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1 MATHEMATICAL BACKGROUND
In differentiable rendering, the image can be represented as an inte-

gral over an evolving manifold containing the path space, and s cene

derivatives can be evaluated using transport theorems. For com-

pleteness, we introduce here the related mathematical background.

We will follow existing terminology and definitions of fluid and con-

tinuum mechanics [Cermelli et al. 2005], mathematics [Seguin and

Fried 2014], and their application to differentiable rendering [Zhang

et al. 2020].

1.1 Mathematical Notions
We first add details of common concepts in mathematical analysis

and differential geometry used in our work.

Open and closed sets. A set in the Euclidean space𝑈 ⊂ R𝑛 is called

an open set if for any x ∈ 𝑈 there exists 𝜖 > 0 s.t. {y ∈ R𝑛 | ∥y − x∥ < 𝜖}
⊂ 𝑈 . A set 𝑈 ⊂ 𝑋 ⊂ R𝑛 is called an open set relative to 𝑋 if for

any x ∈ 𝑈 there exists 𝜖 > 0 s.t. {y ∈ 𝑋 | ∥y − x∥ < 𝜖} ⊂ 𝑈 . A set

𝐴 ⊂ R𝑛 (resp. 𝐴 ⊂ 𝑋 ⊂ R𝑛) is called a closed set (resp. closed set
relative to 𝑋 ) if R𝑛 −𝐴 (resp. 𝑋 −𝐴) is an open set (resp. open set

relative to 𝑋 ).

Continuous functions. For sets 𝑋 and 𝑌 ⊂ R𝑛 , a function 𝜑 : 𝑋 →
𝑌 is called continuous if for any open set 𝑈 relative to 𝑌 , 𝜑−1 (𝑈 )
is open relative to 𝑋 . Note that this definition is equivalent to the

epsilon-delta argument.

Manifolds. We define the halfspace as:

H𝑛 B
{
(𝑥1 ...𝑥𝑛) ∈ R𝑛 | 𝑥1 ≥ 0

}
. (1)

Then a set M ⊂ R𝑛 is called an 𝑚-dimensional manifold (or 𝑚-

manifold) if for any x ∈ M there exists an open set 𝑈x relative to
M and a one-to-one function 𝜙x : 𝑈x → 𝜙x (𝑈x) ⊂ H𝑚 , called a

chart, such that both 𝜙x and 𝜙
−1

x are continuous. Note that if we can
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choose each chart 𝜙x so that both 𝜙x and 𝜙−1

x are 𝐶𝑖
-differentiable

then M is called a 𝐶𝑖
-differentiable manifold. The boundary (or

boundary manifold) ofM is defined as:

𝜕M B {x ∈ M | the first coordinate of 𝜙x (x) is zero} . (2)

Note that this definition is independent of the choice of a particular

open set𝑈x and chart 𝜙x, and that 𝜕M is a (𝑚 − 1)-manifold. The

interior ofM is defined as Int (M) BM − 𝜕M.

We can intuitively understand an𝑚-manifoldM as a set of space

of points that need at least𝑚 real numbers to parameterize all points

inM. For instance, a surface mesh embedded in R3
is a 2-manifold,

and the space of light paths Ω𝑘 with 𝑘 + 1 vertices is a 2 (𝑘 + 1)-
manifold embedded in R3(𝑘+1)

.

Tangent space. Suppose thatM ⊂ R𝑛 is a 𝐶1
-differentiable𝑚-

manifold. The tangent space ofM on x ∈ M is then defined as:

𝑇xM B { ¤𝛾 (0) |𝛾 : (−𝜖, 𝜖) → M is a differentiable curve,

and 𝛾 (0) = x} ⊂ R𝑛, (3)

where the derivative (velocity w.r.t. parameterization) of the curve

¤𝛾 (0) can be evaluated as usual in R𝑛 . Note that 𝑇xM is an 𝑚-

dimensional vector space; a vector in𝑇xM is called a tangent vector.

1.2 Evolving Manifolds
An evolving𝑚-manifoldM (𝛉) ⊂ R𝑛 with respect to the scene pa-
rameter 𝛉 ∈ R𝑑 can be considered as a function mapping each value

of the parameter 𝛉 to each𝑚-manifold. Its trajectory is defined as

J B
{
(x, 𝛉) | 𝑥 ∈ M (𝛉) , 𝛉 ∈ R𝑑

}
⊂ R𝑛+𝑑 . WhenM (𝛉) evolves

continuously, we can assume that J is an (𝑚 + 𝑑)-manifold. In

the following we fix the scene parameters vector 𝛉 = (\1 ...\𝑑 ) as
a single scalar \ for simplicity. Generalization to vector 𝛉 will be

introduced at the end of this section.

While we have the motion of the entire manifoldM with respect

to \ , describing the motion of a single point x ∈ M (\ ) cannot be
defined in a trivial way. A local parameterization is defined as a

one-to-one function x̂ : 𝑈 → J such that 𝑈 is open in R𝑛 × R and

x̂ (p, \ ′) ∈ M (\ ′) for any (p, \ ′) ∈ 𝑈 . Suppose a local parameteri-

zation for a given point x ∈ M (\ ), i.e., there exists (p0, \ ) ∈ 𝑈 s.t.

x̂ (p0, \ ) = x. Then we can define the local velocity of x as:

𝑣 (x, \ ) B 𝜕

𝜕\ ′
x̂
(
p0, \

′) ����
\ ′=\
∈ R𝑛 . (4)

The local velocity depends on the choice of local parameterization.

