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Abstract

Omnidirectional cameras have been used widely to better
understand surrounding environments. They are often config-
ured as stereo to estimate depth. However, due to the optics
of the fisheye lens, conventional epipolar geometry is inap-
plicable directly to omnidirectional camera images. Interme-
diate formats of omnidirectional images, such as equirect-
angular images, have been used. However, stereo matching
performance on these image formats has been lower than
the conventional stereo due to severe image distortion near
pole regions. In this paper, to address the distortion problem
of omnidirectional images, we devise a novel subdivision
scheme of a spherical geodesic grid. This enables more
isotropic patch sampling of spherical image information in
the omnidirectional camera space. By extending the existing
equal-arc scheme, our spherical geodesic grid is tessellated
with an equal-epiline subdivision scheme, making the cell
sizes and in-between distances as uniform as possible, i.e.,
the arc length of the spherical grid cell’s edges is well regu-
larized. Also, our uniformly tessellated coordinates in a 2D
image can be transformed into spherical coordinates via one-
to-one mapping, allowing for analytical forward/backward
transformation. Our uniform tessellation scheme achieves
a higher accuracy of stereo matching than the traditional
cylindrical and cubemap-based approaches, reducing the
memory footage required for stereo matching by 20%.

1. Introduction
Fisheye lenses have been used to capture a wide field of view
(FOV) in even more than 180◦. Stereo matching from fisheye
images is an appearing combination for a better and efficient
understanding of scene geometry. However, owing to fisheye
lenses’ optical characteristics, the traditional stereo matching
algorithm based on the pinhole camera model is invalid. For
instance, the outermost edges of fisheye images are severely
distorted as the angle of view increases widely. It disturbs
accurate depth estimation from spherical stereo images. To
enable epipolar geometry on fisheye images, projective im-

age transformation, such as equirectangular projection and
latitude-longitude (LL) transformation, has been utilized to
estimate depth information from very wide-angle fisheye
images. This additional transformation of the input images
warps images to increase the image size redundantly. Thus,
the computational cost and memory increase accordingly to
process spherical stereo matching from fisheye images.

To estimate depth information from a pair of fisheye im-
ages, fisheye images of an ultra-wide field of view need to
be warped and transformed into a certain type of projec-
tive image models, such as equirectangular projection and
latitude-longitude (LL) transformation [15]. We can apply
the conventional stereo matching algorithm that searches
stereo correspondence along epipolar lines through epipolar
geometry after rectifying the transformed images. Due to
the excessive distortion near the horizontal poles along the
stereo baseline, the accuracy of stereo matching degrades,
especially around the distorted area. In addition, excessive
warping of the near pole regions in the LL-transformed im-
ages increases the memory footage.

In this paper, we propose a novel subdivision scheme of
spherical image information in the omnidirectional camera
space. Our spherical geodesic grid enables equal-epiline sub-
division to achieve higher stereo matching accuracy, where
the cell sizes and in-between distances are uniformly regu-
larized. Our novel transformation from sphere geometry to a
2D tessellated array enables us to apply epipolar geometry
to directly achieve fast, spherical stereo matching from the
tessellated fisheye images. Our geodesic grid-based stereo
matching runs directly on the uniformly tessellated stereo
images so that our method can reduce the required memory
footage by 20% without compromising depth accuracy.

2. Related Work

Omnidirectional Camera Model. The pinhole camera
model is widely used with epipolar geometry for estimating
depth from stereo images. The FOV of the camera is smaller
than 180◦ [9]. However, when the field of view of the lens in-
creases more than 120◦, the pinhole camera model is invalid
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Figure 1. Geometric transformation options of a fisheye image. (a) Fisheye image. For all geometric domains with Tissot’s indicatrices that
indicate the same area size of patches: (b) the spherical domain in 3D, (c) LL-transformed 2D image (equivalent to the rotated equirectangular
image), (d) unfolded cube map, and (e) our proposed spherical geodesic grid. Our geometric transform provides a more regularized transform
of Tissot’s indicatrices. Note that the regions marked with yellow color indicate the extreme image distortion near poles.

