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Abstract—In order to enable view-dependent appearance synthesis from the light fields of a scene, it is critical to evaluate the
geometric relationships between light and view over surfaces in the scene with high accuracy. Perfect diffuse reflectance is commonly
assumed to estimate geometry from light fields via multiview stereo. However, this diffuse surface assumption is invalid with real-world
objects. Geometry estimated from light fields is severely degraded over specular surfaces. Additional scene-scale 3D scanning based
on active illumination could provide reliable geometry, but it is sparse and thus still insufficient to calculate view-dependent appearance,
such as specular reflection, in geometry-based view synthesis. In this work, we present a practical solution of inverse rendering to
enable view-dependent appearance synthesis, particularly of scene scale. We enhance the scene geometry by eliminating the
specular component, thus enforcing photometric consistency. We then estimate spatially-varying parameters of diffuse, specular, and
normal components from wide-baseline light fields. To validate our method, we built a wide-baseline light field imaging prototype that
consists of 32 machine vision cameras with fisheye lenses of 185 degrees that cover the forward hemispherical appearance of scenes.
We captured various indoor scenes, and results validate that our method can estimate scene geometry and reflectance parameters
with high accuracy, enabling view-dependent appearance synthesis at scene scale with high fidelity, i.e., specular reflection changes
according to a virtual viewpoint.

Index Terms—Light field, view synthesis, inverse rendering
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1 INTRODUCTION

L IGHT fields have been used broadly to capture dense
depth maps [1], create novel view images [2], refocus

depth of field [3], capture 3D contents for holographic
displays [4], etc. These applications are founded on the
ground of multiview geometry from light fields. They com-
monly assume that object surfaces are perfectly diffuse, i.e.,
when an object is observed from a different view, only
its geometric shape changes, not affecting its appearance.
However, this assumption does not hold with real-world ob-
jects that have mixtures of diffuse and specular reflectance.
When obtaining scene geometry from light fields, view-
dependent appearance, such as specular reflection, has caused
the regional failure of geometry estimation because stereo
correspondence search fails in multiview geometry.

From the perspective of view synthesis, specular reflec-
tion is one of the most critical view-dependent appearance
phenomena to achieve high-fidelity realism. It changes ap-
pearance depending on directions of light, view, and surface
normals. To simulate view-dependent appearance changes,
it is critical to evaluate the geometric relationships among
these directions with high accuracy. Accurate 3D geometry
of scenes is necessary for high-quality view-dependent ap-
pearance synthesis. For object-scale light fields, traditional
view synthesis of the bidirectional appearance of light and
view has been achieved by employing an additional process
of 3D scanning [5], [6] that can capture polygonal surfaces of
the object geometry. For scene-scale light fields, 3D scanning
based on active illumination can provide sparse geometry
of point clouds. However, it is too sparse to compute view-
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Fig. 1: (a) Our prototype of wide-baseline light field imag-
ing for capturing scene-scale light fields. (b) Captured light-
field images and a sub-aperture view image. (c) Results
of our view-dependent appearance synthesis. Our method
successfully simulates appearance changes of specular re-
flection across different views.

dependent appearance parameters, and also lacks the sur-
face normal information in each light field.

To achieve view-dependent appearance synthesis from
light fields at scene scale without relying on additional 3D
scanning, there are several technical challenges that need to
be solved. First, when object surfaces are smooth and spec-
ular, geometry information from light fields is inaccurate.
Thus, it is hard to estimate specular parameters appropri-
ately by evaluating geometric relationships among lights,
views, and normals in scenes. Second, without successful
prediction of specular components, the traditional shape-
from-shading (SfS) approach cannot refine scene geometry



due to insufficient photometric cues. Lastly, view synthesis
on specular regions produces unrealistic artifacts due to
inaccurate shape and appearance parameters.

To mitigate these challenges, we present a novel scene-
scale appearance synthesis method based on inverse ren-
dering from wide-baseline light fields. We first estimate
the initial geometry from wide-baseline light fields cap-
tured by fisheye cameras using an optical flow method.
The initial geometry is enhanced using diffuse-specular
separation and enforcing photometric consistency. We then
approximate illumination in the front hemisphere as a set
of point lights by means of the captured light fields and
the estimated scene geometry. Given the scene geometry
and the approximated illumination, we formulate an inverse
rendering problem that jointly optimizes spatially-varying
bidirectional reflectance distribution function (SVBRDF) pa-
rameters including diffuse and specular reflectance.

To validate the proposed method, we built a prototype
of a wide-baseline light field imaging system. Our system
consists of 32 machine vision cameras, each equipped with
a 185-degree fisheye lens and an embedded computer.
Cameras are synchronized to capture light fields at the
same time. We captured various indoor scenes that include
diffuse and specular surfaces on various geometry. We
quantitatively and qualitatively evaluate the accuracy of our
view synthesis and depth estimation results on real-world
and synthetic scenes. Results validate that our method can
capture scene geometry and reflectance parameters with
high accuracy from wide-baseline light fields. The simulated
view-dependent appearance of specular reflection shows a
good agreement with that of the real-world scene.

