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Abstract. High-accuracy per-pixel depth is vital for computational pho-
tography, so smartphones now have multimodal camera systems with
time-of-flight (ToF) depth sensors and multiple color cameras. However,
producing accurate high-resolution depth is still challenging due to the
low resolution and limited active illumination power of ToF sensors. Fus-
ing RGB stereo and ToF information is a promising direction to over-
come these issues, but a key problem remains: to provide high-quality
2D RGB images, the main color sensor’s lens is optically stabilized, re-
sulting in an unknown pose for the floating lens that breaks the geo-
metric relationships between the multimodal image sensors. Leveraging
ToF depth estimates and a wide-angle RGB camera, we design an au-
tomatic calibration technique based on dense 2D/3D matching that can
estimate camera extrinsic, intrinsic, and distortion parameters of a sta-
bilized main RGB sensor from a single snapshot. This lets us fuse stereo
and ToF cues via a correlation volume. For fusion, we apply deep learn-
ing via a real-world training dataset with depth supervision estimated
by a neural reconstruction method. For evaluation, we acquire a test
dataset using a commercial high-power depth camera and show that our
approach achieves higher accuracy than existing baselines.

Keywords: Online camera calibration, 3D imaging, depth estimation,
multi-modal sensor fusion, stereo imaging, time of flight.

1 Introduction

Advances in computational photography allow many applications such as 3D
reconstruction [18], view synthesis [23,43], depth-aware image editing [49,53],
and augmented reality [20,48]. Vital to these algorithms is high-accuracy per-
pixel depth, e.g., to integrate virtual objects by backprojecting high-resolution
camera color into 3D. To this end, smartphones now have camera systems with
multiple sensors, lenses of different focal lengths, and active-illumination time-
of-flight (ToF). For instance, correlation-based ToF provides depth by measuring
the travel time of infrared active illumination with a gated infrared sensor.

We consider two challenges in providing high-accuracy per-pixel depth: (1)
ToF sensor spatial resolution is orders of magnitude less than that of its com-
patriot color cameras. RGB spatial resolution has increased dramatically on
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Fig. 1: (a) Multi-modal smartphone imaging. (b) Reference RGB image. (c) ToF
depth reprojected to the reference. (d) Our depth from floating fusion.

smartphones—12–64 million pixels is common—whereas ToF is often 0.05–0.3
million pixels. One might correctly think that fusing depth information from ToF
with depth information from color camera stereo disparity is a good strategy to
increase our depth resolution. Fusion might also help us overcome the low signal-
to-noise ratio in ToF signals that arises from the low-intensity illumination of a
battery-powered device. For fusion, we need to accurately know the geometric
poses of all sensors and lenses in the camera system.

This leads to our second challenge: (2) As RGB spatial resolution has in-
creased, smartphones now use optical image stabilization [40,50]: a floating lens
compensates for camera body motion to avoid motion blur during exposure.
Two low-power actuators suspend the lens body vertically and horizontally to
provide a few degrees of in-plane rotation or translation, similar to how a third
actuator translates the lens along the optical axis for focus. The magnetic actua-
tion varies with focus and even with the smartphone’s orientation due to gravity,
and the pose of the stabilizer is not currently possible to measure or read out
electronically. As such, we can only use a fusion strategy if we can automatically
optically calibrate the geometry of the floating lens for each exposure taken.

This work proposes a floating fusion algorithm to provide high accuracy per
pixel depth estimates from an optically-image-stabilized camera, a second RGB
camera, and a ToF camera (Fig. 1). We design an online calibration approach
for the floating lens that uses ToF measurements and dense optical flow match-
ing between the RGB camera pair. This lets us form 2D/3D correspondences to
recover intrinsic, extrinsic, and lens distortion parameters in an absolute manner
(not ‘up to scale’), and for every snapshot. This makes it suitable for dynamic en-
vironments. Then, to fuse multi-modal sensor information, we build a correlation
volume that integrates both ToF and stereo RGB cues, then predict disparity
via a learned function. There are few large multi-modal datasets to train this
function, and synthetic data creation is expensive and retains a domain gap to
the real world. Instead, we capture real-world scenes with multiple views and
optimize a neural radiance field [6] with ToF supervision. The resulting depth
maps are lower noise and higher detail than those of a depth camera, and pro-
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vide us with high-quality training data. For validation, we build a test dataset
using a Kinect Azure and show that our method outperforms other traditional
and data-driven approaches for snapshot RGB-D imaging.