Unlike fluid or continuum mechanics, we should eliminate this

dependency to get well-defined formulations on evolving manifolds.

When the codimenison ofM is one, i.e., 𝑛 =𝑚+1, the scalar normal
velocity VM (x, \ ) and local tangential velocity 𝑣tan (x, \ ) of a given
point x ∈ M (\ ) are defined as:
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VM (x, \ ) B 𝑣 (x, \ ) · n (𝑥, \ ) , (5)

𝑣tan (x, \ ) B 𝑣 (x, \ ) − VM (𝑥, \ ) n (𝑥, \ ) , (6)

where n (𝑥, \ ) denotes the unit normal vector ofM (\ ) at x. Then
the local tangential velocity 𝑣tan (x, \ ) still depends on the local

parameterization, but the scalar normal velocityVM (x, \ ) is inde-
pendent of such local parameterization. However, while the surface

geometry embedded in R3
has codimension one, the space of light

paths Ω𝑘 has a higher codimension (𝑘 + 1), so the normal vector n
cannot be defined. Thus, more generally, the local tangential velocity

and the vector normal velocity ®VM (x, \ ) are defined as:

𝑣tan (x, \ ) B Π𝑇xM (𝑣 (x, \ )) , (7)

®VM (x, \ ) B 𝑣 (x, \ ) − 𝑣tan (x, \ ) , (8)

where Π𝑇xM : R𝑛 → 𝑇xM denotes the canonical projection (or-

thogonal projection) from a vector space onto a subspace. Note

that the definitions of 𝑣tan in Equations (6) and (7) are equivalent,

while VM in Equation (5) and
®VM in Equation (8) are related as

®VM = VMnwhen 𝑛 =𝑚+1. Steady-state path-space differentiable

rendering [Zhang et al. 2020] did not use the vector normal velocity

since the authors relied on the Reynolds transport relation on a 2D

manifold embedded in R3
. This is no longer possible in transient

state, an thus the need to apply the generalized transport theorem

on the path space Ω𝑘 ⊂ R3(𝑘+1)
.

The boundary of the evolving manifold, 𝜕M (\ ), is also an evolv-

ing manifold. We can define a local velocity 𝑣𝜕M (x, \ ), a local tan-
gential velocity 𝑣

tan,𝜕M (x, \ ), and a vector normal velocity
®V𝜕M (x, \ )

on 𝜕M (\ ) in the same fashion, but the scalar normal velocity

V𝜕M (x, \ ) at x ∈ 𝜕M (\ ) is defined differently as:

𝑣
tan,𝜕M (x, \ ) B Π𝑇x𝜕M

(
𝑣𝜕M (x, \ )

)
, (9)

®V𝜕M (x, \ ) B 𝑣𝜕M (x, \ ) − 𝑣tan,𝜕M (x, \ ) , (10)

V𝜕M (x, \ ) B ®V𝜕M (x, \ ) · n𝜕M (x, \ ) , (11)

where n𝜕M (x, \ ) ∈ 𝑇xM (\ ). Note that when restricting the direc-

tion of the unit normal vector n𝜕M (x, \ ) into 𝑇xM (\ ) (instead of

into R𝑛) the outgoing normal direction n𝜕M fromM (\ ) is deter-
mined uniquely, so that we can use the scalar normal velocity of

𝜕M (\ ) under the general dimensionality ofM (\ ) and R𝑛 .

1.3 Generalized Transport Theorem for Evolving Manifolds
Suppose that there is a scalar field𝜑 : J → R defined on an evolving
manifold. Generally, the field 𝜑 could not be defined on the entire

space R𝑛+1, so the partial derivative of the field 𝜑 with respect to \

cannot be defined in a trivial way. In other words, when trying to

evaluate lim𝜖→0

𝜑 (x,\+𝜖)−𝜑 (x,\ )
𝜖 , the numerator cannot be defined

unless x lies on bothM (\ ) andM (\ + 𝜖). Therefore, we first define
a derivative which depends on the choice of local parameterization,

then we can define a parameterization-independent derivative from

the dependent one. The derivative ¤𝜑 (x, \ ) w.r.t. \ , which depends on
choice of local parameterization, and the normal derivative 𝜑� (x, \ )
w.r.t. \ , which is independent of local parameterization, are defined

as follows:

¤𝜑 (x, \ ) B 𝜕

𝜕\ ′
𝜑
(
x̂
(
p0, \

′) , \ ′) ����
\ ′=\

, (12)

�
𝜑 (x, \ ) B ¤𝜑 (x, \ ) − 𝑣tan (x, \ ) · gradM𝜑 (x, \ ) . (13)

Nowwe investigate the derivative of the integration over evolving

manifolds. Seguin et al. [2014] showed that the derivative of the

integral of 𝜑 over the evolving manifoldM (\ ) can be represented

as the transport theorem for evolving manifolds:

d

d\

∫
M(\ )

𝜑d`M =

∫
M(\ )

(
�
𝜑 − 𝜑 ®̂ · ®VM

)
d`M +

∫
𝜕M(\ )

𝜑V𝜕Md`𝜕M ,

(14)

where ®̂ is the total curvature vector,𝑚 times the mean curvature

vector on the𝑚-manifoldM (\ ), and `M and `𝜕M are the measures

onM (\ ) and 𝜕M (\ ), respectively. The mean curvature vector on

a𝑚-manifold embedded in R𝑛 has been defined in differential ge-

ometry [Carmo 1992; Chen 1975]. According to their definition, the

mean curvature vectors can be well defined for arbitrary codimen-

sions, i.e., even if 𝑛 > 𝑚 + 1, so that the unit normal vector on the

manifold is not uniquely defined.