2 RELATED WORK

2.1 View Synthesis from Light Fields

Geometry-based View Synthesis. Synthesizing a novel
view from multiple views has been studied extensively in
recent decades. Hedman et al. [2], [7], [8] reconstruct a
mesh from the estimated camera poses and depth maps.
They then stitch input multiple images and depth maps
into a single seamless panorama and convert them into
a triangle mesh. However, the mesh and the synthesized
images’ quality depend on the accuracy of the estimated
depth maps. Cho et al. [9] synthesize novel view images by
estimating camera poses and reconstructing a mesh from
multiple 360° images. They render a novel view image by
reprojecting each pixel point to a mesh and the closest
360° image and sample the color from it. They reconstruct
the 3D mesh geometry using structure from motion (SfM),
which also suffers from inaccurate geometry over specu-
lar surfaces, resulting in an incorrect shape of the mesh.
Luo et al. [10] render free-viewpoint images from multi-
ple views on a spherical grid, but they synthesize novel
view images without reconstructing a 3D mesh. Instead,
they precompute inter-view motion fields and use them
to blend colors from neighboring input images. However,
the accuracy of the estimated optical flow still depends
on the diffuse assumption, i.e., photometric consistency of
scenes in multiple views. In traditional object-scale view
synthesis methods [5], [6], an extra 3D scanning process

has been used to capture 3D models, which allows for
accurate estimations of geometric relationships among light,
view, and surface normal directions. However, for scene-
scale view synthesis, 3D scanning only obtains partial scene
geometry near surfaces, or overly sparse as point clouds.
These geometry-based methods do not account for view-
dependent appearance changes, such as specular reflection.
In contrast, our method estimates view-dependent parame-
ters of surface reflectance, in addition to surface normals at
scene scale.

Image-based View Synthesis. Since the representation of
layered depth images was proposed by Shade et al. [11],
depth image-based rendering has been popularly used for
view synthesis of light fields. Flynn et al. [12] employ a
plane sweeping volume between neighboring stereo images
as an input to the network and blend color values from
different depth planes with corresponding weight values.
Similarly, Zhou et al. [13] use plane sweeping volumes from
neighbor images as inputs of the neural network to output
multi-plane images (MPIs), which consist of color and alpha
images for every depth plane. Then, they synthesize novel
view images based on the MPI representation. Subsequent
studies, such as [14], [15], have improved the network
architectures. Also, there are other researches [16], [17] that
encode depth probability in a multi-layer representation and
utilize them to improve the quality of synthesized images.
Mildenhall et al. [18] employ a set of multiple MPIs from
each local input view and improve view synthesis results
of non-Lambertian surfaces. These methods can roughly
synthesize reflections of specular materials. Still, since they
are not based on the reflection model, their view synthesis
results cannot cover the complete angular resolution. They
cannot add other light sources and render reflections that
are not originally included in the input. Broxton et al. [19]
employ multiple cameras with large field-of-view (FoV) of
fisheye lenses to synthesize wide FoV novel view images.
They extend MPI to multi-sphere image (MSI). They convert
the MSI to a layered mesh to efficiently render novel views,
but still, they require a lot of computational resources be-
cause of the large amount of data. Wu et al. [20] and Wang
et al. [21] make use of EPI upsampling for view synthesis
from light fields. These works are especially effective for
narrow baseline light fields, in which disparity ranges up to
about five pixels, while wide-baseline light fields inherently
suffer from extreme discontinuity in EPI. Wu et al. [20]
also propose a method for larger disparities by shearing
EPI with given disparity; however, estimating disparity in
non-diffuse regions is a long-lasting hard problem in the lit-
erature. Compared to previous works above, our approach
estimates the appearance parameters of a reflectance model
through inverse rendering and uses them to refine 3D geom-
etry to be more robust on even extreme scenes with strong
light sources. Also, acquiring the reflectance parameters
leads us to render more realistic specular surfaces with even
more light sources, which are not originally captured in the
scene.

2.2 Shape and Reflectance from Light Fields
To capture shape and reflectance more robustly from light
fields, many works analyze the characteristics of specular



reflection captured at different viewpoints of light fields. In
addition to the traditional photo-consistency, Tao et al. [22]
devise a line-consistency method in color space derived
from dielectric material property. However, this approach
is highly dependent on the acquired color vector of spec-
ular reflection, which can vary in large amounts for non-
dielectric material, such as metal. Also, chromatic aberration
could affect the line-consistency assumption due to the
exponentially high intensity of pixels with specular peaks.

For short-baseline light fields, Wang et al. [23] employ
a differential approach in optimization to reconstruct the
shape and SVBRDF of objects with generalized reflectance.
A BRDF-invariant equation is derived by jointly formulating
impacts of the view change and the spatial change. Their
BRDF-invariance approach eliminates the view-dependent
property and relates depths and normals only. Following
their work, Li et al. [24] proposed a robust energy min-
imization method achieving a lower error rate. However,
their short-baseline light field is inherently limited to tiny
objects and a narrow range of acquired viewing direction.
Also, their differential approach is hard to be extended to
a wide-baseline light field at scene scale due to its extreme
disparity ranging to hundreds of pixels and drastic appear-
ance change.

