles of origami to create a novel
3D modeling paradigm and system to design freeform 3D
objects and scenes. Similar to the way sketching inspired
the Teddy system by Igarashi et al. [24], we take inspiration
from simple interactions with physical paper.

2.2 3D Fabrication Alternatives

3D Printing. 3D printing allows virtually anyone to in-
dependently design and manufacture products [25]-[27].
Many enhancements exit to prepare models for additive
manufacture, such as computing efficient and temporary
support structures [28] and analyzing stresses to determine
the optimal print direction [29]. However, there are still
several disadvantages. It can be difficult to learn how to 3D
print a model for someone with little experience. There are
printer-specific constraints on the size of models produced.
The size constraint requires that objects in a 3D scene are
printed separately, and later manually arranged by the user.
Models with open meshes (e.g., stage sets) that can be
created in a surface-based modeling system are not easily
handled by a 3D printer. Structural aspects of a scene, such
as the placement and distribution of mass of its various
components need to be accounted for in the modeling,
rather than printing, phase.

Other Digital Fabrication Methods. Aside from 3D printing,
the most common form of output is printing an unfolded
mesh on sheets of paper or cardboard. This is followed by
user assembly of the printed sheets. Prior work focusing
on the fabrication of 3D models, such as the seminal work
of [30] and associated Pepakura software, or the work of
Shatz et al. [31] are restricted to single, closed mesh models.
Other software products, such as TreeMaker, are specific
to creating origami models, and not generalizable to 3D
models and scenes [32]. Several works [33]-[35] use planar
slices to approximate closed meshes; Massarwi et al. [36]
uses generalized cylinders. While simplifying the fabrica-
tion process, these are only approximate representations of
the actual models. A larger shortcoming of all these methods
is that separately producing multiple models from a larger
3D scene will not automatically preserve structural stability
between the objects or between each object and the scene
base. These relationships are often integral to the look of the
scene. Lastly, there have been fabrication methods for very
specific types of objects/materials, such as pop-up cards
[37]-[39], knitted models [40], beadwork [41], and plush
toys [42]. In addition, as opposed to providing an intuitive
way to produce the shape in the first place, there have been
efforts [43]-[45] to produce any given shape represented
as a manifold mesh by paper folding [20]-[22]. Though
conceptually interesting and creative, these works provide
limited fabrication functionality.

Interactive Fabrication. An alternative paradigm is interac-
tive fabrication, where users can fabricate objects in real-
time (without first creating a 3D model) using a tangible
user interface (TUI) [46]-[50]. Generally these fabricate a
limited range of objects and require the use of specialized
hardware. By contrast, our method only needs is an iPad
and a paper printer.

Systems for Digital 3D Modeling and Fabrication. 3D print-
ing systems normally work independently of modeling sys-
tems. However, there are benefits to tailoring a fabrication
tool to a specific system. Autodesk’s line of 3D modeling
apps, for example, have built-in functionality that prepare
models for successful 3D printing. A system in between
interactive and digital fabrication was devised by Zoran and
Paradiso [51]. FreeD employs a handheld milling device
with a magnetic motion tracking system for fabrication.
However, it relies on an interface with an existing 3D
modeling system (Rhino). Lin et al. [52] designed a system
that encompasses 3D modeling and fabrication, but mod-
els are required to be from scanned and extracted objects
in the real world, as opposed to designed from scratch.
Swaminathan et al. [53] designed a system for modeling
and fabrication, but the system is restricted to outputting
physical visualizations. Mueller et al. [54], [55] presented
systems for fast fabrication of individual objects to facilitate
the design and print cycle. McCrae et al. [56] introduced an
integrated modeling and fabrication system, and evaluated
the structural stability of 3D models, similarly to our pro-
posed system. Their system approximates 3D models with
planar sections, a coarse representation resulting in a more
abstract appearance, whereas our system remains faithful to
the original models. Stava et al. [57] process models before
printing to reduce stress. The addition of supporting struts

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MARCH 2018 4

is one method of stress-reduction that they use, and the
ambient occlusion of the strut is used to assess its visual
impact. Stava et al. consider only individual objects.

We introduce an integrated 3D framework, inspired by
papercrafting and implemented on a multi-touch interface.
We seamlessly integrate fabrication functionality, obtaining
a full system for 3D modeling and fabrication.

3 3D MODELING WITH DEVELOPABLE SURFACES

To create an effective multi-touch modeling system, we
observed that paper folding — a simple, physical process
virtually anyone can identify with — has strong synergy with
a multi-touch interface on a flat-surface device. We build
on folding with additional physically-inspired operations
including cutting, bending, pinning and taping. We then
further expand the system to allow the assembly of sets
of individually defined component objects into complex
scenes. This allows us to focus on developable surfaces.

Traditional origami begins with a single, square sheet
of paper. Only three basic folds are permitted: mountain
folds (forming a ridge), valley folds (forming a trough), and
creases. Origami, and particularly the work of [23] inspired
several initial modeling functions in our system. We extend
far beyond the constraints of traditional origami or origami
simulators.

3.1 Intuitive, Gesture-Based Interactions

Our 3D modeling system is created for a tablet device with
a multi-touch display (a third-gen. iPad). The majority of
user interaction occurs through intuitive single- and multi-
finger gestures. An intuitive interaction is one that has an
easily understandable gesture mapping, is predictable and
straightforward to replicate, and results in immediate visual
feedback to the user. We focus on creating interactions
that have a tangible, direct effect on a model. We use the
notation t; to represent the normalized screen coordinate
of the (i + 1) gesture input, and define t; stqr¢ and t; cna
as the initial and new/final screen coordinates of the user’s
finger. The corresponding points projected along the camera
view direction onto the plane of current face f are p; stort
and p;_enq. The primary gestures we used are illustrated in
Figure 2.

3.2 Scene Objects

Each individual object, or 3D component in our system
consists of interconnected faces, edges and vertices. Each face
is a convex, planar area; its closed outline is composed of
edges and vertices. Every edge has exactly two vertices, and
is classified as a boundary edge (belongs to a single face, or
two folded-over faces), a fold (between two non-coplanar
faces), or a crease (between two coplanar faces). Two or more
edges can have the same vertex; a vertex belonging to two
boundary edges is a corner.
» ‘r.“_ O\
’S«?‘;\-‘ 1"'\
v Y
'\‘ |
% |
Pinch
(3 fingers)

Pinch
(2 fingers)

Rotate
(2 fingers)

Pan Single/Double Tap
(1 or2fingers) (1 or2fingers)

Fig. 2. Examples of multi-touch gestures used in our modeling system.

Long press
(1 finger)

3.3 Modeling System Modes

The system has two design modes: modeling and assembly.
Users can transition between the modes at any time. The
modeling mode allows users to model sheets of source pa-
per (one at a time) into 3D components through creasing,
folding, bending, extending and cutting operations. In the
assembly mode, users can insert models, transform them,
and then group them together through pinning and taping
operations [1].

Certain functions require the same gesture. To remove
ambiguity, each mode has five radio buttons to the left,
grouping sets of operations into submodes. In the modeling
mode, the five submodes are extend, fold, bend, crease/cut,
and view. In the assembly mode, the submodes are insert,
transform, pin/tape, color, and view. A user may rest a finger of
their non-dominant hand on a submode button, activating
the submode only for as long as they are holding the button.
This streamlines operations by allowing quick viewing of a
model between modeling operations. In the modeling mode,
thumbnails of existing models can be used to select a model
for editing. In the insert submode of assembly mode, these
thumbnails are used to drag model copies into the scene.

4 3D MODELING AND ASSEMBLY TOOLS
4.1 Gesture-Based 3D Modeling Tools

Creating a 3D component begins with an initially flat sheet
of paper that can be resized using a pinch gesture. Its shape
may also be defined with a freeform outline tool, or by
choosing a predefined (e.g., triangle, circle).