anymore, in particular, more than 180◦. The omnidirectional
camera model includes a virtual 3D spherical image by pro-
jecting points incident from omnidirectional surroundings
on the surface of a sphere, whose focal length is the radius
of the sphere as the origin of the sphere. In addition, the
recently proposed calibration methods, where a 3D spherical
image is obtained from a 2D fisheye image, provide a suffi-
cient basis to implement a spherical stereo algorithm using a
real fisheye lens [3, 11, 23, 24]. Figures 1a and 1b compare a
fisheye and the spherical image coordinates.

Latitude-Longitude/Equirectangular Projection. Stereo
matching cannot be processed directly on a 3D stereo spheri-
cal image generated from a spherical camera model. There-
fore, we use either perspective projection or cylindrical pro-
jection that converts a 3D spherical image into a 2D planar
image in order to apply a block-matching stereo algorithm to
the spherical stereo image directly [1]. The stereo algorithm
that applies perspective projection based on the pinhole cam-
era model loses the advantage of using a wide FOV, so it is
not suitable for spherical stereo.

A binocular spherical stereo algorithm with various con-
figurations has been proposed by applying the cylindrical
projection method, which is also known as Mercator projec-
tion, used to represent the earth as a flat map.

The bipolar geometry in cylindrical projection is studied
by an omnidirectional stereoscopic study of the horizon-
tal [10] and vertical [4] alignment, and particularly it is
shown that vertically aligned binocular stereo formed linear
epipolar lines in the vertical direction, such as in the conven-
tional planar stereo. The latitude-longitude transformation
has proposed a stereo matching algorithm according to the
linear epipolar geometry for a FOV of more than a hemi-
sphere (Figure 1c) lying down vertical-aligned cylindrical
projection transversely [14,15,17]. This implies that horizon-
tal and vertical omnidirectional stereo image can be obtained
with a low-cost stereo matching based algorithm with a sys-
tem composed of two spherical stereo cameras [16, 18].

Figure 1c shows Tissot’s indicatrices on different sphere
projections to evaluate distortion in the 2D projection of

the sphere. Tissot’s indicator in the LL transformed image,
which should be close to the circle, is excessively distorted
around the 180◦ of the LL transformed image, which is near
the horizontal poles of the 3D spherical image. Obviously,
this is critical for the accuracy of stereo matching from fish-
eye images.

Cubemap Projection. Since cubemap projection (CMP) has
been widely used to project omnidirectional environment
into the 2D domain [5]. An enclosed 3D spherical image is
projected onto six faces of a surrounding cube. As compared
with the cylindrical projection, cubemap projection reduces
the redundancy of the distortion near the pole regions, which
significantly reduces the memory consumption and computa-
tional complexity. Therefore, cubemap projection is widely
used in 3D graphical rendering, and omnidirectional video
coding for VR [2, 8]. However, due to the following reasons,
cubemap projection cannot be used in direct stereo matching.
First, as a 3D spherical image is projected onto six divided
planes, CMP performs complex computations referencing
3D coordinates for forward projection. Due to this referenc-
ing, CMP cannot be applied in the direct stereo matching,
where 2D transformed image is used. Second, although CMP
reduces the excessive distortion around the pole regions, it
induces radial distortion that occurs outward from the center
of each plane. This radial distortion is not parallel to the
epipolar lines, reducing the matching accuracy. Third, the
epipolar lines are formed radially on the two sides, includ-
ing the horizontal poles. As a square matching block cannot
represent the same sized area in the 3D spherical image for
radial directions, the depth accuracy in two faces, including
poles, is severely degraded (Figure 1d).