More recently, a probabilistic framework for joint estima-
tion of shape and depth map under natural illumination is
proposed by Ngo et al. [25]. They relax the previous works’
laboratory environment restriction to a known natural il-
lumination. They iteratively ease the Lambertian assump-
tion by refining previously estimated depth, normal, and
reflectance. Assuming homogeneous material objects, their
algorithm exploits more combinations of incident lights.
However, in the real world, the light sources usually are
not so distant that the light rays emitted from the same
light source incident at different angles at different object
surfaces.

3 VIEW-DEPENDENT SCENE APPEARANCE SYN-
THESIS

Overview. We first estimate depth from wide-baseline high-
dynamic-range light fields at the reference viewpoint of the
central camera. We then estimate scene illumination of the
frontal scene captured by fisheye lenses. Given initial geom-
etry and illumination, we estimate appearance parameters
of diffuse albedos, specular albedos, surface smoothness
parameters and also refine surface normals jointly through
inverse rendering optimization. Using the appearance pa-
rameters, geometry, and illumination, we synthesize appear-
ance changes from a novel viewpoint. See Figures 1(b) and
(c) for an example. Figure 2 provides an overview of our
algorithm workflow.

Acquisition Setup. We built a wide-baseline light-field
imaging system with 32 machine vision cameras on a grid of
4×8, FLIR Blackfly (BFS-U3-120S4C-CS, 12 MP, 31 fps). Each
camera is equipped with a fish-eye lens with 185-degrees
FOV that covers the forward hemispherical environment,
with a resolution of 3000×3000. In order to enable concur-
rent capture of these machine vision cameras, each camera
is connected to an embedded system, Nvidia Jetson Nano.
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Fig. 2: Overview. We first estimate depth from input light
fields and then decompose them into diffuse and specular
reflection components. Then, we jointly optimize normals
and reflectance parameters, enabling view-dependent ap-
pearance synthesis of scenes.

Each sub-system is connected to a local network switch with
its local static IP address. We employ a controller machine
that broadcasts the capture-instruction packet so that each
camera system can capture a scene simultaneously with an
average timing error below±1/30 seconds measured with a
60 Hz counter. Also, the control machine manages captured
image file transfer, controls the power of each client, and
shares camera parameters including gain, shutter speed,
and gamma-correction, to make sure consistent radiometric
parameters of each camera. To estimate scene illumination,
we capture high-dynamic-range (HDR) light-field images.
Each camera captures five multiple exposures by controlling
the shutter time with one-stop intervals to capture an HDR
image.

The baseline between horizontal and vertical adjacent
cameras are 8 cm and 10 cm respectively to ensure large
enough disparity. Intrinsic and extrinsic parameters such as
positions, rotations, focal lengths, and lens distortions are
calibrated per camera and scene using the feature matching-
based calibration method by Pozo et al. [2]. See Figure 1(a)
for our prototype of light-field imaging.

3.1 Specularity-aware Geometry Estimation
Our depth estimation pipeline consists of two main stages.
We first estimate the initial depth under the diffuse assump-
tion at the center camera view and then refine it by filling
invalid depth values caused by strong specular reflection.

Initial Depth. We estimate the initial depth map Z0 for a
center camera under diffuse reflection assumption. Theo-
retically, a pair of cameras should be enough for disparity
estimation. However, we utilize all 32 camera views with
the purpose of estimating specular reflection and dense
geometry with high accuracy.

We first employ a learning-based optical flow algo-
rithm [26] to estimate pairwise optical flow maps f0→i from
the center camera (denoted by 0) to the i-th camera. Note
that this initial depth may include inaccurate depth values
in specular regions due to photometric inconsistency. 32
disparity maps are then integrated to a depth z0 at a pixel
(u0, v0) of the center camera, yielding a depth map Z0. It is
calculated as 3D points q̂ with respect to the center camera,
using the least-squares that minimizes as follows:

q̂ = arg min
q

∑
i
||q−Πi(ui, vi, zi)||2 , (1)

where pixel position (ui, vi) = f0→i(u0, v0) is obtained by
the optical flow map, and Πi(·) is a backprojection function
of the i-th camera that yields a 3D point in the world
coordinates from a given depth zi at a pixel (ui, vi).



(b) Incorrect geometry

(c) Corrected geometry(a) A depth disagreement map

Fig. 3: Depth values of the pixels with the significant values
in the depth disagreement map are corrected by our depth
correction method.

By minimizing the loss, the i-th camera’s depth value,
at which the light ray starts from the origin of the i-th
camera and passes through pixel (ui, vi), becomes closest
to 3D point q in the world coordinates. We compute q̂ by
minimizing the sum of the squared differences between two
directions r̄q and r̄i: ||̄rq − (r̄i · r̄q) r̄i|| in a matrix form.
Here, r̄q = q − ci is a direction of q from i-th camera’s
origin, and r̄i = Πi(ui,vi,1)−ci

||Πi(ui,vi,1)−ci|| is projected q on i-th
camera’s ray vector passing through a pixel (ui, vi).