Planar Operations. Three fundamental operations available
to the user are creasing (dividing one or more faces into
two), extending (creating new, connected, coplanar faces),
and cutting (dividing part of a model along a crease). The
user defines a crease through two finger inputs py and
p1, panning to adjust its position and orientation. (Figure
3a.) Upon releasing, the face is divided through a SPLIT()
operation into two new faces connected along the crease.
A outward pinch with fingers over a selected crease and
one of its connected faces cuts that side of the model, either
removing it or making it a separate component. (Figure 3b.)
To extend the current sheet, as seen in Figure 3c, the user can
drag two fingers along the outward normal of any boundary
edge, creating a new face. Two of its vertices are of the
crossed boundary edge; the remaining ones are defined by
the two projected gestural inputs pg and p;.

Extending. Users can bridge two edges using an edge-to-edge
extend, by placing a finger over one edge and swiping the
other edge towards the first (Figure 3d). A three-finger pinch
on a face will extend the paper along all the boundary edges
of a face simultaneously, along the normal to the original
face. The distance the fingers are spread apart controls the
width of the new faces, and the angle of the new faces can
be subsequently adjusted (Figures 3e and 3f). A four-finger
pinch performs an extend operation on all the faces of the
component simultaneously, allowing users to quickly add
thickness to their model. Any curved face is extended along
its original normal prior to the added curvature.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MARCH 2018 5

(a) Creasing (c) Extending

Submode: Crease/Cut

(b) Cutting
Submode: Extend

(f) Rotating All Edges
Submode: All

(g) Corner Folding
Submode: Fold

Submode: Extend

(h) Edge Folding
Submode: Fold

(d) Bridging Edges
Submode: Extend

(e) Extending All Edges

Submode: Extend

(i) Corner Bending
Submode: Bend

(j) Symmetric Bending
Submode: Bend

Fig. 3. Representative 3D modeling tools: (a) creasing a sheet of paper, (b) cutting along an edge, (c) extending along an edge of a face, (d) bridging
edges of two faces, (e) extending all edges of a face, (f) rotating all faces generated in (e), (g) corner folding, (h) edge folding, (i) corner bending,
and (j) symmetric bending. Circles and arrows indicate the position and motion of user touches.

(a) Corner folding (b) Edge folding (d) Cornerbending .
Po_start
Pstart Po_end
i 0-io
o Po_end Po.me e N
XY
fo pma f
f1 2 i f1 2\ lioa G\ g
H %
Pena Pikmig © P
Pi\end P1_stant b L
° 1_end . L opo,star\/
(c) Angled corner folding Po_eng .- (e) Symmetric bending
Ifu\d Ifold Ifold

%
{Po_stan | i Polstart Poend Pilend Pilstart |
E o ® — — ° °

Po_start Prid P4 stant Po_start P1_start do| d di

i : fiz L2
f1 f2 f11 f12 f22 f21 fﬂ \ f21

Fig. 4. Representative functions of 3D modeling tools. (a) and (b) show how the folding line i .4 is calculated for corner and edge folds. (c) illustrates
how the two user inputs are projected onto a plane perpendicular to the current face, allowing the user to specify both the fold angle and orientation.
(d) shows how a curve is fit between the two projected input points, resulting in the curved surface. (e) shows the effect a symmetric bend has on a

face of the model, translating each half inwards as the bend is increased.

Folding. A one-finger drag over one of the adjoining faces
of a selected crease adjusts the angle of the crease (through
a call to ROTATE()), turning it into a folded edge, with the
angle defined by ¢, projected onto the normal of the edge.
All faces connected to the rotating face (on the same side
of the crease/fold) are rotated together with it. The angle
of any existing crease or fold of the 3D component may be
adjusted in this way. In a corner fold operation, a user’s finger
is dragged across the screen over a corner of a face (selecting
it), and the user starts to fold over the face (Figure 3g).
The folding line If,;q is defined as the line perpendicular
to [(Pstart, Pend) and passing through the midpoint of psiqer
and penq. The new, folded-over face fyoiqeq is rotated 180°
about l,4. Similarly, edge folding lets the user fold over the
paper by grabbing any boundary edge of the component
(Figure 3h), with its final position unambiguously defined
through a two-finger pan gesture. The midpoints of the two
start and end touches, po_miq and p1_mid, define the folding
line 414, and the new face ff,;4cq is rotated 180° about ! £44
(Figures 4a and 4b).

Angled Folding and Bending. A pinch gesture on a multi-
touch device lets us define an angled corner folding tool,
allowing a user to simultaneously fold over a corner of the
sheet of paper, while also controlling the folding angle be-
tween the fixed and folded-over parts. The folding line [44
is defined as the line perpendicular to LINE(pg_start; P1_end)
and passing through pi ¢nq (Figure 4c). The angle of ro-
tation of face froideq is found using pg_cnqg, the 3D point
found by projecting pg_cnq onto the plane passing through
Do_start With normal parallel to [yqq. Angled edge folding is
analogous, except it starts on a boundary edge instead of a
corner. In corner bending, we extend angled folding to allow
users to curve parts of their model (Figure 3i). The angled
face ffoideq is curved into n bend strips, through a recursive
sequence of n SPLIT() and ROTATE() operations. Dividing
lines I, to l,, are parallel to the initial dividing line 4.
Following [23], we determine the line spacing and the angle
of each rotation by minimizing the energy function

E =a%;(d; — L)2 + 6% (a; — ai+1)25 1)

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MARCH 2018 6

where L is a constant equal to 1/k multiplied by the distance
between the line [and the selected corner at po_start, and d;
and a; are the widths of and angles between the bend strips.
Constants o = 0.6 and § = 0.4 were determined experimen-
tally (Figure 4d). If the user’s fingers are close together, the
paper is curved into a cylindrical shape (instead of using
the energy minimization function), connecting points pg_cnd
and p1_¢nq. Edge bending instead bends over an edge of the
model, but is otherwise identical.

Symmetric Folding and Bending. A symmetric bend is acti-
vated when a user pinches an inner region of the paper. As
the user’s two fingers are drawn together, the paper bends
upwards, forming a peak at the midpoint (Figure 3j). In
the implementation, we define wy;; as half the original
distance between the user’s initial, projected contact points
Do_start aNd Di_start- Wpend and hpenq are defined as the
width and height of half the bent portion of the paper,
computed based on the new/final contact points py_¢nq and
D1_end- The original face fo,;q is first divided along the line
passing through the midpoint of py eng and pi_ena, and
perpendicular to the line through those points. The two
resulting faces are translated inwards by a distance equal
to Worig — Wehend, and then each is split into two new faces
along the fold lines through points pg_enqg and p;_enq. Finally,
the inner two faces fo_foided and fi_foideq are curved, such
that they meet symmetrically at the peak of the bend ppcqk,
and maintain their original dimensions. (See Figure 4e). The
orientation of the bend and the thickness and height of the
bend are readjusted in real-time in response to user input,
until the user’s fingers are lifted off the screen. Subsequently,
the position of the peak can be adjusted horizontally and
vertically. Analogous to symmetric bending, a symmetric fold
forms a peak at the midpoint of the two points of contact,
where the portion of paper between the two pinched fingers
is folded upwards, creating a folded peak in the middle.

4.2 Transforming, Grouping and Texturing Tools

Modeled single sheet components can be inserted into the
scene and then transformed and assembled into more com-
plex models by pinning and taping.

Pinning and Taping. A user pins two objects together by
first tapping on a face fo of a model myg. This creates a pin
at projected location py, with normal equal to fy’s normal.
A subsequent tap of face f; of a second model m; indicates
a desired location and alignment of the first model. The
two faces are pinned together; this is highlighted through
animation. If mg has been pinned to the wrong side of fi, it
can be flipped over using a rotate gesture. Adjustments can
subsequently be made by translating within the plane of f;
or rotating about the pin axis. Taping is similar to pinning,
except a user first taps an edge ey of mg (with two fingers,
to distinguish from pinning), and then taps an edge e; of
model m;. The same transformation occurs as above, e; is
constrained to lie on eg. The user can rotate mg about the
axis of the tape (the line passing through e;), or translate
along this axis.