Geodesic Grid. Since Buckminster Fuller [20] introduced a
geodesic dome composed of planar triangles, the geodesic
grids have been widely used in fields such as geography
and meteorology for modeling Earth’s surface. The geodesic
grid has been widely used with various methods of subdivi-
sion of icosahedron, for instance, the mid-arc and equal-arc
subdivision methods of Class 1, depending on the conve-



nience of the configuration [21]. Compared to a cylindrical
projection-based grid including the equirectangular and the
LL, a 3D spherical geodesic grid becomes popular with the
introduction of data structure using five sets of four trian-
gles [22]. A geodesic grid has been used for feature detection
and descriptor matching on a spherical image by applying
equal-arc [25] and mid-arc [6,7] subdivision. It is also shown
that it is suitable for spherical SLAM based on the geodesic
grid-based feature [12, 13] recently.

Existing 3D geodesic grids using several known subdivi-
sion methods cannot be directly converted into a 2D image
processing plane. Due to this limitation, the geodesic grid
cannot be used in direct stereo matching, but it was only
used for feature detection and descriptor studies, which do
not follow epipolar geometry. Figure 1e shows the distorted
geodesic grid, which presents more uniform Tissot’s indica-
trices. Our work is grounded on the geodesic grid.

3. Equal-epiline Subdivision on Geodesic Grid
To reduce distortion that can cause inaccuracies in spherical
stereo matching, we begin with the geodesic grid, which
represents the sphere most uniformly. When projecting a
3D spherical image into a 2D image processing plane using
a geodesic grid, the sub-division methods do not have a
mathematically defined transformation relationship in linear
equation, which implies that the epipolar geometry cannot be
defined in the 2D image processing plane like the LL-based
spherical stereo method. The 3D spherical image coordinates
must be referred to every pixel to perform stereo matching in
the 2D projected images along an epipolar line represented
by a great circle in a 3D spherical image.

3.1. Icosahedral Geodesic Polyhedron

A regular polyhedron can be used for a tessellation of the
sphere, in which the surface is divided by the great arcs. Only
the tetrahedron, octahedron, and icosahedron consisting of
equilateral triangles are geodesic polyhedrons for spherical
subdivision. The icosahedron with 20 faces, 30 edges, and
12 vertices has the highest number of identical regular poly-
gons of any polyhedron. Since a higher number of faces
can reduce the irregularity of a geodesic polyhedron when
it is subdivided, the icosahedron is the most popular refer-
ence polyhedron for the spherical subdivision. Therefore, to
achieve uniform subdivision, we utilize icosahedral geodesic
polyhedron for the geodesic grid.

3.2. Geodesic Grid Subdivision

Each vertex from a subdivided spherical geodesic polyhe-
dron is used as the center of pixels for image pixel repre-
sentation of a spherical image, i.e., a pentagonal-hexagonal
geodesic grid is obtained by taking the dual polyhedron of
an icosahedral geodesic polyhedron. There are 12 reference
vertices (A,B,C,D,E,F, ...) for the pentagonal grid and
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Figure 2. The geodesic polyhedron subdivided by the level of sub-
division (nd) (a) The icosahedron (nd = 1). (b) Subdivision with
nd = 2. (c) Subdivision with nd = 8.

complement vertices of a pentagonal vertex for hexagonal
grid in an icosahedral geodesic grid (Figure 2b). To achieve
a finer resolution of the geodesic grid, the principal poly-
hedral triangles (PPT) are subdivided, so the uniformity of
geodesic grid cells will be increased when it is subdivided
with a higher level of subdivision (nd). Figure 2 shows the
transverse of icosahedron and geodesic polyhedrons by the
level of subdivision (nd = 1, 2, 8). The data structure for
image processing of the spherical geodesic is well defined
in the previous research works [22, 25]. Separated five sets
of four regular spherical PPTs are projected onto the pla-
nar geodesic grid consisting of regular triangle cells, and
grid cells with unit vectors of the axes (v1 = [1, 0]T and
v2 = [ 12 ,

√
3
2 ]) skewed to make axis vectors (v′

1 = [1, 0]
and v′

2 = [0, 1]) orthogonal (Figure 3). Here we only con-
sider the skewed geodesic grid and refer to it as the geodesic
grid. Refer to the supplemental document for comparison of
existing subdivision schemes. ⋯
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Figure 3. Illustration of the transformed geodesic grid. (a) The
geodesic grid is separated into five sets of four triangles (PPTs).
Two of the five sets are shown in the figure. (b) Two skewed partial
geodesic grids for computational implementation. The shape of the
matching block is also changed. The blue lines are the example of
epipolar lines implemented by our method.