Finally, we perform bilateral filtering to mitigate blocky
artifacts in the initial depth map Z0 caused by the large-scale
upsampling at the end of Teed et al. [26]’s flow estimation
pipeline.

Depth Refinement on Specular Reflection. We then refine
the initial depth map Z0 in a specular-aware manner. The
main intuition of our depth refinement algorithm is that
the areas, where specular reflection is dominant, present
a lower agreement of the optimized depth map among 32
views due to miscalculated stereo correspondence. To this
end, we define the measure of depth disagreement using the
residual of the least-squares problem (Equation (1)). Figure
3(a) shows a depth disagreement map, in which bright
pixels indicate the high probability of specular component
existence. For each pixel (u0, v0) with a higher disagreement
value than the threshold, denoted by a mask of ‘depth-
holes’ H0, the depth value is re-calculated by selectively
adopting much more reliable observations only.

We propose a diffuse-reflection separation method to
distinguish specular reflection against diffuse reflection us-
ing the depth agreements in wide-baseline light fields. As
a specular reflection acts as a positive addition to diffuse
reflection Ii = D + Si, common diffuse reflection D at the
center camera can be approximated by the darkest pixel
value among sub-aperture views:

D(u0, v0) = min
i
Ii (ûi, v̂i) ,

where (ûi, v̂i) ← Π−1
i (Π0(u0, v0, z0)) is the pixel coordi-

nates of a 3D world point Π0(u0, v0, z0) reprojected to the
i-th camera. Then specular reflection Si observed at camera i
and warped onto the center camera is defined as:

Si (u0, v0) = Ii (ûi, v̂i)−D(u0, v0). (2)

Figure 5 shows an example of the separated D and Si.
In order to estimate depth on specular reflection, we

Algorithm 1 Specular-aware Depth Estimation

Input: light field images I = I1,··· ,n
Output: specular-aware depth map at center camera Z

1: Z0, H0 ← INITIALDEPTHESTIMATE(I)
2: for m iterations do
3: D ← SEPARATEDIFFUSE(I)
4: S1,··· ,n ← I1,··· ,n −D
5: H1,··· ,n ← SPECULARHOLE(I, Si)
6: Z̄1,··· ,n ← LOCALDEPTHESTIMATE(I, H0\Hi)
7: Z0 ← MEAN(Z̄1,··· ,n)
8: end for

define the set of pixels as masks Hi, whose Si values are
higher than a threshold. Since pixels in Hi tend to produce
an inaccurate depth value due to their specular reflection,
they are excluded and marked as depth holes. After that,
depth holes are filled by integrating local depth maps Z̄i in
a specular-aware manner. Local depth map Z̄i is computed
from four local optical flow maps fi→j similarly to Equa-
tion (1), where j ∈ N(i) and N(i) is a set of the four nearest
cameras to the i-th camera. Note that we use specular-free
images as an input of the optical flow algorithm with an
expectation of that diffuse objects will be less affected by
the violation of photometric consistency.

For the purpose of reducing computational cost, Z̄i are
computed after subsampled by four and inside of the mask
H0\Hi. The values of Z0 in the depth holes H0 are then
refined to the mean of Z̄i. Figure 3 compares the initial
depth Z0 and the iteratively refined depth Z0. Algorithm 4
summarizes our depth estimation algorithm.

3.2 Inverse Rendering from Light Fields

Reflectance Model. We employ the Blinn-Phong
model [27] to encode the view-dependent appearance
of the scene. Given incident light direction ωi, view
direction ωo, and surface normal n, the ratio of reflected
light follows:

R(n, ωi, ωo) = ρd〈n, ωi〉+ ρs〈n,h〉α, (3)

where R is the reflected light, ρd and ρs are diffuse and
specular albedo respectively, h is a half-vector of ωi and
ωo, α is specular smoothness, and 〈, 〉 denotes positive dot
product.

Given the geometry and the reflection ratio R, image for-
mation from i-th camera can be modeled by the discretized
rendering equation:

Ii(ûi, v̂i) =
∑Λ

l=1
R(np, ωll→p, ωp→ci)

Ll
d2
,

where Λ is the number of point lights, (ûi, v̂i) =
Π−1
i (Π0(u0, v0, z0)) is a pixel coordinate in the i-th camera,

p = Π0(u0, v0, z0) is an unprojected 3D point from (u0, v0)
at the center camera, d = ||ll − p||2 is the attenuation factor
by distance, and Ll is the emitting radiance from the l-th
lights.

Lighting. Typical approaches in lighting using an environ-
mental map assume the light sources are placed at infinite
so that lighting applied to each scene point remains con-
stant. However, in our case, the infinite-distant light source
assumption is inappropriate. View-dependent appearance



Fig. 4: An example of view-dependent appearance in light fields. A flat surface with different smoothness materials: diffuse
color paper, tin-foil tape, and diffuse stickers. Sub-aperture images are warped onto the center view (green mask indicates
occlusion). The silver-colored aluminum shows a strong specular reflection in the camera view at (2, 5) on the grid while it
becomes significantly darker in other views. The right images show closeups of the aluminum sticker.