Transforming and Duplicating. Individual and assembled
models can both be transformed through uniform scaling
(pinch gesture), translation within the plane of any face of

Vo €o Vi Vo €4 Vs ©s Vi
m17before m17after f2 e7
e,
€, fo e, = e f, 8 Ve
€s
V3 €, Va Vs €, Va

face_map = {f;}

edge_map ={e,, e,, &,, e}
vertex_map = {V,, V;, V,, V3}
hidden_face_map ={}
hidden_edge_map = {}

>

face_map ={f,, f,}

edge_map ={e,, &;, &,, €, €, &;, &}
vertex_map = {Vq, V3, Vy, V3, Vg Vs, Ve
hidden_face_map = {f,}
hidden_edge_map = {e,, e}

Fig. 5. Overview of the object data structure in our system. The right-
hand side shows how the data structure is updated when a face of the
model is split (e.g., through folding).

the model (two-finger pan), and rotation about any edge
of the model (one-finger pan). In addition, users can tem-
porarily drop a pin or tape onto a model (without grouping),
and translate and rotate about the pin/tape. Both individual
models and groups can be duplicated using a one-finger
drag operation.

Coloring and Texturing. In the assembly mode, we provide
coloring and texturing tools. In the coloring/texturing sub-
mode, a color picker is used, and a single one/two/three-
finger tap on a face of a model will change the color of the
face/model/group to the selected color. A long press over
a model sets the current color to that of the indicated face.
A list of texture thumbnails is provided. Once a texture is
selected, it can be applied to a face/model/group in the
same way as a color. The texture mapping can be adjusted
using a pinch gesture.

4.3 Object Storage

Each object instance in our system (i.e., vertices; edges;
faces) is stored dynamically, and has a unique identifier.
Standard map containers store pointers to these objects for
easy access. Each model stores three separate maps for its
faces, edges and vertices, respectively. As shown in Figure 5,
each face stores a map of its edges and an ordered list of its
vertices, while edges store pointers to their associated faces
and vertices.

4.4 Modeling Updates

Figure 5 shows an example of how the internal data struc-
tures of the system are updated after a crease operation.
Original face fy is divided into new faces, f; and f,. The
outline of fj is split: vertices vg, vs, vs, V2, and vs now make
up the outline of f;, while vs, v1 and vg comprise the outline
of fo. We maintain a history of operations performed on the
models, as shown in the tree structures in the same figure.
Each face has a parent face and two children, all initially
set to null. In this example, the parent face fj is labeled as
hidden, and its left and right children are set to f; and fo,
respectively. Edges are divided and updated similarly: e is
split into e4 and es, e; is split into eg and ez, while a new

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MARCH 2018 7

Inputs 3D scene fabrication Output

Modeled 3D scene Automatic fabrication preparation Guided user-assembly Fabricated scene

Add support Add fabrication X Fold scene
structures guides Unfold scene Print scene components

Fig. 6. Overview of our two-stage 3D fabrication process. Inputs are a 3D modeled scene along with its physical scale, paper type and size, and key
scene views. Minimally-visible supporting structures are added for scene stability, while fabrication guides later help with assembly. The resulting
meshes are unfolded, divided, and saved as images ready for printing. After cutting out the printed meshes, users assemble the scene by following

Scene scale,
paper size and type,
key views

Place scene

stable, accurate,
components

Easy to assemble,
textured

the numbered guides in order. Folding and gluing along the indicated fiducials yields the fabricated 3D scene.

edge eg is created between f; and f». Parent and child edges
are updated, as are edge map containers. If Figure 5 instead
showed a corner bend operation, fo would subsequently be
replaced by a curved surface, by recursively dividing it into
a set of bend strips of near-equal length and parallel to edge
es. Undoing an operation simply involves accessing the tree
structures to determine the original objects.

5 FABRICATION FOR AESTHETICS AND STABILITY

For casual users, a key aspect of any fabrication is preserv-
ing the approximate visual, characteristics of their scenes in
a simple fabrication process. To achieve this, we introduce
a small number of unobtrusive support structures to the
model. A full physical simulation of the paper and glue
fabricated system to optimize support placement would
be computationally demanding. This would be inappro-
priate for the relative imprecision of a manually assem-
bled papercraft-based 3D scene. Instead, we develop an
algorithm that takes into account key scene views selected
by the user. We choose supports to maintain the approx-
imate scene structure, while reducing their visual impact.
Reducing support visibility in key views is important in
the construction of scenes (such as stage sets) as opposed
to visibility constraints averaged over all views (e.g., as in
[57]). The characterization and placement of the supports is
diagrammed in Figure 6.

5.1 Overview

The primary type of support in our system is a thin, triangu-
lar prism that extends from the center of a model face to the
ground plane. This shape provides a good balance between
sturdiness and simplicity to fold. Cylindrical supports, for
example, would be harder to fold at the base. The cross-
section used can vary in size: thicker supports can support
greater weight. In certain situations, a triangular prism
cannot or should not be used. An example is when a face
needing support is close to or fully upright. The angle
between the support and the plane of the face would be
too small. If there is a boundary edge on the lower end of
the face, we can instead extend it downward until it reaches
the ground, and end it with a folded tab. This is only used
when the mass to support is small, and the distance from
the boundary edge to the ground is small. Alternatively, we
attach a regular support extended at an angle equal to half
the angle between the face normal and the ground normal.
This will generally provide more stability, but at an aesthetic
cost. Lastly, if certain parts of a model are already resting
on the ground, these faces are treated as already-existing

supports with zero vertical length (ideal from an aesthetic
perspective). This includes any face of a model that is either
pinned to or resting on the ground.

Performing a physical bend operation precisely can be
difficult. Though the system can approximate a bend with a
number of thin strips folded perpendicular to the axis of the
bend, creating such a large number of folds for each curved
surface is impractical. Instead, we add a single, optional
curvature support that attaches to the middle of the beginning
and end strips of the bend. These are identical to regular
supports, except they attach at the beginning and end of the
curved surface.

5.2 Preserving Overall Scene Stability

A rigid object is in static equilibrium if the sum of the
external forces F and the sum of the external torques T are
both 0: }°F = 0 and) 7 = 0. The only external force that
directly affects a printed scene is gravity. We assume for
the moment that a fabricated 3D model is rigid; in order
to establish whether or not it is properly supported, we
consider its center of mass. Since models in the scene are
constructed from uniform material, the center of mass is
located at the centroid of the model ¢(m). The instability
of the model m on ground ¢ can be defined by S(m,g)
as the distance between the centroid of the model and the
centroid of the model’s base; the larger the distance between
these two centroids, the more unstable the model. This is
illustrated in Figure 7a. If S(m, g) is below an acceptable
threshold S, we can assume that the model is sufficiently
stable.

S(m, g) = [[proj(c(m),g) — e(m N g)|| < Smin, ~ (2)

where ¢(m) is defined as the average of each face’s centroid
weighted by the face’s area a():

1
e(m) = atm) Z

fEF(m)

®)

[amz“’”m } ,

V(N

and proj(c(m), g) specifies the centroid of the model pro-
jected onto the ground plane. Table 1 summarizes notations
and operators used for describing our method.

5.3 Preserving Local Scene Stability

Being made out of paper, the model can deform as a result
of gravity. A model’s unsupported vertices may bend down-
wards and deform it. Similarly, if a large face is supported
at its edges, bending may occur in the middle. To correct for
this, we must ensure that no point on a model’s manifold

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MARCH 2018 8

TABLE 1
Terminology used for describing properties of a scene
Term Interpretation

m; Umy Combined model resulting from attach-
ing model m; to my along one or more
of their faces. Same notation applies for
combining a model to a support.

m1 N Mo Intersection of model m; and ms, ie.,
the planar region where they are at-
tached. Same notation applies for com-
bining a model to a support.

