

Birefractive Stereo Imaging for Single-Shot Depth Acquisition

<u>Seung-Hwan Baek</u>[†]

KAIST[†]

Diego Gutierrez*

Min H. Kim[†]

Universidad de Zaragoza, I3 A^*

Birefractive Stereo Imaging

500

1550 [mm]

Depth from Refraction or Reflection

Birefringent Crystal

[Hetch, Optics, Addison-Wesley 2002]

Birefringent Crystal

[Hetch, Optics, Addison-Wesley 2002]

Light Transport

Double Refraction

Double Refraction

Double Refraction

Birefringent Material for Imaging

Conventional camera

Prototype

Birefringent crystal

Captured image

Corresponding points

Corresponding points

Depth

BIREFRACTIVE STEREO MODEL

Ordinary Ray Model

Ordinary Ray Model

Extraordinary Ray Model

Extraordinary Ray Model

 $\Psi_{o \to e}\left(\frac{P_{o}}{Z}\right) = \frac{P_{e}}{Z}$

 $\Psi_{e\to o}\left(\frac{P_e}{z}, z\right) = \frac{P_o}{z}$

 P_o, Z e $o \rightarrow e$ 60 Our model 50 Reference simulation Disparity [px] 05 05 07 10 0 350 950 Depth [mm] 450 550 650 750 850 P_e, Z 0 $e \rightarrow \overline{O}$

CORRESPONDENCE ESTIMATION

Correspondence from a Double-refraction Image

Captured image = ordinary image + extraordinary image

Correspondence Metric

$$I(P_o) \neq I(\psi_{o \to e}(P_o, z))$$

Intensity of an o-ray pixel Intensity of the corresponding e-ray pixel

Gradient-domain Metric

$$C_{o}\left(P_{o},z\right) = \left\|\partial I\left(P_{o}\right) - \partial I\left(\psi_{o \to e}\left(P_{o},z\right)\right)\right\|_{1}$$

Difference of the gradient profiles of the corresponding o-ray and e-ray pixels

Ambiguity from Superposition

SIGGRAPH ASIA 2016

Dual Matching Cost

$$C(P,z) = \begin{cases} C_o(P,z), \text{ if } \min C_o(P,z_\forall) \le \min C_e(P,z_\forall) \\ C_e(P,z), \text{ otherwise} \end{cases}$$

Depth Estimation Process

Double-refraction image

Sparse depth map without cost aggregation

Gradient profile

Sparse depth map with cost aggregation

Handling ambiguous pixels

Dense depth map

BIREFRACTIVE STEREO CALIBRATION

Camera Calibration

- Camera
 - -Intrinsic parameters
 - Focal length and center of projection of the camera [Zhang 2000]

- Orientation of the crystal w.r.t. the camera (essential point: E)
- Optical anisotropy of the crystal (optical axis: a)

Birefringent Crystal Calibration

a

Orientation of the crystal w.r.t. the camera

Optical anisotropy of the crystal (optical axis: a)

$$\operatorname{minimize}_{\mathbf{a}} \sum_{\{P_d, P_e\} \in \Pi} \left\| P_d - \psi_{e \to d} \left(P_e, z; \mathbf{a} \right) \right\|_2$$

Calcite Characterization

RESULTS

40

Single-shot Depth Imaging vs. Ours

Depth-from-defocus Lytro Illum: Light-field camera

Ours

Low accuracy

Large sensor

Two-shot Depth Imaging vs. Ours

Refocusing

Image

Depth map

Refocusing

Decolorization via RGBD Segmentation

Image

Depth map

Decolorization

Generating 3D Anaglyph Stereo Images

Image

Image of the displaced view point

3D anaglyph photo

DISCUSSION AND CONCLUSION

Limitation: Impact of Noise

Limitation: Impact of Depth-of-field

Birefractive stereo imaging

- -Birefractive stereo model
- -Correspondence matching algorithm
- -Birefractive stereo calibration

Acknowledgements

-KAIST VCLAB members, Andrian Jarabo and anonymous SIGGRAPH reviewers