(a) Original image
at the center camera

(b) Diffuse image (c) Specular image
at the center camera

Fig. 5: An example of diffuse reflection D and specular
reflection at the center view.

does not depend only on view directions but also the inci-
dent light angle, which varies depending on scene geometry.

We, therefore, model our lights as a set of point lights
described as 3D coordinate {ll}. We assume our light source
has the following characteristics:

• Each light source is visible to the center camera,
• Each light source emits the same radiance and is not

directional, and
• The light source that significantly influences specular

reflection on other surfaces in the scene is clamped to
a constant level.

We approximate illumination of area light as a group of the
subsampled point light sources. An input 185-degree fisheye
image with the fastest shutter speed (8 milliseconds) is
downscaled to the 1/10 resolution of the original resolution.
Then, the locations of pixels saturated at the lowest exposure
image are counted as the positions of point light sources.

Specular Parameters Estimation. Given the center cam-
era’s depth map Z and the set of sampled point lights,
we estimate ρd, ρs, α, and n. Ideally, the view-dependent
appearance of materials can be achieved by solving an
inverse rendering problem, which finds all those parameters
describing the reflectance model per pixel. However, it is
a significantly ill-posed problem especially if exact incident
lights are unknown. Instead, we restrict our problem to find-
ing the parameters, which directly influence the appearance
rendered at novel views. As the diffuse reflection term in
Equation (3) is independent of the view direction ωo, the
value of ρd〈n · ωi〉 remains the same in the observed views
and any synthesized views. Thus, our interests are narrowed
to specular parameters ρs and α. The geometric normals
obtained from Z is inaccurate yet to solve the inverse
problem. Materials with some degree of shininess such as
plastics have a high α value ranging in a log scale and get

closer to perfect mirror reflection for shinier materials. Thus
calculating accurate n is critical for inverse rendering.

Our specular parameters estimation algorithm consists
of two stages. First, ρs, α, and n are optimized per a screen-
space cluster in order to make use of many observations.
Those parameters are then optimized together, expecting
appropriate propagation.

In the first stage, the diffuse image of the center viewD is
clustered intoK1,··· ,K according to colors, pixel coordinates,
and normals by using theK-means clustering algorithm. All
pixels in the same cluster are assumed to have the same ρs
and α, but variable n. We find ρs, α, and n by minimizing
the following loss function:

Ltotal =λrenderLrender + λsmoothLsmooth.

We take advantage of our diffuse-specular separation
method (Equation (2)) to suppress the interference between
variables in the optimization process. Our rendering loss is
sum of diffuse and specular loss:

Lrender = Ldiffuse + Lspecular,

where our diffuse loss is defined as:

Ldiffuse =
∑

(u0,v0)∈Kk

(
D (u0, v0)−

∑
l

ρd〈n(u0, v0), l̂l〉
L

d2

)2

where l̂l = ll−p
||ll−p|| is the directional vector to light ll from

point p. Note that the diffuse reflectance term influences the
rendered appearance more drastically and widely compared
to the specular term. Thus, eliminating the diffuse variables
from our rendering loss effectively reduces the search space.

Our specular loss is defined as:

Lspecular =∑
i

∑
(u0,v0)∈Kk

(
Si (u0, v0)−

∑
l
ρs〈n(u0, v0),h〉α L

d2

)2

.

A challenge to optimize the specular loss is in the linear
multiplication term of ρsL, which disturbs the other pa-
rameters n and α to take individual gradient movement.
Rather than optimizing ρs together with other variables,
approximating ρs by a linear fit helps the other parameters
to be converged more robustly to the wrong initial ρs:

ρs =

∑
i

∑
(u0,v0)∈Kk

(
Si (u0, v0)

∑
l

(
〈n(u0, v0),h〉α L

d2

))
∑
i

∑
(u0,v0)∈Kk

(∑
l〈n(u0, v0),h〉α L

d2

)2 .

(4)



We define normal smoothness loss that enforces local
smoothness of normal directions:

Lsmooth =
∑

(u0,v0)∈Kk

((
∂n

∂u
(u0, v0)

)2

+

(
∂n

∂v
(u0, v0)

)2
)
.

The optimization is performed over ∼500 iterations using
the Adam optimizer and mesh rendering pipeline [28]. Once
ρs and α per clusters and n per pixels of the clusters are
estimated, boundaries are regularized by filtering to ensure
a continuous transition.

3.3 View-dependent Scene Rendering
Rendering at a novel view is straightforward given depth
map Z, normal map n, specular albedo map ρs, specu-
lar smoothness map α, diffuse image D, and point light
sources. The depth map Z is used to generate a simple
quad-mesh whose vertices are the pixels visible in the center
view. This quad-mesh enables interpolation of the vertex
colors and the normals. Pixel values of a diffuse image D
are assigned to each vertex as diffuse color. Vertex normals
are perturbed with our optimized normal map n. Plugging
specular parameters ρs and α to each vertex, a novel view
of the mesh can be rendered under known light sources.