F(m) Set of faces of a model m.

V(m) Set of vertices of a model m; similarly,
V(f) is a set of vertices of a face f of a
model.

c(m) The ground-projected centroid of a
model.

a(m) Surface area of a model; similarly, a(f)

is the surface area of a face f of a model.

is too far away from a support. Accounting for this can also
ensure general stability of a model.

We apply the principle of Euler-Bernoulli beam the-
ory [58]. We treat a vertex of the sheet of paper extending
away from a supporting structure as a cantilever beam. The
following equation determines the vertical displacement d
of such a beam with applied uniform force:

_ pGL? 3pGL*
d= 8EI 2Eh? @)

Here, the mass of the beam is yu, G is the gravitational
force due to gravity L is the length of the beam, E is
the modulus of elasticity (or Young’s modulus [58]) of the
beam’s material, and I is the second moment (g)f area. For
a regular cross-section (sheet of paper), I = %, where w
and h are the width and height of the beam, respectively.
The mass of the paper can also be computed as i1 = pwhlL,
where p is the mass density of the beam, giving the final
equation for the deflection of the beam. See Figure 7b.

The height and density of the paper can be measured,
and we can experimentally determine Young’s modulus by
observing beam deflections at different lengths. For the two
types of paper we primarily worked with, printer paper and
photo paper, we found that £ = 2.3 GPa and £ = 1.5
GPa, respectively. Knowing these elasticity coefficients, we
can set a maximum allowable value for d substitute in the
density of the paper, and get a maximum possible length of

proj(C,)=C,

(c) Column buckling

(a) Static equilibrium (b) Beam elasticity

Fig. 7. Aspects of structural stability used to determine the necessary
support of a fabricated scene. (a) illustrates static equilibrium: an object
will be unstable if the ground-projected centroid of the model is too far
from the centroid of its base. (b) demonstrates beam elasticity: for an
outward-extending cantilever beam, its displacement is determined by
its material elasticity. (c) illustrates column buckling, which occurs when
too much weight is placed on a column.

a cantilevered beam (unsupported sheet of paper) before a
support needs to be added. We can determine if all vertices
of a model are close enough to a supporting structure to
prevent them from bending unacceptably.

We measure the deformation D(m) of a model due to
its fabrication material bending at inadequately supported
areas. Prior to adding any supports to m, we subdivide its
mesh to find a set of roughly evenly distributed vertices
on the mesh. The density of the vertices is proportional to
the elasticity of the material, as more supports will likely
be needed. Given a subset of all possible supports X,, =
20,1, ..., L, C X, this term is then computed as

D(m) = m ZUEV(’HL) minTEXm dD(HU - C(’ITL N ‘T)H ,c(m N I))v
®)

where

1 if1 < 20 (v)

1 otherwise

!
dp(l, f) = {lm(“ (©)
and I,,, () computes the maximum distance a support can be
away from an unsupported vertex. Based upon the input
area, the paper type chosen by the user and a maximum
acceptable vertical displacement d,,, l,,, is computed using
Equation (4). dp will then range from 1 (large deformation
at vertex) to —1 (no deformation at vertex). Overall, D(m)
averages the deformations across all vertices.

Another engineering principle is column buckling (see
Figure 7(c)). If the cross-section of the structure of a support
is too narrow relative to its own height, it may buckle or
collapse. Euler’s formula for the critical buckling load of a col-
umn with fixed ends is: F' = 472ET / L2, and is dependent
upon the elasticity of the material from which the column
was fabricated. I/ and I are defined as in Equation (4) ,
and L is the length of the supporting structure. In this case,
since supporting structures are shaped as hollow triangu-
lar prisms, with their base being an equilateral triangle,

I = g(mo4 — m;*), where m, and m; are the outer and
inner side lengths of the triangle, and m; ~ m,—26,,, where

0y, is the width of the paper used for creating the support.

5.4 Preserving Scene Aesthetics

To preserve aesthetics, we focus on minimizing the visibility
of a support from one or more user-selected views. Mini-
mizing the visibility of the supports is often less important
globally than it is for specific, important views of the scene
(e.g., the front of a stage set). Ideally, added supports are
entirely hidden from view, but at a minimum, they should
not be visible from a set of key views.

We calculate the visibility I(m) of a model’s supports in
proportion to the visibility of the model itself. We render
a color-coded version of the model with all its supports:
white pixels are supports, transparent pixels are ignored,
while the other pixels are rendered black and totaled to get
the visibility of the model. We normalize by the remaining
quantity of visible pixels of the model. When considering
multiple views, the average of the ratios computed from
each corresponding rendering is calculated. See Figure 8 for
an example. The formula is as follows:

ZT‘ER(’H’L) ZPEP(T‘) [pl =255 Apa > 0]
Y reR(m) 2opep(r)Pa > 0]

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MARCH 2018 9

| i

l 8
Support 3
~N

Support 1
\

Support 2

(a) 3D scene with two user-selected key views and
three representative support candidates

(b) Rendering from user-selected
viewpoints

2.4%

View 2 s
<
Q 0.0%

(c) Support 1 V|S|b|I|ty
I(m) = 0.012, D(m) = 0.77 I(m) =

4.8% 7.3%

(d) Support 2 visibility (e) Support 3 visibility
0.035, D(m) = 0.68 I(m) = 0.059, D(m) = 0.81

Fig. 8. An example of how support visibility is computed and its impact on support selectlon. A scene with two user-selected key views and three
candidate supports is shown in (a). A rendering of the scene from these two viewpoints in shown in (b). In (c)-(e), a visibility rendering from each
viewpoint of the three supports is shown, respectively. The ratio of visible support area to visible scene area, averaged across the selected views,
determines the visibility cost for each support. These are combined with the stability cost to select the best support. Support 1 is the least visible
(lowest I(m)), while support 2 most significantly decreases the instability of the scene (lowest D(m)). With visibiilty and stability both taken into

account, support 2 is selected as the best candidate.

where p; is a pixel intensity, p, is the alpha transparency
value, R(m) is a set of renderings of model m, and P(r) is
the array of pixels comprising a rendering 7.

Note that as we increase the number of views taken into
account, each support is more likely to be seen from at least
one of them. We found experimentally that accounting for
more than 3-4 views did not yield significantly different
results than support visibility been ignored.

6 3D SCENE FABRICATION

In this section, we describe how scenes are prepared for
fabrication. Our fabrication method automatically prepares
a virtual scene for printing on sheets of letter-sized paper
using a conventional printer. Only scissors and glue are
required to assemble the physical scene.

Overview. In the fabrication mode of the system, users
specify the scale at which they want to print their scene, the
paper type they will be using, and what views they want to
consider for adding support structures. Thumbnails, like the
ones seen in Figure 8, represent user-bookmarked views of
the scene that are used in the support structure calculations.
In addition to support structures, a set of assembly indica-
tors are added during the fabrication stage to guide users
to correctly assemble their fabricated models. The meshes
comprising the 3D scene are subsequently unfolded and, if
necessary, segmented, to allow printing.

6.1 Determining Fabrication Supports

Overview. The general idea behind the algorithm for deter-
mining fabrication supports is to do the following: (1) start
with no supports, other than the ones already present in the
scene, (2) look at a large pool of candidate supports that
could potentially be added to the scene to improve stability;
(3) add a support (from this pool of candidates) that best
improves the stability of the model while not disrupting the
aesthetic look of the model; (4) repeat step (3), choosing the
next “best” support (from the ones not already chosen, until
acceptable model stability is reached.

Initialization. Any 3D scene contains a set of component
models M; let us refer to any individual model in the scene
as m € M and the ground plane (itself a model) g. We
start by finding a larger pool of possible supports X that
could be added to each model m of the scene. Each support
z € X has one end attached to the ground, and the other
attached to m. To get a distribution of initial supports, we
segment the faces of the scene until all edge lengths are
below a predefined length (larger than the maximum edge
length of the base of a support), and then attach supports at
several different thicknesses to the centroid of each of these
newly-created faces. All faces of the model already lying on
the ground are treated as pre-selected supports.

