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Abstract—Coded aperture snapshot spectral imaging (CASSI)
is based on the binary modulation of the spatial-spectral scene,
which allows for hyperspectral image reconstruction from 2D
compressive measurement. However, the actual optical modu-
lation does not match the current image formation model due
to the extra optical phenomena, such as diffraction, distortion,
optical misalignment, and dispersion, inside the system. It is a
long-lasting problem that the gap between the simplified image
formation model and the actual optical modulation degrades the
reconstruction quality. In this paper, we propose a high-accuracy
image formation model to reduce this gap in CASSI. Specifically,
we first reformulate the spectral modulation as channel-wise
convolution, in which the convolution kernel represents the point-
spread-function (PSF) of each spectral channel. Then, according
to our key observation that the calibration images are the blurred
versions of the coded aperture, we propose to estimate the PSF by
exploring the relationship between these blurred and non-blurred
pairs. In addition, we also provide a theoretical analysis of the
PSF’s influences on the reconstruction quality, which can serve
as a guide for CASSI system implementation. Our simulations
and real system experiments demonstrate the effectiveness of the
proposed model.

Index Terms—hyperspectral image reconstruction, image for-
mation model, point spread function, compressive sensing, coded
aperture snapshot spectral imaging.

I. INTRODUCTION

HYPERSPECTRAL imaging has been widely applied
for various applications, such as agriculture, medicine,

and surveillance [1]–[7]. Traditional hyperspectral imaging
systems have been designed based on the “scanning” approach
[5], [8]–[10], which limits their applications on static and
remote scenes. To capture dynamic subjects, various snapshot
hyperspectral imaging systems have been proposed [11]–
[18]. Among them, coded aperture snapshot spectral imaging
(CASSI) [11], which is based on compressive sensing (CS)
theory [19], [20], has drawn increasing attentions and studies
in many fields [6], [13], [21]–[23].

The system architecture of CASSI consists of an objective
lens, a coded aperture, and an imaging module including a
relay lens and a dispersive prism. The coded aperture randomly
samples the information of scenes in the spatial domain while
the dispersive prism shifts each spectral channel according to
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Fig. 1. (a) Binary random pattern of the coded aperture and its actual
capture for calibration. (b) Estimated PSF at 477 nm. Reconstruction results
obtained by (c) the simple image formation model and (d) our image formation
model. (e) Enlarged views of (c) and (d). Our model improves spatial
and spectral accuracy significantly in reconstructed spectral images. Note
that hyperspectral images are converted to RGB images for the purpose of
visualization.

its wavelength [11], [24]. The combination of sampling and
dispersion is designed to impose binary random sampling on
the captured scene. The CS theory [19], [20] describes that this
random sampling can be used to reconstruct original signals
from the compressive input. As proposed in [11], [24], the
image formation model of CASSI should ideally be a binary
function (here after we call this image formation model as the
simple image formation model). However, the actual optical
modulation formed by a real CASSI system is not perfectly
binary. There is a gap between the simple image formation
model and the actual optical modulation.

In current CASSI systems, three facts have been ignored,
causing the gap between the simple image formation model
and the actual optical modulation. First, the imaging module
includes a prism that causes spatial dispersion of optical
modulation along the direction of dispersion [25]. Second,
the coded aperture pixels and detector pixels are prone to
a sub-pixel misalignment, considering that the size of the
pixels are only of several microns, which breaks the one-to-one
mapping between coded aperture pixels and detector pixels.
Third, optical distortion and diffraction commonly occur in
relay lens units, resulting in blurred images.
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This gap between the simple image formation model and
the actual optical modulation degrades the quality of the
reconstructed hyperspectral images since the hyperspectral re-
construction relies on the image formation model to formulate
a data term. The hyperspectral image reconstruction problem
can be formed as follows:

f̂ = arg min
f
‖g −Φf‖2 + Γ(f), (1)

where g is the compressive measurement, f is the unknown
hyperspectral image, Γ(·) is a regularization term, and Φ is the
measurement matrix formed according to the image formation
model. Existing reconstruction algorithms [11], [26]–[41] all
assume that there are no perturbations caused by optical
phenomena such as diffraction, aberration, distortion, and
misalignment in the measurement matrix, and only under this
assumption can they produce satisfying results. Despite the gap
between the simple and real image formation, a physically-
accurate image formation model has been not proposed yet;
thus, the image quality of the traditional CASSI systems has
been degraded, as illustrated by the example in Figure 1.

In this paper, we propose a physically faithful image for-
mation model to reduce the gap between the simple image
formation model [11], [24] and actual optical modulation. In
our model, the scene image is first spatially modulated by the
coded aperture. Then the modulated scene image is convolved
with the PSF of the imaging system for each wavelength and
shifted by the prism. Finally, the scene image is integrated
along the spectrum dimension. The main difference between
our image formation model and the simple image formation
model is that we consider the real PSF of the CASSI system.
Our insight is that the spectral modulation imposed by the
imaging module is actually caused by its different system
responses in different spectral channels. It enables us to model
not only the spectral modulation but also the optical distortion,
defocus, and misalignment.

To effectively estimate the PSF, we explore the relationship
between the coded aperture and calibration images. Our key
observation is that the coded aperture and the calibration im-
ages are the corresponding inputs and outputs of the imaging
system, respectively. Thus, we propose to use these input-
output pairs to estimate the PSF of each spectral channel.
Note that the calibration images used in our method is al-
ready available because a CASSI system must be calibrated
before it can be used. PSF estimation is a classical system
identification problem, which can be solved via least-squares
[42]–[45]. However, the PSF in CASSI is spatially varying,
and thus we resort to a regularized least-squares to obtain a
better estimation. Our simulations and real system experiments
demonstrate the effectiveness of our image formation model.

We further provide a theoretical analysis of the PSF’s
influences on the hyperspectral image reconstruction. As men-
tioned earlier, the PSF optically blurs the binary modulation;
hence, the actual measurement matrix should be changed
accordingly. Otherwise, the hyperspectral image reconstruction
is influenced. Actually, blur itself degrades the reconstruction
quality. This result pertains to Gelfand-width in CS theory
[46]. In the sense of Gelfand-width, the best measurement

matrices are those whose null spaces intersect with the set of
desired signals in the most economical direction. In this paper,
we demonstrate that the blur always expands the null space of
the measurement matrix.