2 Related Work

ToF and RGB Fusion. Existing data-driven approaches [1,2,36] heavily rely
on synthetic data, creating a domain gap. This is exacerbated when using imper-
fect low-power sensors such on mobile phones. In addition, current stereo-ToF
fusion [14,10,15] typically estimates disparity from stereo and ToF separately
before fusion. One approach is to estimate stereo and ToF confidence to merge
the disparity maps [33,1,2,37]. In contrast, our ToF estimates are directly in-
corporated into our disparity pipeline before depth selection. Fusion without
stereo [22] tackles more challenging scenarios than direct ToF depth estimation.
However, Jung et al.’s downsampling process can blur over occlusion edges, pro-
ducing incorrect depth at a low resolution that is difficult to fix after reprojection
at finer resolutions.

Phone and Multi-Sensor Calibration. DiVerdi and Barron [12] tackle per
shot stereo calibration up to scale in the challenging mobile camera environment;
however, absolute calibration is critical for stereo/ToF fusion. We leverage coarse
ToF depth estimates for absolute stereo calibration. Gil et al. [16] estimate two-
view stereo calibration by first estimating a monocular depth map in one image
before optimizing the differentiable projective transformation (DPT) that max-
imizes the consistency between the stereo depth and the monocular depth. The
method refines the DPT parameters, handling camera pose shift after factory
calibration and improving stereo depth quality, but it still requires the initial
transformation to be sufficiently accurate for reasonable stereo depth estima-
tion. In addition, to allow for stable optimization, a lower degree of freedom
model is selected, which can neglect camera distortion and lens shift. Works
tackling calibration with phone and ToF sensors are not common. Gao et al. [15]
use Kinect RGB-D inputs, match RGB to the other camera, use depth to lift
points to 3D, then solves a PnP problem to find the transformation. Since it
matches sparse keypoints, it is not guaranteed that depth is available where a
keypoint is, leading to too few available keypoints. In addition, the method does
not account for intrinsic or distortion refinement.

Data-Driven ToF Depth Estimation. Numerous works [44,32,17,3,46,39]
attempt to tackle ToF depth estimation via learned approaches. While these
approaches have demonstrated strong capabilities in handling challenging arti-
facts (noise, multi-path interference, or motion), our approach does not strictly
require a dedicated method for ToF depth estimation as we directly merge ToF
samples in our stereo fusion pipeline.

Conventional Datasets. Accurate real-world datasets with ground-truth depth
maps are common for stereo depth estimation [41,34,45]. However, the variety
of fusion systems makes it challenging to acquire large-high-quality, real-world
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datasets. A majority of ToF-related works leverage rendered data [32,17], par-
ticularly for fusion datasets [1,2]. These datasets enable improvement over con-
ventional approaches, but synthesizing RGB and ToF images accurately is chal-
lenging. A domain gap is introduced as the noise profile and imaging artifacts
are different from the training data. Notable exceptions are Son et al. [44], and
Gao and Fan et al. [39], where an accurate depth camera provides training data
for a lower-quality ToF module. The acquisition is partially automated thanks
to a robotic arm. However, this bulky setup limits the variety of the scenes:
all scenes are captured on the same table, with similar backgrounds across the
dataset. In addition, the use of a single depth camera at a different location from
the ToF module introduces occlusion, with some areas in the ToF image having
no supervision. In addition, this method only tackles ToF depth estimation, and
the dataset does not feature RGB images.