Note that this transport theorem has been given different names

depending on the dimension 𝑚 and the codimension 𝑛. For the

simplest case,𝑚 = 𝑛 = 1, the theorem is called the Leibniz integral

rule, and for the case of 𝑚 = 𝑛 = 3 (or any case of 𝑚 = 𝑛) the

theorem is usually called the Reynolds transport theorem. Zhang

et al. [2020] used this transport theorem for the particular case of

𝑚 = 2 and 𝑛 = 3, and applied it iteratively. Our work generalizes

this for any dimension and codimension.

1.4 Generalized Transport Theorem with Discontinuity
In this section we will treat the case when the scalar field 𝜑 con-

tains discontinuities. For simplicity, our notations follow previous

work [Zhang et al. 2020]. The discontinuity set (discontinuity sub-

manifold) ofM (\ ) with respect to 𝜑 is defined as:

ΔM [𝜑] (\ ) B {x ∈ M (\ ) | 𝜑 (·, \ ) is discontinuous at x} . (15)

We assume that ΔM [𝜑] (\ ) can be represented as a finite union of

(𝑚 − 1)-submanifolds ofM (\ ), and that ΔM [𝜑] (\ ) itself evolves
continuously. Then the continuous interior Int

◦ (M) [𝜑] (\ ) and the
extended boundary 𝜕M [𝜑] (\ ) ofM with respect to 𝜑 are defined

as follows:

Int
◦ (M) [𝜑] (\ ) BInt (M) (\ ) − ΔM [𝜑] (\ )

=M (\ ) − 𝜕M (\ ) − ΔM [𝜑] (\ ) , (16)

𝜕M [𝜑] (\ ) B𝜕M (\ ) ∪ ΔM [𝜑] (\ ) . (17)

Note that whenM is a 2D manifold (surface), ΔM can also be called

a discontinuity curve, as in Zhang et al. [2020]. We will often omit

the dependency [𝜑] or (\ ) for simplicity.

The scalar field 𝜑 is continuous on each connected component

of the continuous interior Int
◦ (M), so the integral overM can be

represented as the sum of integrals over each connected component

of Int
◦ (M). Then we can apply the transport theorem (14) for each

connected component, and finally obtain the transport theorem

with discontinuities:
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d

d\

∫
M(\ )

𝜑d`M =

∫
M

(
�
𝜑 − 𝜑 ®̂ · ®VM

)
d`M+

∫
𝜕M

Δ𝜑V
𝜕Md`

𝜕M ,

(18)

where Δ𝜑 (x, \ ) on 𝜕M [𝜑] (\ ) is defined as:

Δ𝜑 (x, \ ) B
{
𝜑 (x, \ ) , if x ∈ 𝜕M
𝜑− (x, \ ) − 𝜑+ (x, \ ) , if x ∈ ΔM [𝜑] (\ )

. (19)

Here, 𝜑− (x, \ ) and 𝜑+ (x, \ ) are defined as the limits of 𝜑 (x, \ )
when approaching x from−nΔM (x, \ ) and nΔM (x, \ ), respectively.
Note that unit normal vectors nΔM (x, \ ) and n𝜕M (x, \ ), the scalar
normal velocities VΔM and V

𝜕M , and measures `ΔM and `
𝜕M

can be defined in similar ways to 𝜕M.

1.5 Generalization to Vector Parameters
Taking multiple parameters 𝛉 = (\1 ...\𝑑 ) into account is easily

achievable by repeating the formulations for each parameter \𝑖 .

Then R𝑛 vector velocity terms 𝑣 , 𝑣tan, and
®V change to R𝑛×𝑑 Jaco-

bians, and scalar velocity and derivative termsV , ¤𝜑 , and �𝜑 change

to R1×𝑑
gradients. Then changing the inner product term ®̂ · ®VM

into a matrix product
®V𝑇
M ®̂ from Equations (14) and (18) generalizes

the trasport theorem for multiple parameters. However, since the

transport theorem for multiple parameters is equivalent to enunci-

ating the theorem for each parameter, we keep writing formulations

for a single parameter \ for the sake of simplicity.

2 DERIVATION DETAILS ON DIFFERENTIAL TRANSIENT
PATH INTEGRAL

2.1 Formal Definition of Scene Geometry
In physically-based rendering, the scene geometry is usually rep-

resented as a 2D manifold, which is unfortunately riddled with

discontinuities at the edges of the polygons. To clarify how to treat

this discontinuity, we first define piece-wise differentiable manifolds

in this section.

The scene geometryM is a piece-wise differentiable 2D manifold,

which satisfies that:

• M is represented as a finite union of differentiable 2D mani-

fold,s i.e.,M =
⋃𝑝

𝑖=1
M [𝑖 ] .

• For any two distinct piecesM [𝑖 ] andM [ 𝑗 ] , if they intersect

(M [𝑖 ] ∩M [ 𝑗 ] ≠ 𝜙) then the intersectionM [𝑖 ] ∩M [ 𝑗 ] is a
differentiable 1D manifold (curve).