The main contributions of this work are summarized as
follows:
• We propose a physically faithful image formation model

for the CASSI system. It is the first model that accounts
for the real PSF in the computational hyperspectral imag-
ing system.

• We propose an effective PSF estimation method to
calibrate the PSF of CASSI. Our method requires no
additional hardware modifications.

• We provide a theoretical analysis of the PSF’s impact on
the hyperspectral image reconstruction. Our analysis can
serve as a guide for CASSI implementation.

This paper is organized as follows. Section II reviews the
related works. Section III proposes the physically faithful im-
age formation model. The PSF estimation method is provided
in Section IV. Section V analyzes the impacts of the PSF.
Section VI displays our simulation and real prototype results.
Section VII demonstrates the improvement of PSF estimation.
Finally, Section VIII concludes this paper.

II. RELATED WORK

Coded aperture snapshot spectral imaging (CASSI) was
designed to impose binary random sampling to reconstruct
hyperspectral images from compressive inputs. Binary random
sampling in spectrum is achieved by a coded aperture and a
dispersive prism, i.e., the coded aperture randomly samples
scene images in the spatial domain while the dispersive prism
shifts each spectral channel according to their wavelengths.
According to this design, each spatial-spectral voxel is masked
or unmasked, and each unmasked voxel should contribute to
only one pixel at the detector [11], [24].

However, due to diffraction of the physical limitation and
imperfection of the system, the dispersion of the prism, there
is a mismatch between the current image formation model
and the actual image formation in the real system, i.e., each
spatial-spectral voxel in the image formation model actually
contributes to more than one pixels in the real system.

Wagadarikar et al. attempted to fill the gap between the
simple image formation model and the actual optical modula-
tion by calibration [11], [24], [34]. Specifically, they capture
image sensor measurements at each wavelength within the
visible spectrum by illuminating the coded aperture with
monochromatic light. These calibration images are used in
the hyperspectral image reconstruction. However, their image
formation models are still physically inaccurate as discussed
by [25], [47].

Arguello et al. [25] assume that each spatial-spectral voxel
impinges on up to three detector pixels because of the
dispersion of the prism. The energy distribution on these
three pixels is experimentally measured by a test coded
aperture implemented using a digital mirror device (DMD).
Arguello et al.’s model only tackles the dispersion imposed
by the dispersive prism, assuming that the optical components
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are perfect, which is only a special case of our image formation
model. Furthermore, we do not rely on a DMD to manually
measure the energy distribution of each voxel, which enables
us to preserve the compact direct-viewing architecture of the
system.

III. IMAGE FORMATION MODEL

In this section, we propose a physically faithful image
formation model to describe the actual imaging formation in
the conventional CASSI system. Suppose the spatial-spectral
information of the scene image be represented as f(x, y, λ).
The spatially modulated image just after the coded aperture
m(x, y) can be formulated as

f1(x, y, λ) = f(x, y, λ)m(x, y). (2)

When the imaging system captures the modulated spectrum
from the objective lens, diffraction occurs through the system
optics. Here we model it as the point spread function h as

f2(x, y, λ) = h(x, y, λ)⊗ f1(x, y, λ), (3)

where ⊗ represents 2D spatial convolution, and h(x, y, λ)
represents the PSF at wavelength λ.

The conventional CASSI system includes a prism for cre-
ating dispersion of the modulated spectrum. We formulate
the spectral dispersion as a function φ of wavelength λ. The
captured image g at pixel (x, y) can be written as a linear
system with the PSF h as follows:

g(x, y) =

∫
f2(x, y, λ)dλ

=

∫
h(x, y, λ)⊗ (f(x, y, λ)m(x, y))dλ

=

∫∫∫
(h(x

′
− φ(λ), y

′
;x, y, λ)

× f(x
′
, y

′
, λ)m(x

′
, y

′
))dx

′
dy

′
dλ.

(4)

where φ is linear dispersion of wavelength λ. These above
equations enable us to model not only the dispersion with
spectral modulation but also the optical distortion, diffraction,
aberration, and misalignment.

In practice, even though the PSF is supposed to be shift-
invariant, the PSF in CASSI presents some spatial variation.
To account for the vertical and horizontal spread of the PSF,
we formulate a more general formulation of Eq. (4) as follows:

g(x, y) =

∫∫∫
h(x− x

′
− φ(λ), y − y

′
;x, y, λ)

× (f(x
′
, y

′
, λ)m(x

′
, y

′
))dx

′
dy

′
dλ,

(5)

where the indices x, y in h indicate that the PSF varies with
spatial positions.

Furthermore, the image sensor records the integrated energy
as discrete signals. The discretized output at the detector is

g(i, j) =

∫ ∑
i′ ,j′∈Ωijλ

h(i
′
, j

′
; i, j, λ)f(i

′
, j

′
, λ)m(i

′
, j

′
)dλ,

(6)
where Ωij represents the pixels of the scene that contributes to
a sensor pixel (i, j), h(i

′
, j

′
; i, j, λ), f(i

′
, j

′
, λ) and m(i

′
, j

′
)
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Fig. 2. (a) Architecture of the conventional CASSI system and (b) – (d)
show three main phases in our physically faithful image formation model. (b)
We first estimate the PSF of each spectral channel from a set of calibration
images. (c) Then, the estimated PSF is used in our image formation model to
mathematically describe the actual imaging formation. (d) Finally, the image
formation model is represented as a measurement matrix in the hyperspectral
image reconstruction process.

represent spatially discretized h(γ, τ ;x, y, λ), f(x, y, λ) and
m(x, y), respectively. Note that the scene image is modulated
by the coded aperture while the captured radiance is quantized
by the image sensor.