Multiview Geometry Estimation. Several approaches are capable of ac-
curate depth estimation from multiview images [42], even in dynamic environ-
ments [26,31,24]. Despite their accuracy, including ToF data to these approaches
is not obvious. Scene representations optimized from a set of images [6,21,4] have
recently shown good novel view synthesis and scene geometry reconstruction, in-
cluding to refine depth estimates in the context of multiview stereo [51]. Since
the optimization can accept supervision from varied sources, including ToF mea-
surements is straightforward. For this reason, we select a state-of-the-art neural
representation that has the advantage to handle heterogeneous resolutions [6]
for our training data generation. TöRF [5] renders phasor images from a volume
representation to optimize raw ToF image reconstruction. While efficiently im-
proving NeRF’s results and tackling ToF phase wrapping, this approach is not
necessary for our context as our device is not prone to phase wrapping due to
its low illumination range (low power) and thanks to the use of several modula-
tion frequencies. We also observe that, in the absence of explicit ToF confidence,
erroneous ToF measurements tend to be more present in depth maps rendered
from a TöRF. Finally, approaches based on ICP registration [18] cannot be
applied directly to our data since depth maps from the low-power ToF module
are too noisy to be registered through ICP.

3 Method

We use an off-the-shelf Samsung Galaxy S20+ smartphone. This has the main
camera with a 12MP color sensor and a magnetic mount 79° lens for stabilization
and focusing, a secondary 12MP color camera with a fixed ultrawide 120° lens,
and a 0.3MP ToF system with an infrared fixed 78° lens camera and infrared
emitter (Fig. 1a). As the ultrawide camera and the ToF module are rigidly fixed,
we calibrate their intrinsics KUW,KToF, extrinsics [R|t]UW, [R|t]ToF, and lens
distortion parameters using an offline method based on checkerboard corner es-
timation. We use a checkerboard with similar absorption in the visible spectrum
as in infrared. However, calibrating the floating main camera (subscript FM) is
not possible offline, as its pose changes from snapshot to snapshot. OIS intro-
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Fig. 2: Overview of our method. The first step is to estimate ToF depth via
phase unwrapping (§ 3.1). Then, and after dense matching between the two
RGB cameras, we use ToF depth to estimate the floating camera’s intrinsic and
extrinsic parameters (§ 3.2). Once the stereo pair is calibrated and rectified, we
extract features in each image to build a correlation volume Cc. This volume is
refined using the ToF samples (§ 3.3) before the final disparity estimation.

(a) Raw ToF measurements (Qf,θ) (b) ϕ20MHz (c) ϕ100MHz (d) ToF depth

Fig. 3: ToF depth estimation from raw measurements. From raw ToF images for
two different frequencies (a), we estimate a coarse but unwrapped phase map (b)
and a finer but wrapped phase map (c). By unwrapping ϕ100MHz using the lower
frequency phase ϕ20MHz, we estimate a more accurate depth map.

duces lens shift in x, y for stabilization and in z for focus, with the z direction
inducing additional lens distortion changes. The lens also tilts (pitch/yaw rota-
tions) depending on the phone’s orientation because of gravity. As such, we must
estimate per snapshot a new intrinsic matrix KFM, new extrinsic matrix [R|t]FM,
and three radial and two tangential distortion coefficients {k1, k2, k3, p1, p2}FM
from the Brown-Conrady model [9,7] for the main floating camera. To tackle
this challenge, we present a method to estimate these parameters at an absolute
scale (not relative or ‘up to scale’).