Then the boundary of the piece-wise differentiable 2DmanifoldM is a

piece-wise differentiable 1Dmanifold, defined as 𝜕M B ⋃𝑝

𝑖=1
𝜕M [𝑖 ] ,

and the interior of the piece-wise 2D differentiable manifold M is

defined as Int (M) B M − 𝜕M =
⋃𝑘

𝑖=1
Int

(
M [𝑖 ]

)
. Note that in

usual polygonal representations, each differentiable piece M [𝑖 ]
corresponds to each planar polygon (usually triangles), and the

boundary of the scene geometry 𝜕M becomes the union of all edges

in all polygon meshes. We do not consider self-intersection of scene

geometry.

When a point x is in the boundary of the scene 𝜕M, we observe

that x belongs to one of two cases: it is either contained in exactly

one differentiable piece 𝜕M [𝑖 ] , or in the intersection of two differen-

tiable pieces 𝜕M [𝑖 ] ∩ 𝜕M [ 𝑗 ] . We will call the first case the boundary
edges, and the second case the sharp edges [Zhang et al. 2020, 2019].

Then the boundary of the scene geometry 𝜕M becomes the union

of the boundary edges and the sharp edges.

Generally, we can define piece-wise differentiable𝑚-manifolds in

a similar way, and extend the transport theorem in Equation (18) to

piece-wise differentiable manifolds by taking the summation of the

equation for each differentiable piece. Then we can use the same

equation defining the transport theorem on a piece-wise differen-

tiable 2 (𝑘 + 1)-manifold Ω𝑘 =M𝑘+1
.

2.2 Product Space Rules
When an evolving manifold N (\ ) is formed as the product of two

other evolving manifolds, N (\ ) =M1 (\ ) ×M2 (\ ), and there is a

scalar function 𝜑 (·, \ ) : N (\ ) → R which is the product of scalar

functions 𝜑1 (·, \ ) : M1 (\ ) → R and 𝜑2 (·, \ ) : M2 (\ ) → R, i.e.,
𝜑 (x1, x2, \ ) = 𝜑1 (x1, \ ) 𝜑 (x2, \ ), we can use the same transport

theorem described in Equation (18) by substitutingM by N . Then

Equation (18) can be evaluated in terms ofM1 andM2 as follows:

�
𝜑 (x1, x2, \ ) =

�
𝜑

1
(x1, \ ) 𝜑2 (x2, \ ) + 𝜑1 (x1, \ )

�
𝜑

2
(x2, \ )

®̂N (x1, x2, \ ) =
(
®̂M1
(x1, \ ) , ®̂M2

(x2, \ )
)
,

®VN (x1, x2, \ ) =
(
®VM1
(x1, \ ) , ®VM2

(x2, \ )
)
,

𝜕N [𝜑] (\ ) =𝜕M1 [𝜑1] (\ ) ×M2 (\ ) ∪M1 (\ ) × 𝜕M2 [𝜑2] (\ ) ,

Δ𝜑 (x1, x2, \ ) =
{
𝜑2Δ𝜑1 if (x1, x2) ∈ 𝜕M1 ×M2

𝜑1Δ𝜑2 if (x1, x2) ∈ M1 × 𝜕M2

,

V
𝜕N (x1, x2, \ ) =

{
𝜑2V𝜕M1

if (x1, x2) ∈ 𝜕M1 ×M2

𝜑1V𝜕M2

if (x1, x2) ∈ M1 × 𝜕M2

.

(20)

These rules can be extend in a similar way to an arbitrary number

of products, such as the order-𝑘 path space Ω𝑘 =M𝑘+1
.

2.3 Terms in the Path Integral
Recall the transient path integral, the path throughput, and the

correlated importance described in the main paper, respectively, for

negligible scattering delays surface path vertices:

𝐼 =

∫
Ω
𝑓T (x̄) d` (x̄), (21)

𝑓T (x̄) B 𝔗 (x̄) 𝑆𝑒 (x̄) , (22)

𝔗 (x̄) B
[
𝑘−1∏
𝑖=1

𝜌 (x𝑖−1, x𝑖 , x𝑖+1)
] [

𝑘−1∏
𝑖=0

𝐺 (x𝑖 , x𝑖+1)𝑉 (x𝑖 , x𝑖+1)
]
,

(23)

𝑆𝑒 (x̄) =
∫ ∞

−∞
𝐿𝑒 (x0, x1, 𝑡)𝑊𝑒 (x𝑘−1

, x𝑘 , 𝑡 + tof (x̄)) d𝑡 . (24)

For a mathematically rigorous derivation, we define each term in

the path integral: 𝐿𝑒 , 𝜌 ,𝑊𝑒 , 𝐺 , and 𝑉 .
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Definition 2.1. For given scene geometryM, the geometric func-
tion 𝐺 : Int (M) × Int (M) → R is defined as:

𝐺 (x, y) B

|�̂�x ·�̂�xy | |�̂�y ·�̂�yx |

∥x−y∥2 x ≠ y

0 x = y
. (25)

Also, when the domain is restricted to differentiable pieces of the

scene geometry, denoted by Int

(
M [𝑖 ]

)
× Int

(
M [ 𝑗 ]

)
(1 ≤ 𝑖, 𝑗 ≤ 𝑝),

then the restricted function can be continuously extended onto

M [𝑖 ] ×M [ 𝑗 ] , which contains their boundaries 𝜕M [𝑖 ] and 𝜕M [ 𝑗 ] .
We will denote this function as 𝐺 |M [𝑖 ]×M [ 𝑗 ] : M [𝑖 ] ×M [ 𝑗 ] → R,
where 𝐺 |M [𝑖 ]×M [ 𝑗 ] is a continuous function. Note that the entire
geometric function 𝐺 satisfies Δ

(
M2

)
[𝐺] = 𝜕

(
M2

)
.