To reconstruct the hyperspectral image from the compres-
sive measurement, we also need to discretize the unknown
scene along the spectral dimension. Discretization along the
spectral dimension is not as straightforward as that along the
spatial dimension. Suppose the spectral channel spreads from
λ1 to λ2 (the width of each spectral channel is usually 10 nm
in practice), the main issue is to find a mean value h(i, j, λ̂)
that satisfies

h(i, j, λ̂)⊗
∫ λ2

λ1

f(i, j, λ)m(i, j)dλ =∫ λ2

λ1

h(i− φ(λ), j, λ)⊗ (f(i, j, λ)m(i, j))dλ,

(7)

in which both sides of the equation represent the output at the
detector of this spectral channel. A desirable approximation of
h(i, j, λ̂) is averaging h(i, j, λ) over (λ1, λ2) [48], which can
be expressed as

h(i, j, λ̂) ≈
∫ λ2

λ1
h(i− φ(λ), j, λ)dλ

λ2 − λ1
. (8)

If f(i, j, λ) changes slowly in [λ1, λ2], this approximation is
satisfactory.

Denoting the spectrally discretized spectrum f(i
′
, j

′
, λ)

as f(i
′
, j

′
, k) and spatially varying PSF h(i

′
, j

′
; i, j, λ) as

h(i
′
, j

′
; i, j, k), the detector measurement can be finally writ-

ten as

g(i, j) =
∑
k

∑
i′ ,j′∈Ωij

h(i
′
, j

′
; i, j, k)f(i

′
, j

′
, k)m(i

′
, j

′
). (9)



4

Coded Aperture FPA Meaurement

Binary 
Mask

Measured 
Intensity

Binary mask convolves 
with dispersion

Binary mask convolves 
with PSF

⊗⊗

Zoomed 
Version

(𝒊, 𝒋)

(𝒊, 𝒋) (𝒊, 𝒋) (𝒊, 𝒋) (𝒊, 𝒋)
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Fig. 3. Modeling for one spectral channel. The simple model is totally blind
of the PSF of the system. Kittle et al. [34] try to deal with the PSF but not in
a proper way. Arguello et al. [25] only deal with the dispersion of the prism.
Our model uses the calibration image to estimate the PSF, which describes
the imaging process of CASSI more faithfully.

TABLE I
COMPARISON BETWEEN OUR IMAGE FORMATION MODEL AND OTHER

CALIBRATION METHODS.

Simple
∑
λ fλ ·m

Kittle [34]
∑
λ fλ · (m⊗ hλ)

Arguello [25]
∑
λ(fλ ·m)⊗ dispλ

Ours
∑
λ(fλ ·m)⊗ hλ hλ = dispλ ⊗ blurλ

* dispλ → dispersion of the prism.

* blurλ → physical limitation and imperfection of the system.

If we omit the spatial variance of the PSF, Eq. (9) can be
expressed more concisely as

g(i, j) =
∑
k

h(i, j, k)⊗ (f(i, j, k)m(i, j)). (10)

In the hyperspectral image reconstruction, Eq. (10) serves as
a data term and often expressed in matrix-vector form, i.e.,

g = Φf , (11)

where g and f are vector forms of g(i, j) and f(i, j),
respectively, and Φ is the measurement matrix which is formed
according to the image formation model that accounts for both
diffraction and PSF of the system. For an overall understanding
of our model, we present an overview of our model in Figure 2.

Fig. 3 and Table I compare the differences between the
simple model, the Calibration method [34], the Higher-order
image formation model [25], and our image formation model.
The Simple image formation model is totally blind of the point
spread function of the system. The non-PSF image formation
model [34] uses the calibration images to replace the binary
mask in the reconstruction, which can not really deal with
the PSF of the imaging system 1. The Higher-order image
formation model [25] only deals with the dispersion of the
prism but ignores the blur caused by physical limitation and

1Note that equation fλ · (m⊗ hλ) is different from (fλ ·m)⊗ hλ, be-
cause fλ · (m⊗ hλ) does not satisfy the associative law.

imperfection of the system. In our model, we first use the
calibration image to estimate the PSF, and then the estimated
PSF is employed in the hyperspectral image reconstruction,
which faithfully describes the optical phenomena of CASSI
and improves the reconstruction quality. The next section
describes how to estimate the PSF of each spectral channel.

IV. PSF ESTIMATION

In this section, we propose a PSF estimation method by
exploring the relationship between the coded aperture and
calibration images according to our key observation that the
coded aperture and the calibration images are the correspond-
ing inputs and outputs of the imaging module. The calibration
images that we use to estimate the PSF are off-the-shelf
because a CASSI system needs to be calibrated before it can
be used in [11], [24].

A. Optimization

In the calibration, we illuminate the coded aperture using
uniform monochromatic light with wavelength λ0 to get the
calibration image at the detector. According to Eq. (4), the
calibration image can be expressed as

c(i, j) =

∫
h(i, j, λ)⊗ (f(i, j, λ)m(i, j))dλ

= α · h(i, j, λ0)⊗m(i, j),

(12)

where

f(i, j, λ) =

{
α, λ = λ0

0, otherwise,
(13)

Here, α is a constant, h(i, j, λ0) is the PSF at wavelength λ0,
and α · dλ is only a scale factor.

In its matrix-vector form, Eq. (12) can be recast as c = Mh,
where c and h are the vector forms of c(i, j) and h(i, j, λ0)
respectively, and M is the matrix form of m(i, j) of convolu-
tion. This PSF estimation is a classical system identification
problem which is usually solved by least-squares [42]–[45].

The least-squares method yields the following estimation:

ĥ = (MᵀM)−1Mᵀc. (14)

Note that Eq. (14) implies that MᵀM should have full rank.
In conventional imaging systems, this condition is satisfied
by manually designing random input signals. Fortunately, in
our PSF estimation problem, the full rank condition is also
satisfied because the aperture is randomly coded. For a binary
random matrix M ∈ Rl×n, l ≥ n, the probability of MᵀM
being a full rank is greater than 1− (3/4 +O(1))n−1 [49].
Although our experiments only uses randomly coded aperture,
the proposed PSF estimation method can be used to other state-
of-the-art CASSI systems as long as MᵀM has full rank.