3.1 ToF Depth Estimation

The ToF system modulates its infra-red light source by 20MHz and 100MHz
square waves, and alternates between both frequencies sequentially. The sen-
sor captures four shots per frequency, with the same modulation as the light
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source shifted by 90 degrees. With two frequencies, we obtain eight raw ToF
measurements per snapshot:

Qf,θ, f ∈ {20MHz, 100MHz}, θ ∈ {0, π/2, π, 3π/2}, (1)

where f is the modulation frequency and θ is the sensor phase shift. Figure 3(a)
shows an example of captured ToF measurements. To estimate depth, the first
step is to estimate phase (Figures 3(b) and 3(c)) for each modulation frequency:

ϕf = arctan2
(
Qf,π −Qf,0, Qf,3π

2
−Qf,π2

)
. (2)

From these phases, we can estimate the distance:

df =
c

4πf
ϕf + kf

c

2f
, kf ∈ N, (3)

with c the speed of light. This equation shows that, given a phase, the depth is
known up to a kf

c
2f shift. That is, we observe phase wrapping. The ToF depth

variance is inversely proportional to the modulation frequency [25]. Therefore,
the higher frequency tends to be more accurate; however, the wrapping range
is shorter (≈1.5m for 100MHz against ≈7.5m for 20MHz). Since the ToF illu-
mination is low power, the signal becomes weak for further objects, making the
phase estimation highly unreliable beyond the wrapping point of the lower fre-
quency. Based on this, we assume that ϕ20MHz does not show phase wrapping:
k20MHz := 0. Therefore, we unwrap ϕ100MHz using ϕ20MHz to benefit from the
lower depth variance associated with a higher frequency without the phase wrap-
ping ambiguity. In detail, we find k̂100MHz that minimizes the depth difference
between the two frequencies:

k̂100MHz = argmin
k

∣∣∣d20MHz −
c

4π · 108
ϕ100MHz + k

c

2 · 108
∣∣∣ . (4)

From this, we can compute the distance d100MHz, which will be used to obtain
the depth dToF (Figure 3d). For more details on ToF, refer to [19,25].

With the estimated depth, we assign a confidence map ω based on the sig-
nal’s amplitude, the concordance between d20MHz and d100MHz and local depth
changes. First, we assign lower scores when the signal is weak:

ωA = exp

−1/
∑
f

Af/(2σ
2
A)

 , (5)

With Af =
√

(Qf,0 −Qf,π2
)2 + (Qf,π −Qf,3π

2
)2/2 and f ∈ {20MHz, 100MHz}.

We also take into account the difference between the estimated distance from
the two frequencies:

ωd = exp
(
−|d20MHz − d100MHz|2/(2σ2

d)
)
. (6)
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Since ToF is less reliable at depth discontinuities, we deem areas with large depth
gradient to be less reliable:

ω∇ = exp
(
−∥∇dToF∥2/(2σ2

∇)
)
· exp

(
−∥∇(1/dToF)∥2/(2σ2

∇)
)
. (7)

The complete confidence is: ω = ωAωdω∇. For our experiments, we set σA = 20,
σd = 0.05, and σ∇ = 0.005.

3.2 Online Calibration

To calibrate our floating main camera, we need to find sufficient correspondences
between known 3D world points and projections of those points in 2D. We must
find a way to correspond our 3D points from ToF with the main camera even
though it does not share a spectral response. Our overall strategy is to use the
known fixed relationship between the ToF and ultrawide cameras and addition-
ally exploit 2D color correspondences from the optical flow between the ultrawide
and floating cameras. In this way, we can map from main camera 2D coordinates
to ultrawide camera 2D coordinates to ToF camera 3D coordinates. While ToF
can be noisy, it still provides sufficient points to robustly calibrate all intrinsic,
extrinsic, and lens distortion parameters of the main camera.