Definition 2.2. For given scene geometryM, the visibility func-
tion 𝑉 : M ×M → R is defined as:

𝑉 (x, y) B
{

1 openlineseg (x, y) ∩M = 𝜙

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (26)

where openlineseg B {_x + (1 − _) y | 0 < _ < 1} means the open

line segment between two given points. Unlike the geometric func-

tion 𝐺 and the visibility function 𝑉 , the light source emission func-

tion 𝐿𝑒 , surface scattering function (BSDF) 𝜌 , and the sensor sensitiv-

ity function𝑊𝑒 vary depending on the scene. We can introduce the

following conditions which those terms should satisfy in practice:

A.1 For any fixed x0, x1 ∈ M, 𝐿𝑒 (x0 → x1, ·) : R→ R as a func-

tion of 𝑡 contains a finite number of jump discontinuities at

𝑡𝐿1 ...𝑡𝐿𝑞 and a finite number of Dirac delta distributions at

𝑡1 ...𝑡𝑟 . Except for 𝑡𝐿1 ...𝑡𝐿𝑞 and 𝑡1 ...𝑡𝑟 , 𝐿𝑒 (x0 → x1, ·) is con-
tinuous. Also, 𝑡𝐿1 ...𝑡𝐿𝑞 and 𝑡1 ...𝑡𝑟 vary continuously when x0

and x1 vary continuously.

A.2 For any fixed x𝑁−1, x𝑁 ∈ M,𝑊𝑒 (x𝑁−1 → x𝑁 , ·) : R → R
as a function of 𝑡 contains a finite number of jump disconti-

nuities at 𝑡𝑊 1 ...𝑡𝑊𝑠 . Except for 𝑡𝑊 1 ...𝑡𝑊𝑠 ,𝑊𝑒 (x0 → x1, ·) is
continuous. Also, 𝑡𝑊 1 ...𝑡𝑊𝑠 vary continuously when x0 and

x1 vary continuously.

A.3 The source emission 𝐿𝑒 does not have non-zero energy on

spatially zero-measure sets.

A.4 The scattering function 𝜌 does not contain a Dirac delta, i.e.,

there is no ideal specular reflection, and is continuous except

when the incoming or outgoing directions are perpendicular

to the surface normal.

A.1 and A.2 are our novel assumptions for transient rendering,

while A.3 andA.4 are common assumptions used in physically-based

differentiable rendering [Bangaru et al. 2020; Li et al. 2018; Loubet

et al. 2019; Zhang et al. 2020, 2019]. Note that these assumptions

cover most of practical cases.

2.4 Differential Transient Path Integral
To differentiate Equation (21) using the transport theorem in Equa-

tion (18), we will first evaluate the boundary path space 𝜕Ω [𝑓T ] (\ ).
For simplicity, we first fix 𝑘 and evaluate the order-𝑘 boundary path

space 𝜕Ω𝑘 . By definition of extended boundary (Equation (17)), 𝜕Ω𝑘

consists of the (geometric) boundary 𝜕Ω𝑘 and the discontinuity set

ΔΩ𝑘 [𝑓T ]. Since the total throughput 𝑓T is the product of partial

terms 𝑆𝑒 , 𝜌 ,𝑉 , and𝐺 , the entire discontinuity set can be represented

as the union of discontinuity sets caused by each of those partial

terms as follows:

𝜕Ω𝑘 [𝑓T ] =𝜕Ω𝑘 ∪ ΔΩ𝑘 [𝑓T ]
=𝜕Ω𝑘 ∪ ΔΩ𝑘 [𝑆𝑒 ] ∪ ΔΩ𝑘 [𝐺1 · · ·𝐺𝑘 ]
∪ ΔΩ𝑘 [𝑉1 · · ·𝑉𝑘 ] ∪ ΔΩ𝑘 [𝜌1 · · · 𝜌𝑘−1

] .
(27)

Note that both boundary edges and sharp edges are contained in

𝜕Ω𝑘 as mentioned in §2.1.

Applying the product space rule Eq. (20) to Eq. (27),ΔΩ𝑘 [𝐺1 · · ·𝐺𝑘 ],
ΔΩ𝑘 [𝑉1 · · ·𝑉𝑘 ], and ΔΩ𝑘 [𝜌1 · · · 𝜌𝑘−1

] can be rewritten as follows:

ΔΩ𝑘 [𝐺1 · · ·𝐺𝑘 ] =
𝑘⋃
𝑖=1

M0 × · · · M𝑖−2 × ΔM2 [𝐺 ] × M𝑖+1 × · · · M𝑘 ,

ΔΩ𝑘 [𝑉1 · · ·𝑉𝑘 ] =
𝑘⋃
𝑖=1

M0 × · · · M𝑖−2 × ΔM2 [𝑉 ] × M𝑖+1 × · · · M𝑘 ,

ΔΩ𝑘 [𝜌1 · · · 𝜌𝑘−1
] =

𝑘−1⋃
𝑖=1

M0 × · · · M𝑖−2 × ΔM3 [𝜌 ] × M𝑖+2 × · · · M𝑘 .