B. The Condition Number of MᵀM
In practice, the noise is inevitable in measurements, so

we hope Eq. (14) be well-posed such that the noise can be
well canceled. The posedness of Eq. (14) depends on the
distribution of the eigenvalues of MᵀM, and can be roughly
measured by the condition number σmax/σmin, where σmax and
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σmin are the biggest and the smallest eigenvalues, respectively.
Therefore we will give a brief discussion about the condition
number of MᵀM. We think this will help us to understand the
performance of the PSF estimation.

Under ideal conditions, the ’on’ pixels are isolated. In this
case, the measurement matrix M should be a collection of
several unit matrices. Suppose l = q · n, then

M =

I
...
I

 , (15)

and
MᵀM = q · I, (16)

where I ∈ Rn×n is an unit matrix. The eigenvalues of MᵀM
are σ1 = σ2 = · · · = σn = q. The condition number can be
calculated as q

q = 1. This is the best case that the measurement
noise can be suppressed to the maximum extent.

In general cases, each column of the matrix M is a random
binary vector, i.e.,

P (Mi,j = 0) = 0.5, P (Mi,j = 1) = 0.5, ∀i, j, (17)

and

P (Mi,j ,Mu,v) = P (Mi,j)P (Mu,v), ∀(i, j) 6= (u, v). (18)

After some calculations, we can obtain

E(MᵀM) = q · Φ, (19)

where E(·) is the expectation operator, Φ ∈ Rn×n and

Φi,j =

{
0.5, i = j,

0.25, i 6= j,
(20)

and the variance of each element of Φ is

Var(Φi,j) =

{
0.25/l, i = j,

0.1875/l, i 6= j.
(21)

It is sufficient to discuss the condition number of the matrix
Φ, because the variance becomes negligible when l is big.
However, simulation results show that the condition number
of Φ is around several hundreds. Therefore, it is roughly to
say that Eq. (14) is still well-posed.

The above analysis shows that the case when the coded
aperture ’on’ pixels are isolated is the optimal situation,
while the case when the coded aperture are random binary
is still acceptable. To better suppress the noise, we add a
regularization term in the PSF estimation.

C. Regularization

A way to construct a reasonable biased estimation is to
regularize least-squares using proper priors regarding the PSF.
One such prior is that the PSF is smooth with relatively small
gradients, for example, the PSF of an ideal lens is a sinc
function [50]. Another prior is that the PSF is non-negative.
Thus the biased estimation is

min
h
‖Mh− c‖2 + η2 ‖Dxh‖2 + η2 ‖Dyh‖2,

s.t. hi ≥ 0,
(22)

Detector 
pixels

Coded aperture 
pixels

Fig. 4. The difference between the size of the coded aperture pixels and the
detector pixels makes the contribution of each coded aperture pixel to the
surrounding detector pixels varies.

where Dx = [−1, 1] and Dy = Dᵀ
x are differential operators

along the x direction and y direction, respectively, and η2 is
a smoothness factor. The above optimization problem can be
iteratively solved as follows:

1. hn+1 = hn + β(Mᵀc− (MᵀM + η2(Dᵀ
xDx + Dᵀ

yDy))hn),
2. hn+1

i = 0 if hn+1
i < 0,

where hn is the estimation result after the nth iteration,
hi is the ith element in h, and β is a scalar that controls
the convergence. In our implementation, both M and c are
normalized to [0, 1], η is set to 5, and β is set to 10−3.
The proposed estimation produces better results than ordinary
least-squares when the number of samples is very limited, as
shown in Figure 5.

Another merit of the proposed estimation is that it is
consistent, i.e., the estimation given by Eq. (22) approaches
the ground truth when the number of samples is infinite.
To show this, let us first consider a simple case where no
constraint is imposed on Eq. (22). In this case, the solution of
the regularized least-squares can be given in a closed form,
i.e.,

ĥ = (MᵀM + η2(Dᵀ
xDx + Dᵀ

yDy))−1Mᵀc. (23)

Assuming that the number of samples is infinite for ground
truth, in other words, there are the infinite number of rows in
M, the term η2(Dᵀ

xDx + Dᵀ
yDy) is negligible compared with

MᵀM [51], therefore ĥ can be expressed as

ĥ→ (MᵀM)−1Mᵀc. (24)

Because (MᵀM)−1Mᵀc approaches the ground truth, it satis-
fies the constraints in Eq. (22) (a true PSF is non-negative).
Thus Eq. (24) is exactly the large sample result of Eq. (22),
so that the proposed estimation is consistent.

D. Spatially Varying PSF
The PSF of each spectral channel varies with spatial position

because of optical distortion and aberration in the imaging
system. Even the sizes of coded aperture pixels are not the
same with the detector pixels due to perspective projection
[11], which is shown in Fig. 4. To estimate the PSF at point
(i, j), we use several neighbors of (i, j) with the assumption
that the PSF in this small area is almost constant. The
PSF of each point can be estimated by sliding windows.
Eq. (22) is applied to each window to estimate the PSF of
the corresponding point. The estimated PSF is later used in
our image formation model according to Eq. (9) to faithfully
describe the imaging process of CASSI.
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Fig. 5. PSF estimation. (a) Coded aperture. (b) Simulated calibration images
and true kernels. (c) True kernels. (d) Results by least-squares using a 30× 30
window. (e) Our results using a 30× 30 window. (f) Mean square error versus
window size. It can be seen that our estimation produces better results when
the number of samples is very limited, and converges to the ground truth
when the number of samples is infinite.

(a) Calibration images at 477 nm and 571 nm.

(b) Spatially varying PSF at 477 nm and 571 nm.

Fig. 6. Real PSF estimation results. The PSF is displayed every 48 pixels.
We can see that the PSF slowly varies with spatial positions and wavelengths.

E. PSF Estimation Results

We first compare our estimated PSFs with true kernels using
synthetic examples. The calibration images were synthesized
using two 17× 17 known kernels and are contaminated by 1 %
i.i.d. Gaussian noise. Figure 5(d) shows the kernels estimated
by least-squares using a 30× 30 window. For comparison,
our estimated kernels using a 30× 30 window are shown
in Figure 5(e). It can be seen that our results are visually

TABLE II
THE HYPERSPECTRAL IMAGE RECONSTRUCTION QUALITY VS. THE SIZE

OF THE PSF.