From ToF to Ultrawide. The first step is to reproject the ToF depth estimates
dToF to the ultrawide camera. We transform the depth map to a point cloud P :

PToF = K−1
ToF[u, v, dToF]

⊤, (8)

where KToF is the known ToF camera matrix, and (u, v) are pixel coordinates
with corresponding depth dToF. Then, the point cloud can be transformed to the
ultrawide camera’s space:

PUW = [R|t]ToF→UW[PT
ToF|1]⊤, (9)

where [R|t]ToF→UW is the relative transformation from the ToF camera space
to the ultrawide camera space. From point cloud PUW, we obtain the pixel coor-
dinate [uUW, vUW] of the ToF point cloud reprojected to the ultrawide camera:

dUW[uUW, vUW, 1] = KUWPUW. (10)

The reprojected ToF points PUW and their subpixel coordinates [uUW, vUW] will
be used to estimate calibration for our main camera in a later stage.

From Ultrawide to Floating Main. Next, we match the ultrawide camera
to the floating main camera to be accurately calibrated. Since both cameras
are located near to each other, they share a similar point of view, thus mak-
ing sparse scale and rotation invariant feature matching unnecessary. As such,
we use dense optical flow [47] to find correspondences. To use flow, we first
undistort the ultrawide camera image given its calibration, then rectify it ap-
proximately to the floating main camera given an initial approximate offline
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calibration. This calibration will be wrong, but as flow is designed for small un-
constrained image-to-image correspondence, this rectification approach will still
find useful correspondences. As output, we receive a 2D vector field FUW→FM.

From ToF to Floating Main. We can now use the optical flow to form 2D/3D
matches. For each ToF point reprojected to the ultrawide camera PUW, we find
the corresponding pixel in the floating camera:

[u′
FM, v′FM] = [uUW, vUW] + FUW→FM([uUW, vUW]). (11)

We sample the flow using bilinear interpolation since [uUW, vUW] are estimated
with subpixel precision.

From this 2D/3D matching between the 2D points in the floating camera
[u′

FM, v′FM] and the 3D points in the ultrawide camera space PUW, we can esti-
mate the floating camera’s calibration. We first solve the optimization through
RANSAC for outlier removal, followed by Levenberg-Marquardt optimization,
obtaining the transformation between the two RGB cameras [R, t]FM→UW, as
well as the camera matrix KFM and its distortion coefficients. Once the calibra-
tion is achieved, we rectify the two RGB images, enabling stereo/ToF fusion.

Discussion. Both Equations (10) and (11) are not occlusion-aware but, due to
the small baseline, occluded world points are only a small portion of the total
number of matched points. RANSAC helps us to avoid outlier correspondences
from occlusion, incorrect flow estimates, and noisy ToF estimates for calibration.

Further, while we rely on a fixed RGB camera and ToF module, extending
the approach to scenarios without fixed cameras is possible. Reliable feature
matching between spectral domains has been demonstrated [13,55,8] as well as
RGB/IR optical flow [38]. Using matching between the ToF module’s IR camera
and the RGB cameras, calibration can likely be achieved even if no second RGB
camera exists as fixed with respect to the ToF module.

3.3 Fusing ToF and Stereo

Given the now-calibrated color stereo pair, and the ToF depth samples, we will
fuse these into an accurate high-resolution depth map for a color camera. The
first step is to build a correlation volume Cc from our RGB pair. A point in the
volume Cc at coordinate [u, v, u′] represents the correlation between a pixel [u, v]
in the reference image and a pixel [u′, v] in the target image at some disparity.
Thus, the correlation volume’s shape is (width×height×width) since disparity
is horizontal along the width direction. We compute correlation volume values
by extracting 256-dim. image features from each view using RAFT-stereo [28]’s
learned feature encoder, then by taking the dot product of the feature vectors
from each RGB camera for each disparity amount. Note that the feature ex-
traction process downsamples the images four times and a disparity map at
original resolution is recovered through RAFT-stereo’s convex upsampling. For
ease of evaluation, we use the fixed ultrawide camera as a reference, although
the floating camera can be chosen without algorithmic change.