3.3. Sphere Projection Model

We propose a new subdivision scheme of the spherical
geodesic grid that provides the transformation, which makes
it possible to apply a stereo algorithm directly without any a
look-up-table (LUT). The proposed scheme can be used for
the application, which is related to a spherical image, which
has a limitation of the low-cost implementation. The general
function of transformation, which projects a spherical grid
to a planar grid, is defined as1 F : P(θ, ϕ) → p(x, y).

1We denote bold lower-case letters p be vectors and light lower-case
letters p be scalars. For the 3D coordinate system, the upper-case letter
P is used, and the projected 2D coordinates from the 3D coordinates are
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Figure 4. (a) To make epipolar subdivision proportional to the
latitude angle ϕ, we first define the latitude arcs (green circle) with
ϕ of 60◦ and 120◦. (b) Subdivision scheme when ϕ < 60◦ and
ϕ > 120◦. (c) Subdivision scheme when 60◦ < ϕ < 120◦.

There are two important functional features of the image
transformation for the low-cost spherical stereo algorithm.
First, to generate a block for stereo matching, it is necessary
to obtain a position of local neighboring pixels relative to the
center pixel of the block on the 2D transformed image plane.
Second, the absolute position on the spherical image of each
pixel must be estimated on the transformed image. Conven-
tional approaches assume that image distortion caused by
transformation is small enough in the local block matching
process. Thus neighboring pixels can be used for feature
matching. However, There was no way to express the 3D
geodesic grid into the 2D geodesic grid directly, the pre-
calculated LUT based forward and backward projection is
repeatedly performed. In other words, F and F−1 are not
defined mathematically, but are defined as a form of LUT
by corresponding relative position of respectively calculated
spherical and projected geodesic grid. Because of the non-
linearity of conventional methods, including equal-chord,
mid-arc, and equal-arc, a set of analytic computations for
stereo matching are required as follows: (1) Backprojection:
defining the reference points (RPs) by subdividing PPT’s
three arcs in 3D and then defining three great circles (GCs)
of three pairs of RPs to find three intersection points (IPs) of
three GCs, resulting in the centroid of three IPs, (2) Shifting
disparity candidates with an interval, (3) Forward projection:
Defining the search range of the corresponding pixel and
backprojecting of candidate pixels in the search range to find
out the nearest points by computing distance candidates in
3D, and (4) Matching cost: computing the matching costs by
searching the disparity candidates within the potential dis-
parity range by repeating (1)–(3) for every pixel. In addition,
considering that additional interpolation is required in the
projection operation, it requires a larger memory footprint
and computation cost. Therefore, the geodesic grid cannot
be used in spherical stereo matching algorithm for low-cost
implementation.

To solve this problem, we propose the new subdivi-
sion scheme that take the advantages of the uniform equal-
arc geodesic grid on a spherical surface and equal-chord
geodesic grid on a planar plane simultaneously, as opposed
to the conventional LUT-based method, which refers to the
origin of the sphere. First of all, the spherical geodesic grid
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Figure 5. (a) Point p(ϕ, θ) on the 3D sphere with the epipolar
line (blue line). (b) Intersection of the epipolar plane including ϕp.
ϕp = lp/Lg ·180◦. (c) Intersection of the y−z plane including θp.

is transversely rotated to make the direction of two antipodal
poles from north-south to west-east similar to the LL trans-
formation (Figure 2). When the spherical geodesic grid is
subdivided with an equal-arc method, it has nearly uniform
cell size and in-between distance, i.e., the arc length of the
spherical grid cell’s edges is uniform.