Maximization. We want to determine a subset of all possible
supports X,,, = zo,x1,...,2n, C X, for which the aesthetic
look of the model is maintained, while the stability of m is
kept high. We formulate a maximization problem as follows:
max,_[Z(m, g) -

m

Z(mn,)],)

where Z(m, g) is the following cost function that factors in
the visibility of supports and the instability of a fabricated
model m on a ground g, and m; = mUxzo Uz U...Ux;:

Z(m,g) = kiI(m) + kpD(m), ©)

where I(m) computes the visibility of the model’s supports
relative to the visibility of the model, and D(m) computes
the overall deformation and instability of the model.

The two terms are weighted, with the constraint that
kr + kp = 1 in Equation (9). We experimentally determine
the weights for each term of the scoring function Z. We
tested different combinations to see what provided the best
compromise between quickly achieving stability but also
retaining the aesthetic qualities of the model. Figure 10 gives
an example of how the supports added to a 3D model can
vary depending on the weights of visibility versus stability.
The weights that gave us the best results were kp = 0.7 and
kr = 0.3.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MARCH 2018 10

(a) Model with two supports mUx, Ux, onground g

(b) Front side of unfolded model /M with added assembly guides

(c) Front and back sides of unfolded support X;

x,Nm

x,Nm X Nm

N

[

1

1

1

1

i

I

i\l 3\ 1
1

x,\m i
1

I

i

1

xNg

Fig. 9. In (a), a basic example model with two added supports, denoted m U x1 U z2, is shown standing on the ground plane g. (b) shows the
unfolded model m with added assembly guides, while (c) shows both sides of the unfolded support z;.

(a) Optimized for stability only
kp=1.0, k1 = 0.0, k;, = 0.0

(b) Optimized for stability & view 1
kp=0.7, ki1 = 0.3, k;, = 0.0

\

(c) Optimized for stability & view 2
kp=0.7, ki1 = 0.0, k= 0.3

(d) Optimized for stability & views 1 & 2
kp=10.7, ki; = 0.15, k;, = 0.15

Fig. 10. Comparing the placement of support structures (rendered in white) with different term weights. In (a), the support placement is only
optimized towards scene stability, and does not attempt to hide the supports from either view. In (b) and (c), support visibility is minimized for views
1 (top) and 2 (bottom), respectively. In (d), the support position is optimized for the visibility of both views simultaneously, as well as stability.

We can expand Equation (8) into the following;:
+ (Z(mn—].a g) - Z<m’n7 g))] .

In order to avoid testing 2" subsets of X to find the true
maximum, we approximate this maximization with

(10)

max (Z(m. g) = Z(my, 9))
(Z(ml,g) - Z(mo,g)) +...
(Z(mn,g) - Z(mn—lag)) .

+ max

z1eX\{zo} (11)

max
zn€X\{z0,%1,.--Tn—1}

This allows us to iteratively test each of the remaining
supports in X, choose the one that results in the biggest
increase in stability (or decrease in instability computed by
Z), and add this to X,,.

Termination. After each new support is added, we check
whether the result of Equation (2) falls below a minimum
threshold, and we verify that all sheets of paper are properly
supported to avoid excessive bending of the scene. Once

the termination conditions are met, no further supports are
added to the scene. Note that supports cannot pass through
any model in the scene, nor through other supports. At each
iteration of the algorithm, we discard supports remaining in
X that intersect the previously added support.

Supporting Structure Limitations. There are several lim-
itations to the algorithm for supporting structures. First,
it does not allow for “cascading” support structures that
fall between two surfaces of a model, instead of between
the model and the ground. In some cases, this would be
preferred, or in fact required. There are potential models
where the algorithm would still be unable to find a solution
that satisfies all three termination conditions. This could be
improved by considering the addition of more than one
support at a time.

6.2 Addition of Assembly Guides

Since none of the modeling operations in the system deform
the model, a user should clearly be able to recreate a hard-
copy version of a model simply by redoing the equivalent
operations on the printed out sheets of paper (e.g., folding,
bending, etc.). However, there are several difficulties. In

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MARCH 2018 11

the case of pins and tape, most models will have a large
number of edges and faces, making it difficult for the user
to recognize which two should be taped or pinned together,
respectively. Second, in the case of folding, it can be difficult
to estimate the precise angle and curvature, respectively.

For these reasons, we add pairs of assembly guides to
each model. An assembly guide is either a new face added
to the model, or a portion of a face of an existing model.
The guides are shaded green, always appear only on one
side of the model, and each has a number printed on them.
Guides with the same number and with matching outlines
are considered a pair; each pair should be glued together
to reconstruct the model. Since the printouts are double-
sided, if a guide appears on a portion of a face, the texture
belonging to that area is transferred to the back of the other
guide in the pair to ensure no loss of texture. We create three
types of assembly guides, for pins, tape and folds. Figure 9
shows an example of unfolded supports with assembly
guides.

Tape Guides. If two faces have been taped together, or if
the unfolded model was divided earlier, a tape guide is
added along each of the two taped edges. One of the guides
extends outward from the original model, while the other
extends inward, overlapping the face of the model.

Pin Guides. If two faces have been pinned together, a pin
guide is added to each of these faces, representing the
overlap of the two faces. This includes pins between the
added supporting structures and both the ground and a
face of the supported model. Pin guides do not add any
new faces to the model.

Folding Guides. In recreating each component model of
their 3D scene, users mimic the folding operations per-
formed in the system by physically folding the printed
mesh cutouts. Though folding is straightforward, it can be
difficult to replicate the precise angle. To be able to replicate
a particular fold unambiguously, it is enough to check all
the edges originating from the same vertex as one of the
vertices of the fold. If all of these edges are folds themselves
(alternatively, if none of them are boundary edges), then as
long as we know the direction of the folds, there is only one
possible solution. We define such a vertex (triangle fan) as
locally-closed; it is otherwise locally-open. For each fold with
both vertices belonging to locally-open portions of the mesh,
we add a guiding face for precise angle recreation. If a mesh
is locally-open, the vertex will have exactly two boundary
edges connected to it. We add a triangular face that extends
from one of the two boundary edges, such that its own
opposite edge will align exactly with the second boundary
edge. A complementary tab extends from the other bound-
ary edge. Guiding faces are temporary indicators of the
angle of a fold, and can be cut off once the corresponding
fold has been creased.

6.3 Mesh Unfolding

The models created using the system are unfolded into flat
sheets of paper. Due to possible extending operations, parts
of an unfolded model may overlap. If this is the case, the
model is divided along an edge between the overlapping
faces, and internally, the two models are taped along this

edge. Similarly, based on the scale of the scene defined by
user through scaling the grid of the ground plane, if an
unfolded model is too big to fit on a single sheet of paper, it
is divided along one or more edges. Note that we could
also optimize this process using a host of existing mesh
unfolding techniques and subsequent packing techniques.
The result of this unfolding procedure is a set of non-
overlapping, polygonally-shaped sheets of paper. Each side
of these sheets is stored as an image on the iPad (we want
to print both sides of an open mesh).

6.4 Order of Assembly

Once the meshes are printed, the user cuts out all the
unfolded meshes. Then, the user follows a sequence of
folding and assembly steps. The system produces one (of
potentially many) numbered sequence of steps for the user.

The creation of the supports is prioritized, placing them
on the ground as a scaffold for the model. This also allows
the user to get a rough sense of the layout, and a better
understanding of subsequent steps. Afterwards, the models
are folded in order, starting from the smallest and ending
with the largest, as it is generally easier to place smaller
models. The order of operations mimics the order of the
modeling operations, making the process more natural to
the user. Curvature supports are added last to a fabricated
component of the scene. Pinning and taping operations that
combine component models together are performed after
both models have been folded, before they are collectively
glued to their supports.