σ 0 0.5 1.0 1.5 2.0
PSNR (dB) 27.56 27.08 25.06 23.97 23.04

SAM 0.1349 0.1494 0.2246 0.2836 0.3275

closer to the ground truth. For a quantitative comparison, we
plot estimation errors versus window size in Figure 5(f). The
results show that our estimation leads to a smaller MSE when
the number of samples is very limited and converges to the
ground truth as the number of samples approaches infinity.

Figure 6 shows our results on a real CASSI system. Our
CASSI system was calibrated from 415 nm to 670 nm in steps
of 1 nm. Before hyperspectral image reconstruction, we must
estimate the PSF at each nanometer. Here, we display the
results at 477 nm and 571 nm. The size of the PSF and the
window size were set empirically. Figure 6 shows that the
real size of the PSF is around 3× 3 and it varies slowly with
respect to both spatial position and wavelength.

V. NULL SPACE PROPERTY

The image formation model of CASSI is supposed to be a
binary modulation, but in fact the modulation is blurred be-
cause of the existence of the dispersive element, the imperfect
optical elements, and imperfect collimation. The blur itself
degrades the reconstruction quality according to CS theory
because it expands the null space of the measurement matrix,
which will be analyzed in this section.

CASSI is designed to impose binary random sampling on
the scene image in order to reconstruct the hyperspectral
image from 2D compressive measurements. However, because
of the existence of the dispersive prism, the imperfect op-
tical elements and the imperfect implementation, the actual
modulation is not binary at all. The former parts of this
paper mainly focus on faithfully modeling the imaging process
of CASSI in order to improve the reconstruction quality in
real CASSI systems. However, another fact is that the blur
itself degrades the reconstruction quality. Table II shows our
simulation results with PSFs of different sizes. The size of the
PSF is measured by the standard variance σ. It can be seen
that the reconstruction degrades when the size of the PSF is
not zero. This result pertains to Gelfand-width in CS theory
[46]. In the sense of Gelfand-width, the best measurement
matrices are those whose null spaces slice through the set
of desired signals in the most economical direction so as
to minimize the diameter of their intersection [46]. We will
show that the imaging system blur always expands the null
space of the measurement matrix. To provide an intuitive grasp
of the supposed binary measurement matrix and the actual
measurement matrix, we depict them in Figure 7.

Our main result is that the imaging system blur always
expands the null space of the measurement matrix.

Proposition 1. Define the binary measurement matrix as Φb,
the measurement matrix blurred by the imaging system as Φs,
our result can be expressed as ker(Φb) ⊂ ker(Φs).
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(a) (b)

Fig. 7. Measurement matrices formed according to the mask and PSFs.
(a) The supposed binary measurement matrix. (b) The actual measurement
matrix. Note that the elements in the actual measurement matrix involve spatial
blur as the actual PSF is not a Dirac delta function.

Proof. For all f ∈ ker(Φb), the following should be satisfied:

Φbf =
∑
k

f(i, j + k − 1, k)m(i, j + k − 1) = 0, (25)

where m(i, j + k − 1) is the coded aperture. According to our
image formation model,

Φsf =
∑
k

∑
Ωij

f(i
′
, j

′
+ k − 1, k)

×m(i
′
, j

′
+ k − 1)w(i

′
− i, j

′
− j, k),

(26)

where Ωij is the neighbor of point (i, j), w(i
′ − i, j′ − j, k)

is the contribution weight of the neighbor points. In most
cases, w is independent of k, thus the above function can
be transformed into

Φsf =
∑
Ωij

∑
k

f(i
′
, j

′
+ k − 1, k)

×m(i
′
, j

′
+ k − 1)w(i

′
− i, j

′
− j),

=
∑
Ωij

w(i
′
− i, j

′
− j)

×
∑
k

f(i
′
, j

′
+ k − 1, k)m(i

′
, j

′
+ k − 1)

=
∑
Ωi,j

w(i
′
− i, j

′
− j)(Φbf)

=0.

(27)

Thus, for all f ∈ ker(Φb), f ∈ ker(Φs).
On the other hand, it is easy to see Φb ∈ Rn×N (n� N)

has full row rank 2, which means that the range of Φb spreads
through the whole space of Rn. Eq. (27) says Φbf convoluted
by w equals Φsf . In practice, a valid convolution (in matrix
form) is rank deficient. Thus, there exists Φbf 6= 0 that
satisfies

∑
Ωi,j

w(i
′ − i, j′ − j)(Φbf) = 0. Since the rank of

Φb is full, there exists f that satisfies the above condition,
i.e., ∃f ∈ RN , Φbf 6= 0, Φsf = 0.

To sum up, ker(Φb) ⊂ ker(Φs).

For a sparse signal set K, such as K = {f : ‖f‖1 ≤ ε}},
there is a direct corollary of Proposition 1, that is,
ker(Φb) ∩K ⊂ ker(Φs) ∩K 3. Thus the blur expands the

2Actually, column-full-rank is a necessary condition for a measurement
matrix to satisfy the Restricted Isometry Property (RIP).

3The proof is very straightforward. Consider a f0 ∈ RN that satisfies
f0 ∈ ker(Φs), f0 /∈ ker(Φb). Let f

′
0 = f0/γ, |γ| is big enough such

that |f
′
0| ≤ ε. It is easy to verify that f

′
0 ∈ ker(Φs), f

′
0 /∈ ker(Φb). Thus,

ker(Φb) ∩K ⊂ ker(Φs) ∩K.

intersection of the signal set and the null space of the mea-
surement matrix. According to the CS theory, this expansion
degrades the reconstruction quality [46], [52].

To go further, according to our experiments, a larger PSF
usually results in a larger intersection, leading to suboptimal
reconstruction quality. Therefore, we theoretically derive a
finding that a smaller PSF would be beneficial in reconstruct-
ing hyperspectral images.

