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Measuring Color Defects in Flat Panel Displays
using HDR Imaging and Appearance Modeling

Giljoo Nam, Haebom Lee, Sungsoo Oh, Min H. Kim, Member, IEEE

Abstract—Measuring and quantifying color defects in flat panel
displays (FPDs) are critical in the FPD industry and related busi-
ness. Color defects are traditionally investigated by professional
human assessors as color defects are subtle perceptual phenomena
that are difficult to detect using a camera system. However,
human-based inspection has hindered the quantitative analysis of
such color defects. Thus, the industrial automation of color defect
measurement in FPDs has been severely limited even by leading
manufacturers accordingly. This paper presents a systematic
framework for the measurement and numerical evaluation of
color defects. Our framework exploits high-dynamic-range (HDR)
imaging to robustly measure physically-meaningful quantities of
subtle color defects. In addition to the application of advanced
imaging technology, an image appearance model is employed to
predict the human visual perception of color defects as human
assessors do. This proposed automated framework can output
quantitative analysis of the color defects. This work demonstrates
the performance of the proposed workflow in investigating subtle
color defects in FPDs with a high accuracy.

Keywords—flat panel display, LCD, mura, color defect, inspection,
high-dynamic-range imaging, image appearance model.

I. INTRODUCTION

V ISION-based measurement (VBM) has been utilized to
detect defected products automatically in manufacturing

processes [1]. Many VBM systems have been proposed for
diverse product types, such as glass [2], rubber profile [3] and
weld bead [4].

Various defects occur in a flat panel display (FPD) during
the production and assembly of FPDs. The types of defects
can be classified into two categories: achromatic and chromatic
defects. Achromatic defects in FPDs are so-called mura
defects. A number of methods for automatic mura detection
have been proposed [5]–[10], and some manufacturers have
adopted these systems to reduce production costs and enhance
production quality. However, mura detection methods only
consider the variance of luminance in FPDs and are incapable of
detecting chromatic defects in displays. Perceptually meaningful
investigation of chromatic defects in FPDs has rarely been
discussed.

A chromatic defect, or a color defect, is defined as an
abnormal reproduction of colors or perceivable regional color
variations in a display. The most common color defect in FPDs
is a yellow tint in the screen. There are several causes of
such color defects. For instance, adhesive materials, which are
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(a) An example of a flawless FPD (b) Luminance diff. b/w (a) and (c) 

(c) An FPD with a color defect (d) Color difference b/w (a) and (c) 

Fig. 1: While traditional investigations of FPD defects only
account for luminance variation, our proposed workflow inves-
tigates FPD color defects with physically-meaningful imaging
and image appearance modeling that quantifies the perceived
color defects. (a) and (c) show a flawless and a faulty display.
(b) compares luminance difference between (a) and (c), which
is a common metric used in the FPD industry. This error map is
incapable of distinguishing them. (d) compares the difference
using our workflow, distinguishing the fault one effectively
although the color difference is subtle.

used to bond optical components and transparent films, may
become brown or yellow during UV curing. Color variation
also occurs across the screen when a color filter array inside a
TFT-LCD panel is not manufactured uniformly. Furthermore,
flaws in component assembly also generate color variation. For
example, a screw that is too strongly tightened along an edge
can cause a yellow region to appear near the edge. In fact,
color defects are inevitable in the FPD manufacturing process.

In assembly lines, human assessors are traditionally hired to
detect color defects in FPDs. Setting aside the slow and costly
aspect of manual inspection, there is a fundamental limitation.
Color is psychological perception although it is triggered by
physical radiation. Therefore, there is no guarantee that the
colors perceived by different workers are the same. Eye fatigue,
viewing conditions, adaptation, personal experience, and even
culture may affect the human perception of colors [11], [12].
In other words, the performance of color defect inspection in
FPDs depends on the visual perception of the workers, which
varies from person to person. Thus, it is necessary to quantify
such colorimetric measurements systematically and define color
defects in terms of human visual perception for FPD inspection.
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To this end, this paper presents a systematic framework
for detecting color defects in FPDs. Figure 1 illustrates the
necessity of the proposed color difference-based inspection
method against a luminance-based inspection method. This
proposed method does not depend on type or size of FPDs.
The contributions of this paper are:

· A novel automated workflow to inspect color defects in
FPDs as human assessors do,

· The application of high-dynamic-range (HDR) imaging
for physically-meaningful measurements of the radiomet-
ric quantity of light in FPDs, and

· The application of an image appearance model for
perceptually uniform metrics of color defects in FPDs
that accounts for the contrast sensitivity of the human
visual system (HVS).

II. BACKGROUND AND RELATED WORK

A. Measuring Flat Panel Displays
Semiconductor Equipment and Materials International

(SEMI) [13] standardized a just noticeable difference (JND) on
mura, in terms of luminance contrast and defect area. The SEMI
JND is currently widely used for most FPD mura detection
research [6], [7]. Although the standard successfully defines
and quantifies the monochromatic defects in FPDs in terms of
luminance, it disregards regional color defects and associated
measurement protocols. In contrast, this proposed method
numerically evaluates any color defects with perceptually
meaningful metrics.

1) Mura Detection: Many types of mura defects in FPDs,
such as line-type mura, bright/dark region mura, and light
leaking on the edges, appear with a certain level of high
frequency. Various methods have been proposed to filter out
these high frequency errors from low frequency background
using a level-set technique [6], low-pass filtering [14], linear
regression models [8], and discrete cosine transform [7].
Recently, Gan and Zhao [9] proposed an active contour model
for detecting mura in FPDs. They modified a contour detection
method to make their method robust to initial contour guesses
and suitable for finding subtle mura boundaries. However, these
mura detection methods have been limited to investigating
luminance variation. Therefore, these methods are unsuitable
for detecting color defects as shown in Figure 1.

2) Color Defect Detection: Detecting color defects in FPDs
has rarely been discussed in contrast to mura detection. Son et
al. [15] presented a method for detecting a small color defect
region by measuring the difference between the diffraction
patterns of two incident pixels with a line scan camera. Asano
et al. [16] presented systems for inspecting color uniformity over
the entire screen. Their methods focused on measuring screen
uniformity in RGB channels respectively, while disregarding
human color perception.

These previous work disregard the perceptual aspect of color
defects. Recently, Asano et al. [17] proposed a seminal approach
that numerically quantizes color defects using a spatially-
varying color space, S-CIELAB [18]. However, they did not
explicitly propose how to measure color defects and how to

detect a color-defected region in an FPD. Furthermore, the
employed color difference metric was ∆E∗ab, which was built
in 1976, and it is perceptually less uniform than the state-of-
the-art color difference models [19].

B. HDR Imaging
High-dynamic-range (HDR) imaging has been used to

overcome the limited range of captured radiance in an ordinary
camera [20], [21]. HDR imaging also enables dense radiance
sampling on each point, thus yielding a higher signal-to-noise
ratio [22]. Modern display technology allows for an LCD
display with a high contrast ratio of more than 1:16,384 (=214),
which exceeds the dynamic range of an ordinary camera of
a 12- or 14-bit ADC. HDR imaging is a great alternative for
investigating advanced display products. Kim and Kautz [23]
proposed a camera characterization method for HDR imaging
and showed that the HDR characterization method yields
physically accurate measurement of colors. This paper exploits
this HDR characterization method that converts the device-
dependent HDR RGB signals to device-independent color
coordinates of CIEXYZ. This application of HDR imaging
allows us to detect any subtle color defects in FPDs as a
radiance map in absolute scales with high accuracy. In addition,
once the HDR imager is characterized, it can measure absolute
radiance regardless of the luminance level of the target FPD.