As a drawback of the mesh-based rendering at the
moved position, the stretched object boundary artifacts
appear. Elongated triangles over depth edges need to be
removed [2]. Those vertices at which the angle between
the viewing direction and the geometric normal is over a
threshold are filled by the color of neighboring background
surfaces.

4 RESULTS

We qualitatively and quantitatively evaluate our view syn-
thesis and depth acquisition results captured by our real
prototype (Figure 1(a)), also comparing them with results
by other state-of-the-art methods. In addition, we validate
the accuracy of the results using a synthetically rendered
dataset as ground truth.

4.1 Geometry Estimation
In order to quantitatively evaluate the accuracy of our geom-
etry estimation from light fields, we synthetically rendered
a scene with our light-field camera’s configuration to obtain
the ground-truth depth information. Fisheye images of a
185-degree field of view are rendered at 32 positions with
a displacement of 10 cm and 8 cm on a sub-aperture grid of
4×8 to capture wide-baseline light fields. We compare our
depth estimation results with those of two other state-of-
the-art methods [2], [26] as shown in Figure 6. Pozo et al. [2],
[26]’s method relies on patch-wise similarity to search cor-
respondences from light fields, assuming that only diffuse
surfaces exist in the scene. However, when surfaces present
strong specular reflection, their assumption fails, resulting
in inaccurate depth estimation. In contrast, our specular-
aware depth estimation algorithm estimates depth values
over specular surfaces by integrating depth information of
different sub-aperture views locally estimated from wide-
baseline light fields. Also, Figure 7 compares qualitative
results of the estimated depths and normals of two real
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Fig. 6: We compare the accuracy of our depth estimation
results on specular surfaces with that of state-of-the-art light
field depth estimation methods [2], [26]. The left column
shows the ground truth depth and colors of a synthetically
rendered scene using the camera parameters same as our
prototype system. The second column shows the depth map
by Pozo et al. [2] that stands on diffuse assumption. The
third presents depth estimation by a learning-based optical
flow [26] that we use for initial depth. The fourth column
shows our depth result. Over specular surfaces, our method
improves the initial depth.
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Fig. 7: The real-scene results of our iterative depth
refinement process are compared with a state-of-the-art
method [2]. Our initial depth and geometric normal esti-
mated by an optical flow method [26] are gradually refined,
correcting inaccurate initial depth by specular reflection.
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Fig. 8: View synthesis results of three real indoor scenes captured by our prototype. The first row shows an input image at
the center view, the separated diffuse and specular reflection, the estimated normals and depths, respectively. The second
row presents closeups of results. The last row shows our novel view synthesis with specular changes at different positions.
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Fig. 9: View synthesis results of our method on non-planar surfaces. View
synthesis results on rounded surfaces present a good agreement with ground-
truth images with high accuracy. The average SSIM values of these two regions
are 0.8858 and 0.8914, respectively.
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Fig. 10: Intermediate results of ap-
pearance parameters estimated by
our inverse rendering optimization.
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Fig. 11: Comparison of view synthesis results of interpolation and extrapolation with three real scenes captured by our
prototype. Eight views are used for input observation for each method, and other views are used for evaluation. While
overall view synthesis results of each method are highly comparative to each method, specular reflection results of our
method appear more plausibly and similar to the real images. As overall scales from each method vary on an arbitrary
scale, we calculated the structural similarity index (SSIM) rather than PSNR on an absolute scale. The averaged SSIM
values of the cropped areas by three methods are 0.8584, 0.8902, and 0.9039, respectively.

scenes estimated by the state-of-the-art method [2] and our
method with a different number of iterations.

4.2 View Synthesis
We captured three real scenes by using the prototype that
we built (shown in Figure 1(a)). The real indoor scene results
include a wide range of normal variation and depth range
approximately from ∼0.25 m to ∼30 m. Unlike conventional
short-baseline light-field cameras, such as Lytro and Raytrix,
our wide-baseline light field imaging prototype can cover
the entire range of large scene geometry successfully.

Given a set of 32 input images of a scene, our method
first separates diffuse and specular reflection and then esti-
mates normal, depth, diffuse albedo, and specular smooth-
ness parameters. The estimated specular parameters (as
described in Section 3.2) are shared within each material

cluster in order to ensure enough observations in the opti-
mization step. For view synthesis rendering, we use specu-
lar albedo calculated by solving the per-cluster least-squares
problem among 32 views using Equation (4).

Figure 8 shows the results of three real indoor scenes
captured by our prototype. Our inverse rendering method
can separate specular reflection against diffuse reflection
successfully. Our appearance parameters estimated by our
inverse rendering algorithm allows us to interpolate and ex-
trapolate view-dependent appearance at novel viewpoints
faithfully. Actual daily objects in various shapes, such as
rounded tables or statues, are demonstrated at a relatively
small scale within the scenes. Figure 9 demonstrates more
closeup results of view synthesis of our method. Along
with the changed viewpoints, the specular reflection of
view synthesis results over rounded surfaces shows a good



agreement with ground truth images with high SSIM values.
Intermediate results of the estimated rendering parameters
are demonstrated in Figure 10. Refer to our supplemental
video for more results.