(28)

Vanishing and overlapping discontinuities. Some discontinuity sets

of partial terms, ΔΩ𝑘 [𝑆𝑒 ], ΔM2 [𝐺], ΔM2 [𝑉 ], and ΔM3 [𝜌] may

not contribute to the total discontinuity set. As discussed in previous

work [Zhang et al. 2020], ΔM3 [𝜌] is caused at the horizontal ray

direction, but in that case the geometric term 𝐺 is continuously

zero. For a formal mathematical analysis we rely on the following

proposition:

Proposition 2.3. Given a set𝑋 ∈ R𝑛 and a subset𝐴 ⊂ 𝑋 , suppose
that a function 𝜑1 : 𝑋 → R is continuously zero on 𝐴 and a function
𝜑2 : 𝑋 → R is a bounded function. Then even if 𝜑2 is discontinuous
in 𝐴, 𝐴 does not contribute to the discontinuity set of 𝜑1𝜑2, i.e., 𝐴 ∩
Δ𝑋 [𝜑1𝜑2] = 𝜙 .

Thus, we can omit ΔΩ𝑘 [𝜌1 · · · 𝜌𝑘−1
] from Equation (27). The

visibility function 𝑉 also presents a discontinuity at the horizontal

ray direction, which vanished by the geometric function 𝐺 . Then

Equation (27) can be rewritten in the following simpler form:

𝜕Ω𝑘 [𝑓T ] =𝜕Ω𝑘 ∪ ΔΩ𝑘 [𝑆𝑒 ]
∪ (ΔΩ𝑘 [𝐺1𝑉1 · · ·𝐺𝑘𝑉𝑘 ] − 𝜕Ω𝑘 ) .

(29)

Note that in the last term of Equation (29) we will evaluate the dis-

continuity set of the product term𝐺𝑉 directly, without considering

discontinuities on 𝜕Ω𝑘 , already accounted for in the first term of

Equation (29).

2.4.1 Discontinuity of𝐺𝑉 terms. The term (ΔΩ𝑘 [𝐺1𝑉1 · · ·𝐺𝑘𝑉𝑘 ]−
𝜕Ω𝑘 ) caused by silhouette edges can be represented by the product

rule (Equation (20)) as:

ΔΩ𝑘 [𝐺1𝑉1 · · ·𝐺𝑘𝑉𝑘 ] − 𝜕Ω𝑘 =

𝑘⋃
𝑖=1

M0 × · · ·M𝑖−2

×
(
ΔM2 [𝐺𝑉 ] − 𝜕M2

)
×M𝑖+1 × · · ·M𝑘 ,

(30)
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where the term

(
ΔM2 [𝐺𝑉 ] − 𝜕M2

)
is obtained by the following

lemma:

Lemma 2.4. The discontinuity submanifold of GV can be specified
as:

ΔM2 [𝐺𝑉 ] − 𝜕M2 =Δ
(
Int

(
M2

))
[𝐺𝑉 ]

={(x, y) ∈ Int

(
M2)

)
| line segment between x, y

only intersects silhouette edges ofM}.
(31)

A line segment between (x, y) intersects a silhouette edge ofM
if and only if:

∃z ∈openlineseg (x, y) ∩M s.t. one of the three cases holds:

z ∈ Int (M) and n (z) · (y − x) = 0,

z ∈ 𝜕M [𝑖 ] (boundary edge), or

[z ∈ 𝜕M [𝑖 ] ∩ 𝜕M [ 𝑗 ] with [𝑖] ≠ 𝑗 (sharp edge) and

(n𝑖 (z) · y − x)
(
n𝑗 (z) · (y − x)

)
≤ 0] .

(32)

To prove the lemma, we first show that 𝑉 −1 ({1}) ∩ Int

(
M2

)
⊂

Int
◦ (M2

)
[𝐺𝑉 ], i.e. for any pair of mutually visible points (x, y) ∈

Int

(
M2

)
with 𝑉 (x, y) = 1, 𝐺𝑉 is continuous on (x, y). If y − x is

orthogonal to n (x) or n (y), the claim holds since𝐺 is continuously

zero on (x, y). Otherwise, we can easily observe that the visible pair

of points are still visible when they move within a sufficiently small

distance.

Second, we show that if (x, y) ∈ 𝑉 −1 ({0}) ∩ Int

(
M2

)
and the

line segment between them intersects a point 𝑧 ∈ M which is not

on a silhouette edge, then 𝑉 is continuous on (x, y). Note that by
definition of silhouette described in Lemma 2.4, z belongs to one of

two cases: i) z ∈ Int (M) and n (z) · (y − x), or ii) z ∈ 𝜕M [𝑖 ]∩𝜕M [ 𝑗 ]
with 𝑖 ≠ 𝑗 (sharp edge) and (n𝑖 (z) · y − x)

(
n𝑗 (z) · (y − x)

)
> 0.

In both cases, the line segment penetrates the open disk which

neighbors z. Then we observe that when x and y moves within

a sufficiently small distance, the line segment between them still

penetrates the open disk.

2.4.2 Discontinuities of the 𝑆𝑒 term. Recall the assumptions A.1 and

A.2 for source emission 𝐿𝑒 and sensor sensitivity𝑊𝑒 . Given x0 and

x1, 𝐿𝑒 (x0 → x1, ·) has Dirac delta mass at 𝑡 = 𝑡𝐿1 ...𝑡𝐿𝑗 , and given

x𝑘−1
and x𝑘 ,𝑊𝑒 (x𝑘−1

→ x𝑘 , ·) has discontinuity at 𝑡 = 𝑡𝑊 1 ...𝑡𝑊𝑘 .

By the following lemma, we can obtain the discontinuity of 𝑆𝑒 .