C. Image Appearance Models
Color appearance models have been used to represent

colors in perceptually-uniform coordinates in a vector space,
where the Euclidean distance between two colors presents the
perceived difference between the two colors [11], [12]. These
color appearance models quantify colors in points, whereas
image appearance models are used to predict perceived color
appearance in an image, accounting for the spatial context
of surrounding colors with respect to the frequency of color
differences. Zhang and Wandell [18] introduced a spatial
extension of the CIELAB color space, so-called S-CIELAB,
which is an image appearance model with contrast sensitivity
functions (CSFs). Fairchild and Johnson [24] presented an
image appearance framework, so-called iCAM, for image
quality assessment. Wang et al. [25] introduced a multiscale
framework for image quality assessment, so-called structural
similarity (SSIM). Lissner et al. [26] extended the idea of SSIM
to color images. In their framework, they used a perceptually-
uniform color space, called LAB2000HL [19], where the color
space builds on the revised color difference formulae of CIE
DE2000. The Euclidean distance in this coordinates improves
perceptual uniformity in evaluating color differences. This
proposed framework chooses the LAB2000HL space [19] as the
main color space and adopts the contrast sensitivity functions
in the iCAM framework [24], following Lissner et al. [26].

III. PROPOSED FRAMEWORK

A. Overview
First, a commodity machine vision camera is characterized

and ready to be used as a 2D colorimeter via HDR imaging
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Fig. 2: Overview of our calibration protocol (see Section III-B) for HDR imaging [23], allowing for measuring radiometric
quantities in an FPD. Each color patch in a target, a Digital ColorChecker, is displayed in an FPD. The 24 color patches are captured
sequentially with both a spectroradiometer and a camera. This HDR characterization yields a linear transformation that converts
RGB camera signals into CIEXYZ values, enabling physically-meaningful measurements of colors like a spectroradiometer.

(see Section III-B). Second, a flawless FPD is selected as a
reference display. It is used as a base FPD to be compared with
test target devices (Section III-C). Third, the captured color
radiance maps of both reference and test FPDs are then mapped
into color coordinates in an image appearance model (Section
III-D). This appearance model allows for perception-based
quality inspection. Lastly, a color difference map is calculated
by comparing the perceptual coordinates of the reference and
the test FPDs (Section III-E). This map records perceptual
color differences in the test FPD with regard to the reference
FPD, and it is utilized to identify faulty products.

B. HDR Characterization
Each color patch in a color target, a Digital ColorChecker,

shown on the left-hand side of Figure 2, is displayed sequen-
tially on an FPD. The 24 color patches are captured with both
a calibrated spectroradiometer and a machine vision camera
simultaneously. The camera captures multiple images with
different exposures and the images are combined into an HDR
image. An HDR radiance map is reconstructed as follows:

L =

{
N∑

k=1

ω(Xk)Xk

}/{
N∑

k=1

ω(Xk)

}
, (1)

where L is the reconstructed HDR radiance map, Xk is the
LDR image under exposure k, N is the number of different
exposures, and ω() is a trapezoidal weighting function that
accounts for noise and saturation in input LDR images.

The spectral power distribution of the color patch, measured
by the spectroradiometer, is converted into CIEXYZ tristimulus
values using the CIE color matching functions of x̄(λ), ȳ(λ)
and z̄(λ). Using the 24 pairs of the HDR RGB signals and the
CIEXYZ tristimulus values, the HDR characterization process
optimizes a linear problem to yield a 3×3 linear matrix M :

M = (A>A)−1A>B, (2)

where A ∈ R24×3 is a matrix of HDR RGB signals and B ∈
R24×3 is a matrix of XYZ tristimulus values. This matrix M
allows us to obtain radiance levels in FPDs as XYZ tristimulus
values B′ by multiplying new HDR RGB signals A′ with
the calibration matrix M : B′ = A′M . In particular, this HDR

characterization method [23] yields the absolute radiance values
of color measurements in FPDs in absolute scales. We can
measure the luminance intensity per pixel in FPDs [unit: cd/m2]
as the Y channel, i.e., this protocol makes the employed RGB
camera function as a 2D spectroradiometer. See Section V-A
for the accuracy of our characterization method.