To divide epipolar lines equally on the transformed
geodesic grid, in our subdivision scheme, we change 10
arcs of the PPT along with the circles of ϕ = 60◦ and 120◦

from great circles (Figure 4a). The points A and B indicate
north/south poles of the 90◦-rotated spherical coordinate sys-
tem, and the black arcs lines are part of the great circles. The
green circles indicate latitude angles at 60◦ and 120◦, where
E′ and C ′ are intersection points between the 60◦ latitude
and the great circle, D′ is the intersection between the 120◦

latitude and the great circle. The blue triangle presents the
icosahedron planar triangle. By changing the great circles
into the latitude line, the equal-epiline subdivision method
divides the epipolar line uniformly so that each subdivided
point can linearly correspond to the 2D transformed geodesic
grid composed of regular triangles.

20 PPTs are made by reference points (including C ′, D′

& E′) with an offset from the green circles. Then, we utilize
the equal-arc subdivision scheme which takes subdivided
points with centroid points (Figures 4b and 4c). On the 2D
transformed grid, the length ratio of lines along the epipolar
line is corresponding to the length of arcs on the 3D spherical
geodesic grid. We call this as the equal-epiline subdivision.
By using the proposed geodesic grid based on the equal-
epiline scheme, transformation function (Fgg) uniformly
subdivide the spherical image by the advantage of the equal-
arc, and also minimize the distortion simultaneously, which
was not possible in previous research.

This is appropriate for the low-cost stereo matching algo-
rithm since we do not need repetitive forward (F ) and back-
ward projection (F−1) operation necessary to specify coor-
dinates in the spherical geodesic grid and the pre-calculated
LUT consuming large memory.

3.4. Derivation of the Transformation Function

We propose a novel image transformation method, where
the stereo block matching algorithm is performed on the 2D
images directly, similar to the LL method. A point P on the
unit spherical geodesic grid is expressed in Figure 5a. We
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Figure 6. Transformation of the point P(ϕ, θ) on the 2D geodesic
grid with the epipolar line (blue line). (a) x′-axis is used to calculate
the ratio of wg and wp as ϕp(

◦), and θP is defined on the geodesic
grid with the ratio of hp and hg for (b) 0◦ ≤ ϕP(

◦) < 60◦, (c)
60◦ ≤ ϕP(

◦) < 120◦, and (d) 120◦ ≤ ϕP(
◦) < 180◦.

can define ϕP and θP by intersections including a point P
and the origin O. In Figure 5b, ϕP is defined by the ratio of
the arc length between the point P(lp) and the length of the
epipolar line (Lg).

Because x-y orthogonal coordinate system of the
geodesic grid is rotated 45-degree compared to the, ϕP, θP
coordinates, it is impossible to calculate ϕP and θP with
simple linear equation. We perform the derivation of ϕP

and θP on the virtual x′-y′ axis. The axes rotated by 45◦, x′

and y′, represent ϕ and θ, respectively. The projected points
pϕ and pθ from the point P are defined as follows:

p(x, y) → pϕ(0.5x+ 0.5y, 0), (1)
p(x, y) → pθ(0, −0.5x+ 0.5y). (2)

We proceed with the derivation of ϕP. The intersection
of the sphere is shown in Figure 5b. As it is shown, ϕP is
defined as the ratio of the length between the line connecting
pole a and the point p along the epipolar line and epipolar
line (abx′ ). Although the epipolar line which expresses 180
degrees on the geodesic grid (shown as the blue line) has
different length, the epipolar lines projected on the x′-axis
have the same length of abx′ . Therefore, the ratio for ϕP can
be calculated as the length ratio of apx′ and abx′ . Finally,
as shown in Figure 6a, by taking wg and wp(= 0.75Wg)
which are x-coordinates of points (bϕ, pϕ) re-projected to
x-axis, ϕ of P can be defined as,

ϕp(
◦) =

wp

wg
· 180◦ =

120(x+ y)

Wg
, (3)

where Wg is the width of the partial geodesic grid in pixel.
Next, we describe the derivation of θP. The projection of

the point p onto the y′-axis is used to calculate the ratio of

length between hp and hg. Because the sphere’s projected
geodesic grid is separated into five partial geodesic grids, we
have to define reference angles for each partial geodesic grid.
The reference angle of a partial geodesic grid is θg(

◦) =
72◦ · ng, when ng is defined sequentially as a number of
partial grids (0− 4) (Figure 5c). The length of the projected
line, hp, represents the angle between the reference angle
line (yellow line) and the point p.