7 RESULTS

PaperCraft3D went through a natural, user-guided evolu-
tion. Once we had a stable, preliminary version of our
system, we showed our system to four modelers: three
casual 3D modelers with only about three months of mod-
eling experience, and a professional designer with extensive
modeling experience. These four modelers learned to use
our system (5-10 hours of practice), and each created a
selection of 3D models using our system, while providing
feedback. This feedback resulted in modifications to the
system.

Implementation. Our system was implemented natively for
a tablet device with a multi-touch display (a third generation
iPad). The majority of user interaction with the system oc-
curs through single- and multi-finger gestures. Our system
is implemented in a mix of C++ and Objective C, with
OpenGL ES as the rendering API. The data structures of [1]
are naturally extended to include all additional fabrication
components. Since support structures and assembly guides
can be treated as components themselves, they are stored
in exactly the same way as any of the user’s models. These
structures are either pinned or taped to the faces to which
they are attached.

7.1 Modeling and Fabrication Results

To illustrate the potential and limitations of our method
for producing a physical realization of a virtual design,
we show modeling and fabrication results for three scenes

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MARCH 2018 12

Fig. 11. (a) A 3D scene of animals in a jungle is shown, with the
first row presenting the rendered 3D scene, and second row showing
the fabricated scene (Inset: 3D printer output). (b) Presented here are
rendered and fabricated versions of a David Hockney inspired stage set
are shown in the first and second row, respectively. (c) Shown here is
an innovative design for a new media center. The top row shows the
rendered 3D scene, while the bottom row shows the fabrication.

of varying type and complexity: a jungle scene in Figures
11a, a stage set in Figure 11b, and a proposed design for a
media center in Figure 11c. Modellers spent an estimated
average of 4-5 hours conceptualizing and creating each
scene. In each Figure, we compare computer renderings of
the design and photographs of the fabricated result. The
size of the scenes ranged from 55x43x26 cm (stage set) to
82x73x34 cm (jungle). While the overall fabrication time
was somewhat longer than we originally expected, each part
of the process could be sped up in the future. Cutting out
the meshes could be sped up with, for example, a cutting
machine. Precise folding could similarly be simplified if
small perforations were automatically added to the folds
after printing. Gluing time could be somewhat cut down
if the scene were printed on larger paper, as fewer models
would need to be segmented prior to printing.

TABLE 2
Fabrication timing for each of the three results scenes

Scene/ Cutting Folding Gluing Total

Component (hours) (hours) (hours) (hours)
Stage set 2.00 1.50 1.50 5.00
Media center 5.00 2.00 3.50 10.50
Jungle 4.00 4.50 4.00 12.00

Elephant head 1.25 2.25 2.00 5.50

Elephant body 0.75 1.00 0.75 2.50

Tiger 0.50 0.25 0.25 1.00

Plants 1.00 0.25 0.25 1.50

7.2 Accuracy of Fabrication

To estimate the accuracy of our fabrication tool, we picked
ten pairs of vertices in our fabricated stage set scene,
measured the distances between these pairs of points, and
compared them to the distances between the corresponding
virtual vertices. Figure 12 shows the chosen points, while
Table 3 lists the measurements and percent error in each
case. Across the ten measurements, we found that our
fabrication had an average percent error of 1.5% £1%.

Fig. 12. Vertices and distances chosen to compare the virtual and
fabricated scene measurements of the stage set model. As seen in Table
3, these distances are all accurate to within 3%.

7.3 Comparison to 3D Printing

To compare our fabrication method to 3D printing, we 3D
printed the jungle scene in the inset of Figure 11a. We used a
commodity 3D printer, Opencreators Almond. The fabrica-
tion using our method far exceeded the maximum printable

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MARCH 2018 13

TABLE 3
Measurements to estimate stage set fabrication accuracy

Distance Virtual Scene (cm) Fabrication (cm) Percent Error

(@) 6.2 6.2 0.0%
(b) 232 23.1 0.4%
() 4.0 4.1 2.5%
(d) 232 23.5 1.3%
(e) 10.7 10.4 2.8%
16 10.8 10.9 0.9%
(®) 10.9 11.0 0.9%
(h) 6.7 6.9 3.0%
() 26.2 26.5 1.1%
1) 5.9 5.8 1.7%

size of the 3D printer. Thus, we instead chose to print at
a 1:6 scale, or an approximate size of 12.1x13.6x6.3 cm.
The total time it took to 3D print the scene was 15.5 hours:
approximately 1 hours to prepare the scene for printing, 14
hours for the actual printing, and 0.5 hours to clean up the
printed scene.

The 3D printed scene has many artifacts, particularly at
model endpoints such as the elephant trunk, its tusks, and
the ends of the plants. There are other artifacts because the
printer generates its own supports. These must be manually
removed after printing, a task difficult to do when there are
many small-scale features. In addition, thin structures such
as the elephant eyes cannot be produced accurately. Lastly,
there is obviously a lack of texture in the 3D printed scene,
which significantly reduces its aesthetic quality.

8 LIMITATIONS AND FUTURE WORK

Modeling. Though we used papercrafting as an inspiration,
it was often not appropriate to directly simulate interactions,
but rather to use gestures appropriate with a multitouch de-
vice. For example, the crease gesture in PaperCraft3D uses
a pinch gesture to define the orientation of the crease, even
though this does not mimic physically creasing paper. In
some cases, gestures with multiple fingers led to significant
screen occlusion, affecting our choices. Users observed that a
mouse provides better precision than hand gestures, though
in general, this did not negatively affect their modeling
process. This agreed with our assumption that while the
precision of a tablet device may not be sufficient for a
professional modeler, it should suffice for a casual one.

Fabrication. While we expected the thickness of the paper
to impact the sturdiness of the scene, there is an additional
tradeoff that we observed in practice. While thicker paper
minimizes deformations in the model, it is also more dif-
ficult to make small folds, and it is more likely that the
fold will damage the paper. While this is not noticeable on
plain paper, the effect on textured paper is visible white
lines along the folds. In addition, folds made with thicker
paper influence distance measurement; if not accounted for,
the fiducials will not perfectly align with each other.

The glue used during assembly similarly influences both
the aesthetics and the accuracy of the scene. The thicker
the paper, the stronger the glue required, particularly when
glued along a fold. On the other hand, glue applied to
thinner paper is more likely to damage the outer surface,

leaving visible marks. We typically paired conventional
glue sticks with thinner paper, and stronger liquid glue for
thicker paper.

Conclusion. In summary, we have presented PaperCraft3D,
a novel 3D modeling and fabrication system designed
specifically for multi-touch interfaces. Our system is easily
learned by experienced and casual modelers alike, allow-
ing users to create a wide range of developable surfaces
and subsequently fabricate the model as a 3D scene. In
particular, our fabrication tool maintains the spatial and
rigid properties of a scene, despite the fact that the scene
is constructed out of everyday paper.

Several interesting future directions of our modeling
system remain, such as improving input precision, exper-
imenting with additional forms of curvature, improving
rendering efficiency and quality, extensions to support an-
imation, and hardcopy output. In the fabrication tool, the
supporting structure optimization could be extended to
allow for inter-model supports, and we could incorporate
some of the planar section ideas from related works to
add new types of supports. We could explore fabrication
with sturdier materials, which are less prone to deformities
during assembly and over time.

ACKNOWLEDGMENT

Julie Dorsey acknowledges support from the National
Science Foundation under Award 1018470. Min H. Kim
acknowledges Korea NRF grants (2016R1A2B2013031,
2013M3A6A6073718) and additional support by KOCCA
in MCST of Korea, Cross-Ministry Giga KOREA Project
(GK17P0200), and an ICT R&D program of MSIT/IITP of
Korea (2017-0-00072, 2016-0-00018). We also thank Daniel
Jeon for helping, and Jennifer Lackie for helping us with
scene fabrication.