FloatingFusion: Depth from ToF and Image-stabilized Stereo Cameras 9

A 3D world point PToF corresponds to a 2D sensor coordinate [uUW, vUW] in
the ultrawide camera and in the floating main camera [uFM, vFM] (see reprojec-
tion Equations (8),(9), and (10))). A ToF point also has a confidence ω estimated
along with the ToF depth maps. We leverage those points by increasing the cor-
relation at the location of the sample points in the volume. For a point, the
corresponding location in the volume is [uUW, vUW, uFM]. Coordinates given by
a ToF point [uUW, vUW, uFM] have eight integer neighbors with defined values in
the correlation volume. We inject the ToF point into RAFT-stereo’s correlation
volume using linear-like weights:

C(⌊uUW⌋, ⌊vUW⌋, ⌊uFM⌋) = Cc(⌊uUW⌋, ⌊vUW⌋, ⌊uFM⌋) +
τ · ω ((⌈uUW⌉ − uUW)(⌈vUW⌉ − vUW)(⌈uFM⌉ − uFM)) .

(12)

⌊u⌋ is the nearest integer ≤ u, and ⌈⌉ is the nearest integer ≥ u. We perform
the same operation for all eight integer points with coordinates around [u, v, u′].
If several ToF points affect the same point in the correlation, their contribu-
tions accumulate. τ is a scalar parameter that is optimized during the training
process. We then use the updated correlation volume C with the next steps of
RAFT-stereo’s pipeline to estimate disparity. Thanks to this approach, we ef-
ficiently and robustly combine stereo correlation cues and ToF measurements
before estimating the depth map.

3.4 Dataset Generation

Background. Learning-based stereo/ToF fusion methods require training data.
For this, we optimize neural radiance fields [29,35,30] from RGB images. These
allow querying density and appearance for every point in the scene, allowing us
to render estimated depth maps. A typical volume rendering is as follows:

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci, (13)

where Ĉ(r) is the rendered color for the ray r, σi and ci are the density and color
of the representation at i point. N points are sampled along the ray r, where
δi is the distance between neighboring samples, and Ti = exp

(
−
∑

i′<i σi′δi′
)
is

the approximated transparancy between the ray origin and the sample.
This rendering is differentiable on the density and color of the sample points,

allowing gradient-based optimization. To render depth maps from these repre-
sentations, we swap the color term ci in Equation (13) for the depth of the point
w.r.t. the ray origin.

Design Choices and Our Approach. Despite improving on numerous as-
pects such as optimization time and novel view quality over neural represen-
tations, Plenoxels [4] produces fuzzy depth maps (see the supplemental mate-
rial).We also observe that NerfingMVS’s [51] guided NeRF optimization based
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(a) RGB (b) NerfingMVS (c) Ours

Fig. 4: NerfingMVS [51]’s results before filtering show more artifacts than ours.

on reducing the sampling range around the expected depth tends to create arti-
facts (Figure 4) that require an additional filtering step [48] for accurate depth
maps. Since filtering at novel views is impossible, this approach is not suitable
for creating training data for unseen views. Thus, we use MipNeRF [6] as a basis
for our multiview depth estimation pipeline. This can naturally handle the reso-
lution difference between the ToF and RGB cameras. For depth supervision [11],
we use a straightforward approach similar to VideoNeRF [52]’s supervision on
inverse depth maps computed from multi-view stereo: we add a loss using depth
samples to the optimization:

Ldepth = ω ∥drendered − dToF∥22 , (14)

with the ToF confidence ω (Section 3.1). In addition to this supervision, we im-
plement extrinsic and intrinsic refinement [21] following a 6D continuous rotation
representation [54]. Note that, since Mip-NeRF prevents too high frequencies
in positional encoding and poses and that the intrinsics are well initialized, a
coarse-to-fine positional encoding [27] is not required. Our training and valida-
tion datasets have eight scenes with around 100 snapshots per scene. The scenes
feature varied depth range, background, objects, and materials.