C. Reference Display
Our objective is to detect visible color defects which can be

perceived distinctively with respect to properly finished FPD
products. To this end, a reference image (calibrated in CIEXYZ)
of a well finished FPD product is captured, which includes
the spatial variation of the backlight unit and its correlated
color temperature (CCT). Note that the final FPD products
in practice cannot have perfectly uniform illumination and a
consistent 6500 K of CIE D65 illuminant over the entire screen.
Therefore, most manufacturers in the FPD industry tolerate a
certain variation of illumination and CCT per model. In this
experiment, we chose one of the target products as a reference
device, verified by a professional human assessor.

D. Mapping Colors into an Image Appearance Model
It is well known that a perceived color difference is affected

by its spatial frequency [27], i.e., a medium-sized color defect
can be easily detected by a human assessor, whereas a small
color defect is less perceivable. To account for the contrast
sensitivity of the human eye, an image appearance model
proposed in a visual color difference predictor [26] is employed.
Once the measurements of radiance are obtained in CIEXYZ
coordinates from FPDs, the CIEXYZ values are mapped into the
hue-linear color space, i.e., LAB2000HL [19]. Then, contrast
sensitivity functions are applied to each LAB2000HL channel
to predict the visual difference of color defects at various
frequency levels. See Figure 3 for this computational workflow.
Figure 3(c) shows the spatial filters that we employed:

csf lum(f) = a · f c · e−b·f ,
csfchrom(f) = a1 · e−b1·f

c1
+ a2 · e−b2·f

c2
,

(3)

where csf lum is the contrast sensitivity function (CSF) for the
luminance channel, and csfchrom is the CSF for the two color
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Fig. 3: Schematic diagram of our visual difference prediction workflow. (a) shows the calibrated HDR radiance image in CIEXYZ
(see Section III-B). (b) indicates the hue-linear color space coordinates [19]. (c) These image coordinates are then convolved with
three contrast sensitivity functions, respectively (Section III-D). (d) Finally, our workflow computes color differences between the
test and the reference FPD (Section III-C), yielding a color difference map with perceptually uniform scales ∆EHL (Section III-E).

opponent channels. The parameters a, b, and c in csf lum are set
to 0.63, 0.085, and 0.616, and the parameters a1, b1, c1, a2, b2,
and c2 in csfchrom are set to 91.228, 0.0003, 2.803, 74.907,
0.0038, and 2.601 for the red-green channel, and 5.623, 0.00001,
3.4066, 41.9363, 0.083, and 1.3684 for the blue-yellow channel
in our experiments, following Lissner et al. [26]. In practice,
these spatial filters are multiplied with each LAB2000HL
channel after being converted to the frequency domain. The
frequency property is computed as follows:

f = d · cpd,
cpd = n ·

(
4 tan−1

(
0.5s
wd

))−1
,

(4)

where f is an input parameter in Equation (3); d is a pixel-
wise distance from the center in the Fourier domain; and cpd
indicates cycles-per-degree which can be calculated from the
device specification. n is the number of pixels in an FPD along
one side, and s is the physical length of the side in millimeters.
Here, wd is the distance between the FPD and the camera in
millimeters.

Note that these filters are low-pass filters that compress high
frequency information at the different levels of each channel.
These low-pass filters attenuate high frequencies which are
below the visibility threshold while maintaining the mean
intensity and preventing the unnatural exaggeration of certain
frequencies.

E. Color Difference Map
After the spatial filters are applied for each channel, a color

difference per pixel is calculated as an Euclidean distance
value of ∆EHL in the LAB2000HL color space with respect to
the reference device. Note that this Euclidean distance in the
LAB2000HL space ∆EHL is designed to be equivalent to the
standard color difference ∆E00 in the CIELAB space [19]:

∆EHL =
√

∆L∗HL
2 + ∆a∗HL

2 + ∆b∗HL
2 , (5)

where ∆L∗HL = L∗HL1
− L∗HL2

, ∆a∗HL = a∗HL1
− a∗HL2

, ∆b∗HL =
b∗HL1

− b∗HL2
. Here L∗HL, a∗HL and b∗HL denote the achromatic

and color opponent channels in the LAB2000HL space. Finally,
filtering of the difference map with a threshold level yields a
binary map that indicates the color defect region in the FPD.