VI. RESULTS

In this section, we first verify the effectiveness of our image
formation model on synthesized data. We then demonstrate
that our image formation model can improve the reconstruction
quality both visually and quantitatively in a real hardware
setup of CASSI. Our image formation model is compatible to
other existing hyperspectral image reconstruction algorithms.
Here, we combined our image formation model with two
existing methods, i.e., Total-Variation (TV) [34], and Non-
Local Low-Rank (NL) [26]. The comparison is made between
our model, the Simple model, the Calibration method proposed
in [34], and the Higher-order image formation model [25].
The hyper-parameters of each algorithm are carefully tuned
for each imaging model to make the comparison fair.

A. Synthetic Results

Datasets. To evaluate the effectiveness of our image for-
mation model, we first conducted simulations on two public
datasets, i.e., CAVE [53] and ICVL [54]. The CAVE dataset
includes 32 indoor images captured under controlled illumi-
nation. The resolution of each image is 512× 512 with 31
spectral channels ranging from 400 nm to 700 nm. The ICVL
dataset includes 200 images (both indoor and outdoor). Each
image also has 31 spectral channels ranging from 400 nm to
700 nm. The spatial resolution is 1392× 1300. As conven-
tional, we use the center 256× 256 areas of CAVE images
and the center 512× 512 areas of ICVL images [26], [33].

Experimental setup. For synthetic evaluation of our image
formation model, we use uniform Gaussian kernels to simulate
the blur caused by the physical limitation and imperfection
of the system, and use a line spread kernel [0.3, 0.4, 0.3]
to simulate the dispersion cause by the prism. The PSF
of each spectral channel is the convolution of the above
two kernels and is shifted along the direction of dispersion
according to its wavelength. The CASSI measurements are
synthesized according to the real optical modulation, i.e., the
hyperspectral image is first modulated by the random binary
code, and then each spectral channel is convolved with the
corresponding PSF. Finally, the modulated image is summed
along the spectral dimension. To verify the effectiveness of
our image formation model on NL [26] and TV [34] method,
we use these two methods to reconstruct the underlying hy-
perspectral image from the synthesized CASSI measurement
with different measurement matrices, i.e., the matrix deduced
from the Simple image formation model, the matrix deduced
from the non-PSF image formation model [34], the Higher-
order image formation model [25], and the matrix deduced
from our image formation model. The hyperparameters of
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TABLE III
SIMULATION RESULTS ON THE CAVE DATASET. FOUR DIFFERENT PSFS ARE USED TO SIMULATE THE SYSTEM RESPONSE. TWO DIFFERENT

MEASUREMENT RATES ARE USED.

Meas.
rates Recon. Imaging

models PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

3 %

TV

Simple 25.10 0.7442 0.2243 20.84 0.5673 0.4795 19.92 0.5837 0.4910 19.56 0.5885 0.4972

Kittle [34] 26.88 0.7696 0.1655 23.90 0.7136 0.2762 22.44 0.6885 0.3451 22.19 0.6790 0.3729

Arguello [25] 27.00 0.7749 0.1628 24.71 0.7292 0.2459 22.55 0.6935 0.3266 21.35 0.6661 0.3825

Ours 27.07 0.7759 0.1624 25.29 0.7373 0.2340 24.31 0.7053 0.2907 23.41 0.6875 0.3263

NL

Simple 25.48 0.7345 0.2557 20.82 0.5750 0.4548 19.86 0.5388 0.5110 19.50 0.5238 0.5365

Kittle [34] 27.33 0.7847 0.1790 24.13 0.7274 0.2773 22.58 0.7010 0.3424 22.29 0.6904 0.3669

Arguello [25] 27.50 0.7892 0.1756 24.77 0.7115 0.2544 22.26 0.6122 0.3417 21.07 0.5785 0.3978

Ours 27.60 0.7899 0.1754 25.81 0.7539 0.2325 24.59 0.7252 0.2768 23.65 0.7076 0.3174

6 %

TV

Simple 27.41 0.7827 0.1748 23.25 0.6688 0.3233 22.29 0.6412 0.3607 21.94 0.6265 0.3784

Kittle [34] 28.76 0.8037 0.1408 27.22 0.7710 0.2118 25.20 0.7355 0.2746 24.18 0.7151 0.3261

Arguello [25] 28.90 0.8050 0.1436 27.00 0.7691 0.2287 25.02 0.7378 0.3298 23.57 0.7082 0.4130

Ours 28.99 0.8056 0.1422 27.60 0.7750 0.2236 26.62 0.7552 0.2505 25.71 0.7379 0.2685

NL

Simple 27.62 0.7658 0.1873 22.79 0.5937 0.3464 21.80 0.5572 0.3916 21.43 0.5406 0.4095

Kittle [34] 29.75 0.8344 0.1249 27.75 0.7913 0.1945 25.52 0.7590 0.2549 24.40 0.7346 0.3044

Arguello [25] 30.15 0.8396 0.1296 27.33 0.7721 0.2107 24.48 0.6555 0.3165 23.08 0.6129 0.3969

Ours 30.76 0.8527 0.1182 28.89 0.8186 0.1724 27.58 0.7916 0.2127 26.43 0.7721 0.2506

TABLE IV
SIMULATION RESULTS ON THE ICVL DATASET. FOUR DIFFERENT PSFS ARE USED TO SIMULATE THE SYSTEM RESPONSE. TWO DIFFERENT

MEASUREMENT RATES ARE USED.