4 Results

4.1 Evaluation Dataset

To evaluate our method, we build a real-world dataset with ground-truth depth
obtained using a Kinect Azure. Since the depth camera is higher power, noise is
reduced, and depth quality is much better than our phone’s ToF module. After
securing the phone and the Azure Kinect on a joint mount, we calibrate the
phone’s ToF module and the ultrawide camera w.r.t. the depth camera. Once
the calibration is estimated, depth maps can be reprojected to the ultrawide and
ToF cameras for comparison. We capture four scenes for a total of 200 snapshots.

In addition to this RGB-D dataset, we calibrate the floating camera using the
conventional multi-shot offline pipeline with chessboards. This provides ground
truth for our online calibration evaluation on four scenes.
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Table 1: We compare our multiview fusion against a ToF-supervised scene repre-
sentation [5] and multiview-stereo approaches [51,24,31]. Original Mip-NeRF [6]
on which our implementation is based is given for reference.

Bad ratio (%) Depth error
>0.2 >0.05 MAE Rel. RMSE Rel. MAE RMSE

TöRF [5] 1.82 26.48 0.055 0.075 0.041 0.062
NerfingMVS [51] 3.37 20.11 0.047 0.069 0.039 0.071
RCVD [24] 35.12 75.68 0.249 0.326 0.208 0.315
CVD [31] 1.68 11.67 0.033 0.056 0.028 0.056
Mip-NeRF [6] 17.47 61.71 0.156 0.199 0.115 0.170

Ours 0.81 7.07 0.028 0.047 0.022 0.044

(a) RGB (c) NerfingMVS (e) Ours(b) TöRF (d) CVD

Fig. 5: Multiview depth estimation with ToF-supervised scene representation
TöRF [5] and the multiview-stereo approaches NerfingMVS [51] and CVD [31].

4.2 Depth Estimation for Training

Figure 5 shows that our method can preserve thin structures, and Table 1 con-
firms that our approach can efficiently merge ToF and stereo data from multiple
views. While TöRF [5] is designed to handle ToF inputs, it performs worse than
our method when ToF and RGB resolutions differ. We run CVD and RCVD at
their default resolution since we observed degradation in accuracy when increas-
ing image size. Note that progressive geometry integration methods such as [18]
fail on our data: the raw ToF depth maps from our smartphone are not accurate
enough for ICP registration.

4.3 Snapshot RGB-D Imaging

Calibration. Table 2 details the accuracy of our calibration method. Gao et
al. [15] calibrate two GoPro cameras w.r.t. a Kinect RGB-D camera. In our com-
parison, we substitute the RGB-D camera by the ultrawide RGB plus the ToF
module, and substitute the GoPro camera by the main camera. Gao et al. [15]’s
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Table 2: Our online calibration versus Gao et al. [15] on our real dataset.

Pose error (mm) Rotation error (deg.)
MAE RMSE MAE RMSE

Gao et al. [15] 5.664 5.997 1.292 1.431
[15] + DFM [13] 5.174 5.803 1.344 1.499

Ours 3.346 3.989 1.264 1.411

Table 3: Fusion evaluation. In the first rows, we evaluate other approaches for
RGB/ToF fusions. Since their stereo matching method are not robust against
noise and imaging artifacts, their fusion results are highly inaccurate. In the
next rows, we replace their less robust stereo matching with a state-of-the-art
method [28]. We use our calibration for all methods, except for “Ours (ignoring
OIS)” to highlight the importance of our per-shot calibration. The results show
that our fusion approach outperforms existing methods.