(b) (c) 

(d) 

(a) 

computer 

HDR imager 

FPD 
holder 

field of view: 27° 
working distance: 50 cm 

FPD 

Fig. 4: (a) Diagram of our system, consisting of an HDR imager,
a mobile FPD holder and a computer. (b) The inside of our
system. (c) Two cameras, and (d) FPD holder for a mobile
display panel.

IV. EXPERIMENTAL SETUP
Several experiments were conducted to validate the perfor-

mance of our framework. It was implemented with a 5.0MP
giga-ethernet camera (PointGrey Grasshopper2) with a 35 mm
lens mounted. The imaging sensor in the camera was Sony
ICX625, of which the sensor format is 2/3” and its pixel pitch
is 3.45µm. The aperture of the lens was set to f /8, allowing
us to secure a depth of field sufficient to handle the thickness
variation of display products. Four-inch IPS LCD panels were
tested, of which the pixel resolution was 480×800 in a series
of mobile phones. The pixel density of the LCD panel under
test is 233 dots-per-inch with a pixel pitch of 109µm. In order
to diverse color defect examples, various synthetic color defects
were also generated in addition to the actual color defects.

For HDR imaging, four LDR images were captured with
incremental exposure time of 32, 64, 128, and 256 milliseconds.
The sensor gain was set to 0 dB. As shown in Figure 4, the
camera was installed at a distance of 50 cm. The centers of
the sensor and the FPD were aligned perpendicularly along its
optical axis to reduce moiré artifacts over the captured images.
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Spectroradiometer HDR imager
D65 D50 A FPD D65 D50 A FPD

u 0.1942 0.2066 0.2592 0.1928 0.2026 0.2119 0.2771 0.1924
v 0.3105 0.3254 0.3520 0.3061 0.2985 0.3110 0.3455 0.3060
CCT [K] 6915 5151 2769 7496 7715 5713 2452 7550
uc(u) 0.00004 0.00005 0.00005 0.00004 0.00017 0.00018 0.00021 0.00016
uc(v) 0.00003 0.00003 0.00001 0.00004 0.00023 0.00022 0.00015 0.00025
uc(CCT) [K] 4.1 2.5 1.2 5.5 31.9 16.6 3.5 31.0

Training Test
ΔXYZ 1.902 5.748
Δuv 0.0010 0.0008
Δu 0.0005 0.0006
Δv 0.0004 0.0006
ΔCCT 12.3 25.1
ΔE00 0.513 0.377
ΔEHL 0.186 0.213

(a) Measurement uncertainty (b) Measurement accuracy

TABLE I: (a) compares measurement uncertainty of a reference spectroradiometer and our HDR imaging system under four
different illuminants, three different types of CIE Illuminants and an FPD device. The first three rows present CIE uv and CCT
measurements under each illuminant. The following three rows show the measurement uncertainties of each property, computed
by the Gardner’s method. (b) shows the measurement accuracy of our system. It is evaluated by computing median differences of
colors measured by the spectroradiometer and our system in terms of CIE XYZ, CIE uv, CCT, CIE ∆E00, and ∆EHL.

V. RESULTS

A. Measurement Uncertainty
The measurement accuracy of the reference spectroradiome-

ter and our HDR imaging system is validated by evaluating
uncertainty, following Gardner [28], [29], based on an ISO
standard for uncertainty propagation. As the measurement
uncertainty of an imaging system varies upon the spectral power
distribution of a light source, we evaluated the performance
in three different types of CIE Illuminants (D65, D50 and
CIE Illuminant A) and the FPD device illuminant. For the
standard illuminations, we used a calibrated illumination booth,
PANTONE Color Viewing Light (PVL-511).