Meas.
rates Recon. Imaging

models PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

3 %

TV

Simple 23.47 0.7750 0.0870 18.73 0.5908 0.1972 17.98 0.5472 0.2195 17.63 0.5308 0.2292

Kittle [34] 24.96 0.8253 0.0643 22.04 0.7934 0.1194 21.01 0.7811 0.1483 20.53 0.7707 0.1714

Arguello [25] 25.15 0.8289 0.0622 22.91 0.8011 0.1073 20.81 0.7628 0.1826 19.74 0.7389 0.2194

Ours 25.22 0.8353 0.0619 23.38 0.8044 0.0949 22.52 0.7897 0.1175 22.08 0.7838 0.1310

NL

Simple 23.69 0.7260 0.0825 19.73 0.5563 0.1870 17.95 0.4745 0.2083 17.58 0.4573 0.2175

Kittle [34] 25.45 0.8362 0.0585 22.27 0.8009 0.1147 21.15 0.7871 0.1449 20.63 0.7767 0.1688

Arguello [25] 25.61 0.8407 0.0554 22.65 0.7119 0.1067 20.01 0.5714 0.1853 18.72 0.5305 0.2331

Ours 25.78 0.8400 0.0557 23.78 0.8168 0.0895 22.82 0.8038 0.1133 22.33 0.7969 0.1284

6 %

TV

Simple 25.58 0.8193 0.0613 21.86 0.5516 0.1437 20.75 0.4966 0.1605 20.28 0.4751 0.1678

Kittle [34] 26.98 0.8686 0.0475 24.73 0.8444 0.0810 21.80 0.8162 0.1348 20.67 0.8033 0.1662

Arguello [25] 27.09 0.8678 0.0459 24.31 0.8400 0.0953 21.38 0.7999 0.1947 19.49 0.7673 0.2789

Ours 27.15 0.8688 0.0457 24.79 0.8409 0.0795 24.01 0.8273 0.1014 23.35 0.8135 0.1217

NL

Simple 26.78 0.6525 0.0762 20.84 0.4032 0.1565 19.61 0.3313 0.1943 17.93 0.2261 0.1542

Kittle [34] 28.06 0.8952 0.0377 25.28 0.8632 0.0746 22.16 0.8270 0.1269 20.91 0.8118 0.1606

Arguello [25] 28.26 0.8979 0.0347 24.14 0.7766 0.0923 19.91 0.5712 0.1991 18.20 0.5150 0.2829

Ours 28.43 0.9000 0.0347 25.61 0.8675 0.0699 24.64 0.8500 0.0943 23.93 0.8356 0.1151
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(21.17 / 0.3161) (30.60 / 0.1233) (28.74 / 0.1490) (32.11 / 0.0958) (PSNR / SAM)

(18.27 / 0.4474) (22.56 / 0.3021) (22.24 / 0.3596) (23.49 / 0.2543) (PSNR / SAM)

(19.35 / 0.1590) (22.58 / 0.1452) (22.16 / 0.1266) (22.99 / 0.1068) (PSNR / SAM)

(21.34 / 0.1528) (26.93 / 0.0810) (25.59 / 0.0918) (27.87 / 0.0741) (PSNR / SAM)

Simple Kittle et al. [34] Arguello et al. [25] Ours Ground truth

Fig. 8. Visual quality comparison on CAVE and ICVL datasets. From left to right, figures display the reconstruction results using the Simple image formation
model, the calibration method proposed in [34], the Higher-order image formation model [25], and Our image formation model.

reconstruction algorithms are carefully improved for each
case. All these experiments are conducted under two different
measurement rates, i.e., 3 % and 6 %. In 3 % measurement
rate setting, we reconstruct 31 bands of a hyperspectral image
from one shoot, while in 6 % measurement rate setting, we
reconstruct 16 bands of a hyperspectral image from one shoot.

We also verify our image formation model when the PSF is
spatially varying. The settings are the same with those when
the PSF is spatially uniform except that the convolution is
replaced by point-wise manipulation. Note that the proposed
physically faithful image formation model is ready to deal with
different kinds of PSFs.

Error metrics. We choose three quality metrics to evalu-

ate the reconstruction quality, including Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity (SSIM) [55], and Spectral
Angle Mapping (SAM) [56]. PSNR and SSIM are calculated
based on each 2D spatial image, which measure the spatial
fidelity between the reconstructed hyperspectral image and the
ground truth. A larger value of these two metrics suggests
higher reconstruction quality. SAM calculates the angle be-
tween two spectral signals, which measures spectral fidelity.
A smaller value of this metric implies higher quality. All these
metrics are averaged across the evaluated dimension.

Results. Tables III and IV show the quantitative simulation
results on the CAVE and ICVL datasets when the PSF is
spatially uniform. We choose four different Gaussian kernels
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(a) PSF #1 (b) PSF #2 (c) PSF #3

Fig. 9. Three spatially varying PSFs used in our simulation.

TABLE V
EVALUATION (PSNR/SAM) WITH SPATIALLY VARYING PSF ON THE

CAVE AND ICVL DATASETS.

PSF #1 PSF #2 PSF #3

C
AV

E

Simple 21.61/0.2875 22.77/0.3448 22.68/0.4632

Kittle [34] 29.38/0.1967 27.61/0.3860 24.74/0.4023

Arguello [25] 30.15/0.1424 28.08/0.2103 24.31/0.3104

Ours 31.38/0.1363 30.25/0.1908 29.16/0.2436

IC
V

L

Simple 18.12/0.2325 16.54/0.2096 15.86/0.2118

Kittle [34] 21.39/0.1094 19.34/0.1534 18.21/0.1908

Arguello [25] 22.77/0.0.0845 20.35/0.0929 18.13/0.1483

Ours 23.80/0.0644 22.76/0.0793 21.88/0.0986

with standard varianceσ = 0.5, 1.0, 1.5, 2.0 to simulate the
blur caused by the physical limitation and imperfection of the
system. The dispersion is simulated by a line spread kernel
[0.3, 0.4, 0.3]. The PSF is the convolution results of the above
two kernels. All the quantitative results are averaged on the
CAVE and the ICVL datasets separately. The best results are
highlighted in bold.

From these results we can see that the simple image forma-
tion model significantly degrades the reconstruction quality
when the optical modulation is not binary. The Calibration
method [34] and the Higher-order image formation model
[25] both improves the reconstruction to some extent, but the
improvements are limited especially when the measurement
rate is low and the PSF is big. This is because these four
image formation models (see Table I) are almost identical
when the PSF is very small. The difference arises as the size of
the PSF grows. Our image formation model always produces
desirable reconstructions because it faithfully describes the
actual optical modulation.