REFERENCES

[1] P.Paczkowski, J. Dorsey, H. Rushmeier, and M. H. Kim, “Paper3D:
Bringing casual 3D modeling to a multi-touch interface,” in Proc.
ACM UIST, Honolulu, USA, 2014, pp. 23-32.

[2] C.Li, H. Lee, D. Zhang, and H. Jiang, “Sketch-based 3d modeling
by aligning outlines of an image,” Journal of Computational Design
and Engineering (JCDE), vol. 3, no. 3, pp. 286 — 294, 2016.

31 J. Mitani, “Tama software pepakura designer,”
http:/ /www.tamasoft.co.jp/pepakura-en/, 2018.

[4] . Keijser, S. Carpendale, M. Hancock, and T. Isenberg, “Exploring
3D interaction in alternate control-display space mappings,” in
Proc. Symp. on 3D User Interfaces, 2007, pp. 526-531.

[5] H. Aoki,]. Mitani, Y. Kanamori, and Y. Fukui, “Ar based ornament
design system for 3d printing,” Journal of Computational Design and
Engineering (JCDE), vol. 2, no. 1, pp. 47 — 54, 2015.

[6] S. K. Lee, W. Buxton, and K. C. Smith, “A multi-touch three
dimensional touch-sensitive tablet,” in Proc. ACM CHI, 1985, pp.
21-26.

[7] O. K-C. Au, C.-L. Tai, and H. Fu, “Multitouch gestures for
constrained transformation of 3D objects,” Comput. Graph. Forum,
vol. 31, no. 2, pp. 651-660, 2012.

[8] A.Cohé and M. Hachet, “Beyond the mouse: Understanding user
gestures for manipulating 3D objects from touchscreen inputs,”
Comput. Graph., vol. 36, no. 8, pp. 1119-1131, Dec. 2012.

[9] M.S. Hancock, M. S. T. Carpendale, and A. Cockburn, “Shallow-
depth 3D interaction: design and evaluation of one-, two- and
three-touch techniques,” in Proc. ACM CHI, 2007, pp. 1147-1156.

[10] J. Liu, O. K.-C. Au, H. Fu, and C.-L. Tai, “Two-finger gestures for
6DOF manipulation of 3D objects,” Comput. Graph. Forum, vol. 31,
no. 7-1, pp. 2047-2055, 2012.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MARCH 2018 14

(11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]
(32]

[33]

[34]

[35]

[36]

A. Martinet, G. Casiez, and L. Grisoni, “The design and evaluation
of 3D positioning techniques for multi-touch displays,” in Proc. the
Symposium on 3D User Interfaces, 2010, pp. 115-118.

S. H-H. Chang, L. Stuart, B. Plimmer, and B. Wiinsche, “Origami
simulator: a multi-touch experience,” in ACM CHI Extended Ab-
stracts, 2009, pp. 3889-3894.

A. Joshi, G. Robertson, B. Wiinsche, and B. Plimmer, “Bubbleworld
builder - 3D modeling using two-touch and sketch interaction,” in
Proc. GRAPP, 2010, pp. 116-122.

B. R. De Aratjo, G. Casiez, and J. A. Jorge, “Mockup Builder:
Direct 3D modeling on and above the surface in a continuous
interaction space,” in Proc. Graphics Interface, 2012, pp. 173-180.

B. Walther-Franks, M. Herrlich, and R. Malaka, “A multi-touch
system for 3D modelling and animation,” in Proc. Smart Graphics.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 48-59.

Y. Li, X. Luo, Y. Zheng, P. Xu, and H. Fu, “Sweepcanvas: Sketch-
based 3d prototyping on an rgb-d image,” in Proceedings of the 30th
Annual ACM Symposium on User Interface Software and Technology,
ser. UIST "17. New York, NY, USA: ACM, 2017, pp. 387-399.
[Online]. Available: http://doi.acm.org/10.1145/3126594.3126611
K. Kin, T. Miller, B. Bollensdorff, T. DeRose, B. Hartmann, and
M. Agrawala, “Eden: A professional multitouch tool for construct-
ing virtual organic environments,” in Proc. ACM CHI. New York,
NY, USA: ACM, 2011, pp. 1343-1352.

Q. Sun, J. Lin, C.-W. Fu, S. Kaijjima, and Y. He, “A multi-touch
interface for fast architectural sketching and massing,” in Proc.
ACM CHI. New York, NY, USA: ACM, 2013, pp. 247-256.

A. D. Wilson, S. Izadi, O. Hilliges, A. Garcia-Mendoza, and D. S.
Kirk, “Bringing physics to the surface,” in Proc. UIST 2008. ACM,
2008, pp. 67-76.

E.]. Nitsch, “When pigs fly: a study of computer generated paper
folding,” M.S. Thesis, Texas A&M University, 2008.

T. Tachi, “Rigid-foldable thick origami,” Origami, vol. 5, pp. 253
264, 2011.

J. Mitani, “The folded shape restoration and the rendering method
of origami from the crease pattern,” in Proc. Int. Conf. on Geometry
and Graphics, 2008, pp. 1-7.

S.-Y. Miyazaki, T. Yasuda, S. Yokoi, and J.-I. Toriwaki, “An origami
playing simulator in the virtual space,” J. of Vision and Computer
Animation, vol. 7, no. 1, pp. 25-42, 1996.

T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: A sketching
interface for 3D freeform design,” in Proc. SIGGRAPH, 1999, pp.
409-416.

M. Lau, J. Mitani, and T. Igarashi, “Digital fabrication,” Computer,
vol. 45, no. 12, pp. 76-79, 2012.

J. S. Sadar and G. Chyon, “3D scanning and printing as a new
medium for creativity in product design,” in Proc. Conf. Creativity
and Innovation in Design (DESIRE). New York, NY, USA: ACM,
2011, pp. 15-20.

C. Mota, “The rise of personal fabrication,” in Proc. ACM Conf.
Creativity and Cognition. New York, NY, USA: ACM, 2011, pp.
279-288.

R. Schmidt and N. Umetani, “Branching support structures for
3d printing,” in ACM SIGGRAPH 2014 Studio. ~ACM, 2014, pp.
9:1-9:1.

N. Umetani and R. Schmidt, “Cross-sectional structural analysis
for 3d printing optimization,” in SIGGRAPH Asia 2013 Technical
Briefs, ser. SA "13. New York, NY, USA: ACM, 2013, pp. 5:1-5:4.
J. Mitani and H. Suzuki, “Making papercraft toys from meshes
using strip-based approximate unfolding,” ACM Trans. Graph.,
vol. 23, no. 3, pp. 259263, Aug. 2004.

I. Shatz, A. Tal, and G. Leifman, “Paper craft models from
meshes,” The Visual Computer, vol. 22, no. 9-11, pp. 825-834, 2006.
R. J. Lang, “Treemaker,” http://www.langorigami.com/science/
computational/treemaker/treemaker.php, 2013.

D. Chen, P. Sitthi-amorn, J. T. Lan, and W. Matusik, “Computing
and fabricating multiplanar models,” Computer Graphics Forum,
vol. 32, no. 2pt3, pp. 305-315, 2013.

K. Hildebrand, B. Bickel, and M. Alexa, “Crdbrd: Shape fabrication
by sliding planar slices,” Comp. Graph. Forum, vol. 31, no. 2pt3, pp.
583-592, 2012.

G. Saul, M. Lau, J. Mitani, and T. Igarashi, “Sketchchair: An all-in-
one chair design system for end users,” in Proc. Int. Conf. Tangible,
Embedded, and Embodied Interaction. ACM, 2011, pp. 73-80.