Table I(a) presents the evaluated uncertainties in terms of CIE
uv and CCT. The reference spectroradiometer shows a lowest
uncertainty with a type of CIE Illuminant A, whereas the un-
certainty increases when the CCT increases (uc(u) = uc(v) =
0.00004, uc(CCT ) = 5.5K for FPD). Our HDR imaging
system shows a similar trend in measurement uncertainty. The
uncertainty of our system is also lowest with CIE Illuminant A.
The uncertainty of the system also increases when the temper-
ature rises (uc(u) = 0.00016, uc(v) = 0.00025, uc(CCT ) =
31.0K for FPD). Although the uncertainty varies depending
on CCT, our HDR imaging system performs consistently even
under high color temperatures of the FPD devices.

Since we evaluate the measurement uncertainty of the
reference and our system, we then validate the measurement
accuracy that describes measurement differences in both instru-
ments, shown in Table I(b). We first captured a series of colors
displayed in a FPD using both instruments, we then calculate
the differences of colors measured by the two instruments. The
training set, shown in Figure 2 (left bottom), consists of 24
color patches, which are used to calibrate our system. The test
set consists of new nine colors that range from blue to orange,
representing the color variation of blackbody radiation. Each
row in Table I(b) shows median errors in terms of CIE XYZ,
CIE uv, CCT, CIE ∆E00 and ∆EHL. Our system agrees with
the reference measurements consistently with training and test
color samples.

B. Detecting a Color Defected Region
Once a display image is captured and converted to the

LAB2000HL space, color differences ∆EHL are computed
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Fig. 5: The spatial variation of ten flawless FPDs were evaluated
as the mean ∆EHL values. The measured mean values were
around 0.5096 with standard deviation 0.2287. The measured
maximum differences were below than 2.3550. The color defect
threshold was determined as 5.0, making allowances for the
maximum color difference and measurement uncertainty.
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Fig. 6: Illustration of color defect detection using a reference
image and a color difference map. (a) a captured HDR image
with a yellow defect on the long edge. (b) color difference map
that show the perceptual color difference between (a) and (c).
(c) a reference image of a flawless display. (d) a binary image
obtained by setting a threshold 5.0 in (b).
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per pixel in the image with regard to the reference image. We
then test if the ∆EHL values are higher than a threshold to find
out color defect regions in the device. Note that we sampled
ten flawless displays to determine the threshold level for the
reference display. Figure 5 presents the averaged ∆EHL values
of the ten devices as 0.5096 with standard deviation of 0.2287.
The maximum differences in the displays are below than 2.3550.
Consequently the threshold for color defects was set to ∆EHL

5.0, making allowances for the maximum color difference of
flawless displays and the uncertainty of our system.

Testing color differences with the threshold yields a binary
image that indicates defect regions in an FPD. Figure 6 shows
an example color difference map of an FPD with a yellowish
color defect. The color difference map (b) reflects the perceptual
difference between the test image (a) and the reference image
(c). The defect region can be clearly filtered out in the binary
image (d) by setting a threshold.

C. Accuracy Comparison
Figure 7 compares the accuracy performance of various

defect detection algorithms for various types of defects: SEMI
JND [13] (b), Fan & Chuang [8] (c), Gan & Zhao [9]
(d), and our method (e). Each method is compared with
the defected area inspected by a human assessor (f). The
numbers shown are the overlap scores as percentage, defined
as s = (a1 ∩ a2)/(a1 ∪ a2) × 100 [%], where a1 is the area
detected by each method, a2 is the human assessor’s detection
area, and ∩/∪ represents the intersection/union area of the two
regions. For SEMI JND (b), the SEMU index in the SEMI
document is directly applied in the luminance channel. The
luminance contrast was calculated by subtracting the test image
from the reference image.