To visualize the reconstruction results, two represen-
tative reconstructed hyperspectral images in the CAVE
dataset, i.e., balloons (570 nm), egyptian statue (570 nm),
and two representative reconstructed hyperspectral images
in the ICVL dataset, i.e., bguCAMP 0514-1659 (570 nm),
bulb 0822-0909 (570 nm), are shown in Figure 8. The PSNR
and SAM are provided for each result to quantitatively assess
the spatial and spectral quality of each reconstruction. The
reconstruction algorithm is NL [26]. The measurement rate is
6 %. It can be seen that our image formation model produces
the best reconstruction results.

We also conducted simulations with spatially varying PSFs.
Three different spatially varying PSFs are used in our simula-
tion, as shown in Figure 9. The average results on the CAVE
and ICVL datasets are shown in Tables V. For concise, we

Fig. 10. The CASSI prototype (top) and the spectral characterization curve
of the prism (down).

only display the reconstruction results of TV algorithm [34].
The results of NL [26] have the same trend. It can be seen
that the simple image formation model significantly degrades
the reconstruction quality when the optical modulation is
not binary. The Calibration method [34] and the Higher-
order image formation model [25] improves the reconstruction
quality, but the improvements are limited. In contrast, our
image formation model, which faithfully describes the imaging
process, always produces desirable results.

B. Real System Results

To further demonstrate the benefits of our image formation
model, we conduct real system experiments on a CASSI
prototype. Since it is a consensus that the Calibration method
[34], rather than the Simple image formation model, should
be used in real system experiments, we disregard the Simple
image formation model in our experiments. In addition, the
Higher-order image formation model [25] is also disregarded
in our real system experiments, because the implementation
of [25] requires a DMD, which is not satisfied in the classical
CASSI system as well as in our prototype. But as we have
pointed out, the Higher-order image formation model is a
special case of our image formation model. We choose two
reconstruction methods, TV [34] and NL [26]. The CASSI
system has been calibrated. The calibration images and coded
aperture are shown in Figure 6 (a). A check board and a box
scenes are used in our experiments.

Experimental setup. We built a prototype of the con-
ventional CASSI system. The system consists of a 16 mm
objective lens (AZURE 1614), a coded aperture, a relay lens
(Edmund 45762), a dispersive prism (made by Shanghai Op-
tics), and a detector (Point Grey FL3-U3-13Y3M). Figure 10
displays the CASSI prototype and the spectral characterization
curve of the prism. In our implementation, the calibration im-
ages were captured from 415 nm to 654 nm at one nanometer
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Fig. 11. Comparison of the color checker reconstruction results of three spectral channels and the synthesized RGB image. Our results have sharper edges
and higher contrast, and are more plausible to the reference.
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RMSE results of the reconstructed spectra.

Kittle [34]
+TV

Ours
+TV

Kittle [34]
+NL

Ours
+NL

(a) 0.0115 0.0063 0.0130 0.0060
(b) 0.0153 0.0043 0.0124 0.0042

Fig. 12. Comparison of the reconstructed spectral signatures of two blocks
indicated in Figure 11.

step using a monochromator (Zolix Omni-λ 300i). We divide
the visible spectrum into 31 spectral channels according to
the guidelines in [11], [24], [34]. Before applying our image
formation model to the hyperspectral image reconstruction, we
need to estimate the PSF of each spectral channel. We first
estimate the PSF for each wavelength according to Eq. (22).
Figure 6 (b) exhibits estimated spatially varying PSF at 477 nm
and 571 nm. The PSF of each spectral channel was estimated
using Eq. (8).

(a) Kittle et al. [34] (b) Ours (c) Reference

Fig. 13. Reconstruction results on a box scene. It can be seen that our result
are visually closer to the reference.

Results. Figure 11 presents three reconstructed spectral
channels and the synthesized RGB images of the check board.
We compare our image formation model with the Calibration
method [34] that traditionally used in CASSI measurement
reconstruction. It can be seen that our results have sharper
edges and higher contrast compared with the traditional re-
sults. To give a reference, we capture the spectral images of
the check board using a spectral camera (SOC710VP). The
reference images are displayed in the last column of Figure 11.
Moreover, quantitative comparisons are given in Figure 12.
We measured the spectral signatures of two blocks (indicated
in Figure 11). The reconstructed spectra are compared with
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(a) Gaussian kernel result (b) Our result

Fig. 14. Comparison with the uniform Gaussian kernel. It can be seen that the
reconstruction quality of Gaussian kernel is very poor, which demonstrates
the improvements of PSF estimation.

the spectrometer measurement. Note that the spectrometer
measurement is sampled into 31 channels to make a reference.
Figures 12 (a)–(b) show that our results are consistently closer
to the ground truth, and the RMSE shows the same result.
Figure 13 shows another reconstruction result on a box scene
with more rich details. The reconstruction algorithm is TV
[34]. It can be seen that our result is visually closer to the
reference.

VII. DISCUSSION

The proposed image formation model contents two steps:
first, estimate the PSF of each spectral band using calibra-
tion images; second, form the measurement matrix using the
estimated PSF. To show the improvement of PSF estimation
with the proposed model, we conduct another real system
experiments in which a Gaussian blur kernel is used to form
the measurement matrix. The reconstructed color checker is
shown in Figure 14.

Although we choose the Gaussian kernel to roughly have
the same size as the real PSF, the reconstruction quality
of the Gaussian kernel is very poor. This demonstrates the
improvement of PSF estimation. Actually, the real PSF is not
isotropic like Gaussian kernels, but non-isotropic due to the
dispersion of the prism and other optical distortion. In addition,
the PSF is usually spatially varying.

VIII. CONCLUSION

In this paper, we propose a high-accuracy image formation
model for CASSI to reduce the gap between the simple
image formation model and the actual optical modulation. The
existing simple model has ignored the PSF of the imaging
system, degrading the quality of reconstructed hyperspectral
images. We are the first to model and estimate the real PSF
of CASSI. Our simulation and real system experiments have
demonstrated the effectiveness of the proposed model. The
influences of the PSF in the hyperspectral image reconstruction
are also analyzed, which can serve as a guide for CASSI
implementation. Our work specifically concerns with the per-
formance of real CASSI systems, and we anticipate that the
proposed method will improve the accuracy and image quality
of the existing applications of CASSI significantly.
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