

Multisampling Compressive Video Spectroscopy

Daniel S. Jeon Inchang Choi Min H. Kim Korea Advanced Institute of Science and Technology (KAIST)

Fake or Real?

KAIST

Hyperspectral Imaging

RGB Imaging	Multispectral Imaging	Hyperspectral Imaging
3 channels	<~30 channels	≥~30 channels

Spectroscopy Imaging

Bandpass filter [Mansouri et al. 2007]

LCTF (liquid crystal tunable filter) [Attas et al. 2003]

CASSI [Wagadarikar et al. 2008]

Multisampling CASSI

KΔIST

Mask shifting using piezo translation stage

[Kittle et al. 2010]

DMD (digital-micromirror-device)

LCOS (liquid crystal on silicon)

Multisampling CASSI systems require multiple captures

Single coded input

Hyperspectral video

- Multisampling compressive imaging
 → High spectral resolution
 - \rightarrow High spatial resolution
- Single snapshot hyperspectral imaging
 - \rightarrow Video spectroscopy

- Coded aperture snapshot spectral camera
- Multisampling
 Kaleidoscope

System Setup

KAIST

Examine Kaleidoscope

VISUAL COMPUTING Lab

View Multiplication

KAIST

Effect of Diffuser

KΔIST

With diffuser

Without diffuser

Raw Input Video

KAIST

Geometric Calibration - Homography

Before apply optical flow

After apply optical flow

Animated 5 views

Geometric Calibration - Dispersion Direction KAIST

Dispersion direction flipped

Captured images

Aligned images

Image Reconstruction

 $g_{k}(x,y) = \int_{\Lambda} \iint h(x' - \phi_{k}(\lambda), x, y', y, \lambda) T_{k}(x,y) f_{k}^{0}(x,y,\lambda) dx' dy' d\lambda$ Dispersion Mask Incident

Coded Aperture

KAIST

Coded aperture specs

- Random binary patterns
- corresponds to two-by-two pixels

Each 9 view pass through different coded aperture patterns \rightarrow Enable multisampling $T_k(x)$

$$T_k(x, y) = \sum_{i,j} \mathbf{T}_{ijk} \operatorname{rect}\left(\frac{x}{\Delta} - i, \frac{y}{\Delta} - j\right)$$

Prism Dispersion

KAIST

VISUAL COMPUTING Lab

19

Reconstruction

Minimizing an objective function with total variation

[Bioucas-Dias and Figueiredo 2007]

View Multiplication

KAIST

Dispersion Direction

KAIST

5 views without dispersion inversion

5 views with dispersion inversion

PSNR: 28.20 SSIM: 0.88 PSNR: 30.45 SSIM: 0.91 reference

(synthetic images)

Multiview Tradeoff

KAIST

PSNR: 27.84 SSIM: 0.88

PSNR: 23.42 SSIM: 0.77

PSNR: 31.29 SSIM: 0.92

reference

(synthetic images)

Comparison

KAIST

Traditional CASSI

1 full view

Our multisampling CASSI

5 views

KAIST

Input

Reconstructed hyperspectral video

sRGB video

KAIST

sRGB video

Reconstructed hyperspectral video

KAIST

Input

Reconstructed hyperspectral video

sRGB video

KAIST

Input

Reconstructed hyperspectral video

sRGB video

Discussion

- Tradeoff between spatial and spectral resolution
 - -Significantly enhance spectral resolution
 - -Sacrifice sensor resolution
- Misalignment of copied views gives a critical reconstruction problem
- Alternatives for TV-L1 optimization

- Single snapshot-based design
- Hyperspectral video acquisition
- High spectral resolution
- By coupling multisampling and compressive imaging

Acknowledgements

- Korea National Research Foundation (NRF) grants (2013R1A1A1010165 and 2013-M3A6A6073718)
- Korea ICT R&D program of MSIP/IITP (10041313)

Thank you