F. Massarwi, C. Gotsman, and G. Elber, “Papercraft models using
generalized cylinders,” in Computer Graphics and Applications, 2007.
PG '07. 15th Pacific Conference on, Oct 2007, pp. 148-157.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

S. lizuka, Y. Endo, J. Mitani, Y. Kanamori, and Y. Fukui, “An inter-
active design system for pop-up cards with a physical simulation,”
Vis. Comput., vol. 27, no. 6-8, pp. 605-612, Jun. 2011.

S. Okamura and T. Igarashi, “An interface for assisting the design
and production of pop-up card,” in Proc. Int. Symp. Smart Graphics
(5G), 2009, pp. 68-78.

X.-Y. Li, C.-H. Shen, S.-S. Huang, T. Ju, and S.-M. Hu, “Popup:
Automatic paper architectures from 3D models,” in Proc. ACM
SIGGRAPH 2010, 2010, pp. 111:1-111:9.

Y. Igarashi, T. Igarashi, and H. Suzuki, “Knitting a 3D model,”
Computer Graphics Forum, vol. 27, no. 7, pp. 1737-1743, 2008.

Y. Igarashi, T. Igarashi, and J. Mitani, “Beady: Interactive bead-
work design and construction,” ACM Trans. Graph., vol. 31, no. 4,
pp- 49:1-9, 2012.

Y. Igarashi and T. Igarashi, “Designing plush toys with a com-
puter,” Commun. ACM, vol. 52, no. 12, pp. 81-88, Dec. 2009.

E. D. Demaine and T. Tachi, “Origamizer: A Practical Algorithm
for Folding Any Polyhedron,” in 33rd International Symposium
on Computational Geometry (SoCG 2017), ser. Leibniz International
Proceedings in Informatics (LIPIcs), B. Aronov and M. J. Katz,
Eds., vol. 77. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017, pp. 34:1-34:16.

R. Guseinov, E. Miguel, and B. Bickel, “Curveups: Shaping objects
from flat plates with tension-actuated curvature,” ACM Trans.
Graph., vol. 36, no. 4, pp. 64:1-64:12, Jul. 2017.

H. Shimanuki, T. Watanabe, K. Asakura, and H. Sato, “Construc-
tion and analysis of easily fold-able processes for computer-aided
origami,” in Proceedings of the 11th International Conference on Ubig-
uitous Information Management and Communication, ser. IMCOM "17.
New York, NY, USA: ACM, 2017, pp. 96:1-96:8.

Y. Huang, M. D. Gross, E. Y.-L. Do, and M. Eisenberg, “Easigami:
A reconfigurable folded-sheet TUI,” in Proc. Int. Conf. Tangible and
Embedded Interaction. New York, NY, USA: ACM, 2009, pp. 107-
112.

Y. Huang and M. Eisenberg, “Easigami: Virtual creation by phys-
ical folding,” in Proc. Int. Conf. Tangible, Embedded, and Embodied
Interaction. New York, NY, USA: ACM, 2012, pp. 41-48.

G. Saul, C. Xu, and M. D. Gross, “Interactive paper devices: End-
user design & fabrication,” in Proc. Int. Conf. Tangible, Embedded,
and Embodied Interaction. New York, NY, USA: ACM, 2010, pp.
205-212.

S. Mueller, P. Lopes, and P. Baudisch, “Interactive construction:
Interactive fabrication of functional mechanical devices,” in Proc.
ACM UIST, 2012, pp. 599-606.

K. D. Willis, C. Xu, K.-J. Wu, G. Levin, and M. D. Gross, “Inter-
active fabrication: New interfaces for digital fabrication,” in Proc.
Int. Conf. Tungible, Embedded, and Embodied Interaction. ACM, 2011,
pp. 69-72.

A. Zoran and J. A. Paradiso, “Freed: A freehand digital sculpting
tool,” in Proc. ACM SIGCHI, New York, NY, USA, 2013, pp. 2613-
2616.

J. Lin, H. Nishino, and T. Kagawa, “A digital fabrication assistant
for 3D arts and crafts,” in Int. Conf. Broadband and Wireless Com-
puting, Communication and Applications (BWCCA), Nov 2014, pp.
395-400.

S. Swaminathan, C. Shi, Y. Jansen, P. Dragicevic, L. A. Oehlberg,
and J.-D. Fekete, “Supporting the design and fabrication of physi-
cal visualizations,” in Proc. ACM SIGCHI, 2014, pp. 3845-3854.

S. Mueller, T. Mohr, K. Guenther, J. Frohnhofen, and P. Baudisch,
“fabrickation: Fast 3d printing of functional objects by integrating
construction kit building blocks,” in Proc. ACM SIGCHI, 2014, pp.
3827-3834.

S. Mueller, S. Im, S. Gurevich, A. Teibrich, L. Pfisterer, F. Guim-
bretiere, and P. Baudisch, “WirePrint: 3D Printed Previews for Fast
Prototyping,” in Proc. ACM UIST, 2014, pp. 273-280.

J. McCrae, N. Umetani, and K. Singh, “Flatfitfab: Interactive mod-
eling with planar sections,” in Proc. ACM UIST, New York, NY,
USA, 2014, pp. 13-22.

O. Stava, J. Vanek, B. Benes, N. Carr, and R. Méch, “Stress Relief:
Improving Structural Strength of 3D Printable Objects,” ACM
Trans. Graph., vol. 31, no. 4, pp. 48:1-48:11, Jul. 2012.
R. C. Hibbeler, Mechanics of Materials, 9th ed.
Pearson PLC, 2014.

London, UK:

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. Y, MARCH 2018

Patrick Paczkowski is currently Vice President
of Software at IsoPlexis. He earned his Mas-
ter's in Computer Science from Yale University,
and received his Ph.D. in Computer Science in
2017. Prior to his time at Yale, he was an under-
graduate at Duke University, where he double-
majored in Computer Science and Mathematics.
He is an avid software developer, researcher
and entrepreneur, with particular interests in
gesture-based 3D modeling, image processing
techniques, and Ul design and visualization.

Julie Dorsey is a professor of Computer Sci-
ence at Yale University, where she teaches com-
puter graphics. She came to Yale in 2002 from
MIT, where she held tenured appointments in
both the Department of Electrical Engineering
and Computer Science (EECS) and the School
of Architecture. She received undergraduate de-
grees in architecture and graduate degrees in
computer science from Cornell University. Her
research interests include photorealistic image
synthesis, material and texture models, and
sketch-based modeling. Her current and recent professional activities in-
clude service as the Editor-and-Chief of ACM Transactions on Graphics
(2012-15) and membership on the editorial boards of Foundations and
Trends in Computer Graphics and Vision, Computers and Graphics, and
IEEE Transactions on Visualization and Computer Graphics. She has
received several professional awards, including MITs Edgerton Faculty
Achievement Award, a National Science Foundation Career Award, an
Alfred P. Sloan Foundation Research Fellowship, along with fellowships
from the Whitney Humanities Center at Yale and the Radcliffe Institute
at Harvard. She is co-author of Digital Modeling of Material Appearance
and the founder of Mental Canvas, a software company that is devel-
oping a new type of interactive graphical media and a system to design
this form of media.

Holly Rushmeier is a professor of Computer
Science at Yale University. She received the PhD
degree from Cornell University. She is a fellow of
the ACM and of Eurographics. Her research in-
terests include shape and appearance capture,
applications of perception in computer graphics,
modeling material appearance and developing
computational tools for cultural heritage.

Min H. Kim is an associate professor of com-
puter science at KAIST, leading the Visual Com-
puting Laboratory. Prior to KAIST, he worked
as a postdoctoral researcher at Yale University.
He received his PhD in computer science from
University College London in 2010 with a fo-
cus on color reproduction in computer graph-
ics. In addition to serving on many conference
program committees, such as SIGGRAPH Asia
and Pacific Graphics, he has been working as
an associate editor in various journals: ACM
Transactions on Graphics, ACM Transactions on Applied Perception
and Elsevier Computers and Graphics. His research interests include
computational imaging, computational photography, 3D imaging, and
hyperspectral imaging, in addition to color and visual perception.