Lemma 2.5. With assumptions A.1 and A.2, the discontinuity of 𝑆𝑒
can be determined as:

ΔΩ𝑘 [𝑆𝑒 ] = {x̄ ∈ Ω𝑘 |tof (x̄) = 𝑡𝑊𝑖 − 𝑡 𝑗
for some 1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑗 ≤ 𝑟 }. (33)

Note that this representation does not include a vanishing part

for 𝐺 = 0. To prove this lemma, first let 𝑢𝑡0
(𝑡) denote the unit step

function, which is defined as 𝑢𝑡0
(𝑡) = 1 for 𝑡 > 𝑡0 and 𝑢𝑡0

(𝑡) = 0

otherwise. Also, 𝛿𝑡0
(𝑡) denotes the Dirac delta function centered at

𝑡0 so that 𝛿𝑡0
(𝑡) = 𝛿 (𝑡 − 𝑡0). Important facts to prove Lemma 2.5 is

that𝑢𝑡0
★𝑢𝑡1

is a continuous function and 𝛿𝑡0
★𝑢𝑡1

= 𝑢𝑡1−𝑡0
, where★

denotes the cross-correlation. Since 𝑆𝑒 (x0, x1, x𝑘−1
, x𝑘 , 𝑡 = tof (x̄))

is the correlation of 𝐿𝑒 and𝑊𝑒 in the temporal domain, the only

discontinuity occurs when tof (x̄) lies on the discontinuous point

of 𝛿𝑡 𝑗 ★𝑢𝑡𝑊𝑖
.

For example, suppose that the source is𝐿𝑒 (x0, x1, 𝑡) = 𝐿𝑒 (x0, x1) 𝛿 (𝑡)
and the sensor is𝑊𝑒 (x𝑁−1, x𝑁 , 𝑡) =𝑊𝑒 (x𝑘−1

, x𝑘 ) box (𝑡 ; 𝑡start, 𝑡end)
where box (𝑡 ; 𝑡start, 𝑡end) refers to the unit box function starting

from 𝑡start and ending at 𝑡
end

. In this case the discontinuity of 𝑆𝑒 ,

ΔΩ𝑘 [𝑆𝑒 ], is the set of paths with travel time 𝑡start or 𝑡end. In prac-

tice, if the light source and the sensor are not Dirac deltas then

ΔΩ𝑘 [𝑆𝑒 ] = 𝜙 .

Boundary Contribution Δ𝑓T and Normal VelocitiesV
𝜕Ω𝑘

. When

ΔΩ𝑘 [𝑆𝑒 ] becomes an empty set, the boundary path space 𝜕Ω𝑘 con-

sists of 𝜕Ω𝑘 and ΔΩ𝑘 [𝐺1𝑉1 · · ·𝐺𝑘𝑉𝑘 ]−𝜕Ω𝑘 . For a global parameter-

ization we only need to concern ourselves with the discountinuity

of the𝐺𝑉 term ΔΩ𝑘 [𝐺1𝑉1 · · ·𝐺𝑘𝑉𝑘 ] − 𝜕Ω𝑘 . Then the discontinuity

comes from the visibility, so Δ𝑓T becomes the same as 𝑓T and the

normal velocityV
𝜕Ω𝑘

converges to its steady-state counterpart.

3 VALIDATION
We validate our results against the baseline transient renderer by

Jarabo and colleagues [2014], using a short light pulse of 0.01 fs.

(a)

(b)

[
obaraJ

]4102

14.68 ns

sru
O

27.02 ns 43.11 ns 55.04 nsSteady-state

.ffi
D .sb

A

(50x) (50x) (50x) (50x)

Fig. 1. Validation of our differentiable transient rendering against the tran-
sient path integral method of Jarabo et al. [2014]. (a) The transient sequences
show how the pulse of light illuminates the floor first at 14.68 ns, then the
bunny at 27.02 ns, and finally the red wall at 43.11 ns. At 55.04 ns there is
almost no signal. The last row shows the absolute difference between the
frames, amplified by a factor of 50. (b) Radiance and absolute difference plot.
Dotted vertical lines indicate the exact frames shown above. Our framework
matches the baseline closely.

4 ALGORITHM TABLES
We append Algorithms 1 and 2 for estimating the interior and bound-

ary integrals, respectively. Variables 𝑑 and
¤𝑑 store the optical path
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ALGORITHM 1: Estimating the interior integral

Data: scene, pixel index (𝑖, 𝑗) , max bounce 𝑘

Result: Rendered temporal histogram of the (𝑖, 𝑗)-th pixel 𝐼 [𝑖, 𝑗, ·]
and its scene derivative ¤𝐼 [𝑖, 𝑗, ·]

x [𝑘 + 2] , y [𝑘 + 1] ← New arrays of 3D positions on the scene

geometry;

𝑑x [𝑘 + 2] , ¤𝑑x [𝑘 + 2] ← New arrays of floating numbers (path

distance);

𝑑y [𝑘 + 1] , ¤𝑑y [𝑘 + 1] ← New arrays of floating numbers (path

distance);

𝑓x [𝑘 + 2] , ¤𝑓x [𝑘 + 2] ← New arrays of floating numbers (throughput);

𝑓y [𝑘 + 1] , ¤𝑓y [𝑘 + 1] ← New arrays of floating numbers (throughput);

x [0] ← camera position,

(
𝑓x [0] , ¤𝑓x [0]

)
← (1, 0) ;

for 1 ≤ 𝑖 < 𝑘 + 2 do
if 𝑖 = 1 then

Sample (�̂�𝑜 , 𝑝) ∼ PcameraPrimiryRay,𝑖 𝑗 ;

else
Sample (�̂�𝑜 , 𝑝) ∼ Pbrdf (x [𝑖 − 1] , �̂�𝑖 , ·) ;

xtemp ← rayTrace (x [𝑖 − 1] , �̂�𝑜 ) ;
if xtemp is valid then

x [𝑖 ] ← xtemp;