Bad ratio (%) Depth error
>0.2 >0.05 MAE Rel. RMSE Rel. MAE RMSE

Marin et al. [33] 61.25 96.80 0.545 0.708 0.410 0.610
Agresti et al. [1,2] 91.29 98.29 0.962 1.172 0.722 1.012
Gao et al. [15] 14.95 40.82 2.262 6.493 1.394 5.066

[33] (RAFT-stereo [28]) 2.01 13.87 0.043 0.092 0.034 0.085
[1,2] (RAFT-stereo [28]) 1.48 13.96 0.037 0.065 0.031 0.065
[15] (RAFT-stereo [28]) 1.67 7.71 0.031 1.021 0.026 0.854

Stereo only [28] 2.36 14.18 0.041 1.300 0.035 1.078
Ours (ignoring OIS) 9.06 29.54 0.082 0.163 0.073 0.164

Ours 1.40 7.17 0.028 0.050 0.024 0.051

calibration shows much lower accuracy than ours, even when the method is
paired with a state-of-the-art feature matcher [13]. In addition, only our method
is able to refine the camera matrix and distortion parameters.

Stereo/ToF Fusion. We evaluate our fusion approach against our real-world
RGB-D dataset. For comparison, we implement [33,1,15] and we train Agresti
et al.’s method [1] using their rendered SYNTH3 dataset. Since Gao et al. [15]’s
calibration is too inaccurate, rectification fails severely on some snapshots. Total
calibration failure occurred for 34 of the 200 snapshots (17%) in our test dataset.
We show examples of poorly rectified stereo pairs in the supplemental material.

Thus, evaluate all methods using our calibration. We also evaluate if we
can ignore OIS: we calibrate the main camera using a checkerboard while the
phone is fixed, then we move the phone to capture our test scenes. We report
the results in Table 3 under “Ours (ignoring OIS)”, showing a large decrease in
depth accuracy. Thus, online calibration is both necessary and effective. Figure 6
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(a) RGB (c) Agresti et al. (e) Ours(b) Marin et al. (d) Gao et al.

Fig. 6: ToF/stereo fusion results. We pair all other methods with a state-of-
the-art stereo approach for fair comparison [28]. Marin et al. [33] and Agresti
et al. [1] suffer from quantization as their sub-pixel resolution approach is not
suitable for small phone camera baselines. Gao et al. [15] relies heavily on ToF
measurements, degrading its performance when ToF is inaccurate (e.g., black
parts of the camera). Refer to the supplemental material for additional results.



14 A. Meuleman et al.

shows that our method allows for robust depth estimation with better edge and
hole preservation. The low RMSE in Table 3 suggests that our method is robust
against strong outliers. While other methods suffer from a less robust stereo
matching—swapping theirs for RAFT-stereo [28] significantly improving their
results—our approach maintains higher accuracy.

4.4 Dependency on the Device

Under the assumption of a narrow baseline on smartphones, the method should
generalize as it allows accurate optical flow estimation between the two RGB
cameras. In addition, we show the results of our fusion of datasets based on
different hardware: a ZED stereo camera and a Microsoft Kinect v2 ToF depth
camera for REAL3 [2], and two calibrated BASLER scA1000 RGB cameras and
a MESA SR4000 ToF camera for LTTM5 [10] in the supplemental material.

4.5 Limitations

While our approach applies to indoor environments, the reliance on ToF and
stereo prevents application in some scenarios. First, the ToF module cannot esti-
mate depth accurately at large distances due to its low power. Second, ToF depth
estimation is not reliable within strong IR ambient illumination (e.g., direct day-
light). Since our calibration relies directly on ToF measurements, it becomes
inaccurate if no ToF depth can be estimated. In addition, some materials—
particularly translucent or specular materials—are challenging for both ToF and
stereo depth estimation and cannot be tackled by our fusion approach.

5 Conclusion

Optical-image-stabilized lenses are now common but present problems for pose
estimation when wanting to fuse information across multiple sensors in a camera
system. This limits our ability to estimate high-quality depth maps from a single
snapshot. Our method is designed for consumer devices, tackling calibration and
robust sensor fusion for indoor environments. As our approach uses only a single
snapshot and does not exploit camera motion for pose estimation, the acquisition
is quick and could be used on dynamic scenes. Evaluated on real-world inputs,
our method estimates more accurate depth maps than state-of-the-art ToF and
stereo fusion methods.
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