Comparison. We qualitatively evaluate our view synthe-
sis results in two different ways: interpolation and ex-
trapolation, compared with results of two state-of-the-art
view synthesis methods [2], [18]. We first subsample our
eight sub-aperture views from all the views to evaluate
the performance of interpolation and extrapolation of the
view synthesis methods, as shown in the rightmost column
of Figure 11. The dark grey boxes indicate the locations
of input sub-aperture views, and the red boxes show the
locations of the synthesized views. Figure 11 qualitatively
compares the captured real images with the synthesized
views.

These two compared methods take more extensive com-
putation across all the input views than ours. The image-
based method [18] calculates a set of per-view MPIs, and
the geometry-based method [2] makes use of a set of per-
view depth maps and per-view mesh blending to calculate
a novel view. Therefore, these two baseline methods show
good performance overall in different views. In contrast,
our method computes all the reflectance parameters and
geometry with respect to the center view only, and thus
our method performances better near the reference view.
In terms of diffuse appearance synthesis, all three methods’
performances are highly competitive.

However, in terms of specular appearance synthesis,
the baseline methods present suboptimal performance near
specular reflection as shown in Figure 11. For instance,
the geometry-based method [2] shows noise around spec-
ular reflection because their depth estimation tends to con-
vey depth errors near specular reflection. The image-based
method [18] overly smooths out some regions while blend-
ing several plane images, losing sharp specular reflection. In
contrast, our method presents a view-dependent specular
appearance plausibly in both interpolation and extrapola-
tion cases.

However, we also found that the lobby floor at the
last row of Figure 11 is a hard case due to its extreme
smoothness like the mirror. In naive optimization, the spec-
ular smoothness parameter diverges to extremes because
the specular rendering loss becomes excessively sensitive
to even small changes of surface normals. To mitigate the
problem, we optimize the specular smoothness parameter
in the logarithmic scale.

Impact of Depth Quality. We evaluate the impact of the
depth accuracy with respect to the quality of view synthesis.
Figure 12 shows the view synthesis results of our method
with different depth values at different viewpoints. Each
row shows ground-truth images, our view synthesis results
given the GT depth maps, depth maps estimated by Teed
et al., and depth maps estimated by our method, respec-
tively. It is not surprising that GT depth produces the most
accurate synthesis results. However, our depth estimation
method allows for better results than results using the state-
of-the-art depth estimation method.

GT

Ours 
with GT depth

Ours 
with Teed depth

Ours

Viewpoint changes

Fig. 12: View synthesis results with GT, Teed et al. [26]
and our depth estimation. The average SSIM values of these
images are 0.9689, 0.9174, and 0.9363, respectively.

(a) Material property change (b) Light color change

Round specular Sharp specular

Fig. 13: (a) The center column shows a rendered image
of specular reflection using the estimated specular albedo,
smoothness, normal, and light by our method. The left
column presents an edited appearance with a more rough
surface by reducing the specular smoothness by 0.5 in the
log10 scale and dividing the specular albedo by 3. The
right column shows a smoothed material appearance to
cause sharper specular reflection. (b) The colors of the light
sources on the ceiling have been changed to different colors.
The closest light and the middle light are changed to red and
green light respectively and result in corresponding color
changes of specular reflection on the floor.

4.3 Applications of Computational Photography
Compared to the methods that blend the observed images
to synthesize a seamless view at an unobserved position,
our algorithm explicitly estimates the scene geometry and
reflectance parameters via inverse rendering. This enables
us to go further than the faithful synthesis of the captured
scenes and illumination. In our method, the material proper-
ties and the colors of scene illumination can be edited freely,
allowing for various computational photography applica-
tions.

Material Editing. Figure 13 shows two scene edition results
using the scene representation parameters estimated by our
method. In Figure 13(a), by changing the specular albedo
and smoothness parameters while keeping the same diffuse
albedos, new images with the different shininess of the
material can be created. Also, the colors of existing light
sources can be changed. In Figure 13(b), the closest light
on the ceiling is changed to red, and the middle light is
changed to green, while the furthest light remains the same.
While the whole room is filled with smooth red and green



(a) Input lighting (b) Novel lighting

Fig. 14: (a) Input lighting can be eliminated and override by
novel point light sources, whose position and color are free
to set. (b) The view-dependent specular reflection shown in
the input views are substituted by another view-dependent
appearance under the novel lighting.
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Fig. 15: Upsampled EPI results from wide-baseline light
fields.

of the new light colors following their diffuse albedo, the
specular reflection individually follows the color of the light
source, causing the reflection.

Relighting. Having scene geometry together with the ma-
terial property, the scene illumination can also be eliminated
or added in 3D space, resulting in a dramatic change in
scene appearance. In Figure 14(b), the input illumination is
virtually eliminated by reducing the existing light source
power by ten times so that the view-dependent specular
highlights on the floor in the input image disappear. Then,
various point light sources of different colors are added
in the air so that new colored specular reflections appear
according to the colors of the new light sources. See our
supplemental video for more application results.