(𝛼, ¤𝛼) ← The value and scene derivative of:

𝜌 (x [𝑖 − 2] → x [𝑖 − 1] → x [𝑖 ])𝐺 (x [𝑖 − 1] , x [𝑖 ]) 𝐽 (x [𝑖 ]) ;

𝑝 ← 𝑝 |�̂� (x [𝑖 ]) · −�̂�𝑜 | / ∥x [𝑖 ] − x [𝑖 − 1] ∥2;
𝑓x [𝑖 ] ← 𝑓x [𝑖 − 1] 𝛼/𝑝 ;
¤𝑓x [𝑖 ] ←

(
¤𝑓x [𝑖 − 1] 𝛼 + 𝑓x [𝑖 − 1] ¤𝛼

)
/𝑝 ;(

𝛿, ¤𝛿
)
← The value and scene derivative of:

[ ∥x [𝑖 ] − x [𝑖 − 1] ∥;
𝑑x [𝑖 ] ← 𝑑x [𝑖 − 1] + 𝛿 ;
¤𝑑x [𝑖 ] ← ¤𝑑x [𝑖 − 1] + ¤𝛿 ;
�̂�𝑖 ← −�̂�𝑜 ;

else
break;

Sample y [0] ∼ Pemitter, 𝑓y [0] ← 1/Pemitter (y [0]) ;
Similarly construct the light subpath y [] , 𝑑y [] , ¤𝑑y [] , 𝑓y [] , ¤𝑓y [].;
for 0 ≤ 𝑠 ≤ 𝑘 − 1 do(

𝑓 , ¤𝑓
)
← combineSubpaths (x [0 : 𝑠 + 1] , y [0 : 𝑘 − 𝑠 ]) ;(

𝛿, ¤𝛿
)
← The value and scene derivative of:

[ ∥x [𝑠 ] − y [𝑘 − 𝑠 − 1] ∥;
𝑑 ← 𝑑x [𝑠 ] + 𝑑y [𝑘 − 𝑠 − 1] + 𝛿 ;
¤𝑑 ← ¤𝑑x [𝑠 ] + ¤𝑑y [𝑘 − 𝑠 − 1] + ¤𝛿 ;
𝑤 ← CombinationStrategy; // Use Chapter 9 in [Veach 1997]

for 𝑙 ∈ 𝑆𝑒 .range (𝑑) do
𝑠 ← 𝑆𝑒 [𝑙 ] (y[0], y[1], x[1], x[0], 𝑑/𝑐) ;
¤𝑠 ← ¤𝑆𝑒 [𝑙 ] (y[0], y[1], x[1], x[0], 𝑑/𝑐) ;
𝐼 [𝑖, 𝑗, 𝑙 ] ← 𝐼 [𝑖, 𝑗, 𝑙 ] + 𝑤𝑓 𝑠 ;

¤𝐼 [𝑖, 𝑗, 𝑙 ] ← ¤𝐼 [𝑖, 𝑗, 𝑙 ] + 𝑤 ¤𝑓 𝑠 + 𝑤𝑓 ¤𝑠 ;

ALGORITHM 2: Estimating the boundary integral

Data: scene, pixel index (𝑖, 𝑗) , max bounce 𝑘

Result: Rendered scene derivative temporal histogram of the (𝑖, 𝑗)-th
pixel ¤𝐼 [𝑖, 𝑗, ·]

Sample (x𝐵, �̂�𝐵 ) ← PboundaryRay ;
x𝐿 ← rayTrace (x𝐵,−�̂�𝐵 ) ;
x𝑆 ← rayTrace (x𝐵, �̂�𝐵 ) ;
if x𝐿 and x𝑆 are valid then

𝑓𝐵 ←
𝐺 (x𝐿, x𝑆 ) V𝜕Ω̂ (x𝐿, x𝑆 ) 𝐽𝐵 (x𝐵, �̂�𝐵 ) /PboundaryRay (x𝐵, �̂�𝐵 ) ;

𝑑𝐵 ← [ ∥x𝐿 − x𝑆 ∥ ;
(𝑓𝑆 , 𝑑𝑆 , x0, x1) ← EstimateSensorSubpath (x𝑆 ) ;
(𝑓𝐿, 𝑑𝐿, y0, y1) ← EstimateSourceSubpath (x𝐿) ;
𝑑 ← 𝑑𝐿 + 𝑑𝐵 + 𝑑𝑆 ;

for 𝑙 ∈ 𝑆𝑒 .range (𝑑) do
𝑠 ← 𝑆𝑒 [𝑙 ] (y0, y1, x1, x0, 𝑑/𝑐) ;
¤𝐼 [𝑖, 𝑗, 𝑙 ] ← ¤𝐼 [𝑖, 𝑗, 𝑙 ] + 𝑓𝐿 𝑓𝐵 𝑓𝑆𝑠 ;

length and its derivative with respect to the scene parameter, re-

spectively. In both algorithms, 𝑆𝑒 .range (𝑑) returns the list of in-

dices of temporal bins in which the sampled path is stored. In Al-

gorithm 2, EstimateSensorSubpath and EstimateSourceSubpath can

be performed as in Algorithm 1, without computing the derivative

terms
¤𝑓 and

¤𝑑 .
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