The SEMI JND method can detect the achromatic mura
well (first row), and some of severe color defects that cause
significant luminance variation (last two rows). Fan & Chuang’s
method (c) yielded results similar to those obtained by SEMI
JND (b). However, as methods (b) and (c) are designed to detect
luminance variation in FPDs, they are not able to detect subtle
color defects (second to fourth rows). For the active contour
method of Gan & Zhao (d), the input parameters are adjusted to
best detect the achromatic mura in the first row. This method can
also detect the subtle boundaries of color defects in all cases.
However, their method fails to determine the defected area
accurately with a single parameter. To determine the correct
region for each input, their method requires adjustment of
the operating parameters. In contrast, our method performs
consistently without parameter adjustment. Column (e) shows
our results which are very similar to human assessor’s.

D. Time Performance Comparison
The average running times of the methods are tabulated in

Table II. The long running time of Gan & Zhao method is
mainly due to the large input image (980×760) and large
number of iterations (200 times). The main bottleneck of
our method is the forward/inverse Fourier transformation for
bandpass filtering in the image appearance model. Although
our method takes a longer time than other luminance-based
methods, such as SEMI JND and that of Fan & Chuang, it can

Methods SEMI JND Fan & Chuang
(2010)

Gan & Zhao
(2013)

Our method

CPU times 0.76 s 0.22 s 233.27 s 2.07 s

TABLE II: Time performance comparison. CPU running times
are averaged for seven input images. Although the proposed
method takes longer than other luminance-based mura detection
methods, it can robustly detect subtle color defects.

robustly measure subtle color defects that otherwise were unable
to be detected (see Figure 7). All methods were implemented
in MATLAB for a fair comparison.

VI. DISCUSSION

In the implementation of this proposed framework, several
practical issues arose that remain as subject of future work.
This section shares the experiences which could be useful for
those who may apply this framework in manufacturing process.

While capturing a FPD with a camera, a moiré pattern
appeared as a high-frequency spatial artifact. This type of
artifact was avoided using a low-pass filter approach in the
image appearance model. As mentioned in Sec. III-D, the hue-
linear color coordinates in luminance and two color opponents
were filtered with three different low-pass filters respectively.
Hence, the image measurements of our workflow did not have
to deal with the problem of moiré artifacts. Note that this low-
pass filtering process degrades the performance in inspecting
small defects such as a dead pixel in FPDs. The implemented
system includes an additional monochromatic camera to detect
defective pixels exclusively.

The CCTs of the FPD panels under test varied considerably
in this experiment with a standard deviation of 379 K. Most
panel manufacturers have their own standards for the target CCT
and variation for classifying flawless displays. For example,
the ANSI standard for solid state lighting products defines the
standard color temperature as 6500 K± 500 K. Therefore, in the
experiment, the overall CCT of panels was tested first, following
the manufacturer’s CCT standard to filter out defective panels.
Then, our method was applied to detect local color defects
using the image-appearance modeling approach. Note that the
reference white parameter in the image appearance model
was determined by calculating the average pixel values in the
brightest area. This implies that the human eye chromatically
adapts to display media while they are looking at a device.

VII. CONCLUSION

This paper presented a color measurement framework for
FPD panels using HDR imaging and image appearance mod-
eling. Our framework extends the previous luminance-based
inspection framework to the perceptually uniform color domain
via physically meaningful HDR imaging. It was shown that
our framework is able to detect color defects in FPDs that
are undetectable with the previous approaches. It was also
demonstrated that this proposed framework agrees with the
current mura standard, SEMI JND [13]. The experimental
results validate the performance of this framework in detecting
defects in arbitrary type, color, size, position, and shape.
Integration of this proposed method is expected to enhance the
production quality of FPDs at a relatively low additional cost.
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Fig. 7: Accuracy comparison of our method (e) with existing mura detection algorithms (c) and (d) as well as mura standard (b).
Each method is compared to a human assessor’s work (f), and the overlap of detected defect region w.r.t. the human assessor’s is
shown as a percentage. (a) shows the captured HDR images of the tested FPDs. (b) and (c) successfully detect the dark mura
(first row), but they are incapable of detecting subtle color defects (second to fourth row). (d) detects subtle boundaries in all
cases, but the detected area does not agree well with the human assessor’s. (e) detects the same defect region, virtually identical
to the human assessor’s perception (f).
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