EPI Upsampling. Epipolar plane image (EPI) is the prin-
cipal representation of light fields frequently used in many
works, such as depth estimation and occlusion handling.
Enabling sub-aperture view synthesis at any viewpoint, our
algorithm can be used to obtain the high-resolution EPIs
from wide-baseline light fields. Unlike micro-baseline light

fields, such as Lytro, EPI of wide-baseline light fields are
severely aliased and discontinuous as shown in the first row
of Figure 15. Our algorithm enables us to simulate inter-
mediate observations of the input light fields continuously,
plausibly upsampling the EPI while accounting for material
appearance.

5 DISCUSSION

Impact of Material Clustering. The number of clusters
needs to be determined by the number of materials in
the scene. This is a long-lasting issue even in the existing
inverse rendering algorithms, where the material numbers
are empirically determined and a fixed number of base
materials [29]. To tackle this problem, an exhaustive search
approach, such as the elbow algorithm, could be used.
However, considering computational cost, we determined
to adjust the hyperparameter empirically. Figure 16 shows
the effect of choice of the number of clusters.

GT (SSIM) K=10 (0.9466) K=20 (0.9414) K=30 (0.9189) K=40 (0.8425)

Fig. 16: Impact of the number of clustering on specular
reflection.

Memory Efficiency in Rendering. Once the intermediate
scene information is estimated, our pipeline can synthesize
a novel view with view-dependent appearance using only
a few numbers of 2D screen space maps. Explicitly, they
are camera parameters, lights, depth, normal, diffuse and
specular albedo, and specular smoothness at the center
view, which occupies a constant times of an input image res-
olution. Those are significantly smaller in size compared to
the raw light field sub-aperture images, while still have the
power of expressing the appearance of light rays along with
various directions. Also, our rendering stage can be easily
implemented by extending any mesh renderer, empowering
its application. In contrast, the image-based method [18]
uses multiple MPIs calculated at each input view to synthe-
size a novel view. Rendering a view requires hundreds of
images to be stored and that storage is proportional to the
number of input views multiplied by the number of MPI
layers.

6 LIMITATIONS

Though our method estimates depth and diffuse albedo of
each pixel, specular albedo and smoothness are estimated
only for surface points that have shown specular reflection
at least once during our observation. This is a fundamen-
tal limitation of inverse rendering since we cannot infer
specular appearance parameters for pixels that we never
observe specular reflection. This limitation can be eased
under homogeneous material assumption as proposed by
[25], or it would be possible to aggregate parameters on the
area observed with a specular reflection for future work.

We formulate an inverse rendering optimization prob-
lem based on rasterization, in which global illumination
is excluded for the sake of simplicity. While our approach



realizes computational optimization of inverse rendering, it
introduces an inevitable artifact in factorizing illumination
and diffuse albedo over surfaces of the same direction as
the indoor light source. For instance, the brightness of the
ceiling is dominated by global illumination, where the light
on the ceiling is reflected back by the neighboring wall and
floor. The diffuse albedo parameters of the ceiling, oriented
towards the same direction as the light source, are often
overestimated and causing severe artifacts in relighting.

Our method approximates the scene illumination by a
set of diffuse point light sources; those should be visible in
the hemispherical center view for modeling full 3D loca-
tions and incident directions of light rays. Another possible
approach for modeling scene illumination is to use environ-
mental map illumination. However, it is inappropriate for
scene-scale inverse rendering because object 3D positions
are so wide-ranging that the infinite-distance assumption
is disabled. Also, many large-scale scenes contain light
sources inside each scene, which need to be modeled for
view-dependent appearance synthesis. Our lighting model
fails under light conditions that cannot be approximated
with diffuse point light sources, e.g., a surface light source
with a wide area and directional light, such as a spotlight.
Especially, we experimented on indoor scenes only, as our
algorithm has a limitation on expressing wide, omnidirec-
tional, and indirect illuminations of outdoor scenes.

Also, the reflectance property of many real-world ma-
terials, such as metals or brushed surfaces, is hard to be
approximated with the isotropic Blinn-Phong model. Trans-
parent or highly reflecting at all points also make our initial
depth estimation method fail. These limitations remain as
our future work.

7 CONCLUSION

We have presented an inverse rendering-based view syn-
thesis algorithm that estimates geometric properties and
represents view-dependent appearances from wide-baseline
light fields of large-scale indoor scenes. We first estimate the
scene depth robustly to the view-dependent specular reflec-
tion, exploiting plentiful change of observation positions in
wide-baseline light fields. Separating diffuse and specular
reflection and generating a specular-free image reinforces
our base depth estimation process. Based on the estimated
geometry and scene lighting, normal and surface reflection
properties, i.e., diffuse albedo, specular albedo, and specular
smoothness, are estimated through inverse rendering. These
results enable re-rendered views at novel positions to obey
the view-dependent appearance of specular reflection. For
validating our method, we built a wide-baseline light field
imaging prototype equipped with 32 fisheye cameras. In
experiments, we achieved plausible results with various real
scenes. Furthermore, compared to the baseline methods that
properly blend the input images for synthesizing views,
our inverse-rendering-based method takes advantage of a
possible scene edition of material property and lighting.
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