Furthermore, careful observation of the y′-axis of the
partial geodesic grid shows that the resolution of the height
for θP representation is proportional to ϕP. Therefore, the
length of hg of the 72◦ line on the geodesic grid (shown
in green) is defined as hg =

Hg·ϕh

60 , when ϕh(
◦) is ϕP (for

0◦ ≤ ϕP < 60◦) or 60 (for 60◦ ≤ ϕP < 120◦) or 180◦−ϕP

(for 120◦ ≤ ϕP ≤ 180◦).
As shown in Figures 6b, 6c and 6d, θP is formulated by

using hp and hg as follows:

θp(
◦) = θg +

−→
hp

hg
· 72◦. (4)

Combining the definitions of hg and
−→
hp with Equation (4)

yields a simple linear equation which expresses θP in terms
of ϕp(

◦):

−→
hp

hg
=



(−x+y)
2(x+y) if 0◦ ≤ ϕP(

◦) < 60◦

(−x+y)
2Hg

if 60◦ ≤ ϕP(
◦) < 120◦

y−Hg

3Hg−(x+y) if 120◦ ≤ ϕP(
◦) < 180◦

, (5)

where Hg is the height of the partial geodesic grid in pixel.

4. Spherical Stereo Matching
We use the sum of absolute differences (SAD) as a cost
function of correspondence for block stereo matching. The
cost function C by angle disparity ϕd in 3D spherical is
defined as follows:

C(ϕ, θ, ϕd) =
∑

(ϕp,θp)∈N
| IL(ϕp, θp)−IR(ϕp−ϕdθp) |,

(6)
where N is the matching block centered at P(ϕ, θ).

For spherical stereo matching on the 2D projected plane,
we need to define a cost function with p(x, y). Because
the θp is the same in the epipolar line, we can define cost
function c as follows:

C(x, y, ϕd) =
∑

(i,j)∈N
| IL(i, j)− IR(i

′, j′) |, (7)

where (i′, j′) is the position of pixels in moved matching
block by the angle disparity ϕd centered at p′(x′, y′).

Based on the proposed projection model, we implement
the spherical stereo algorithm (Figure 7). By the definition
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Figure 7. Illustration of the proposed spherical stereo using a
geodesic grid. Along the epipolar line (blue line), we calculate the
cost of each matching blocks (Equation (7)). For the position of the
minimum cost block, we have ϕ and θ on the left and right geodesic
grid (Equations (3) and (4)). Using Equation (8), the stereo match-
ing algorithm can be implemented on the projected geodesic grid
in terms of x and y without referring to the 3D spherical geodesic
grid.

of the proposed projection model, an epipolar line is repre-
sented by three connected straight lines. Using the condi-
tions of linearly expressed epipolar line and ϕP, the position
of moved center pixel position p′(x′, y′) of matching block
π′ by ϕP can be expressed as follows:

pϕ′
d
(x′, y′) =



( xk
x+y ,

yk
x+y ) if 0◦ ≤ ϕP(

◦) < 60◦

(x−y+k
x , −x+y+k

2 ) if 60◦ ≤ ϕP(
◦) < 120◦

(k−mx+y
m+1 , −mk−mx+y

m−1 ) if 120◦ ≤ ϕP(
◦) < 180◦

,

(8)
where ϕ′

d = ϕl − ϕd and k =
Hgϕ

′
d

60 and m =
Hg−y
2Hg−x .

The shape of the hexagonal block for stereo matching is
changed when the geodesic grid is skewed (Figure 3). For ra-
dius r, the number of pixels in matching block can be defined
as: Nr = 3r2 + 3r + 1. The hexagonal-shaped matching
block is appropriate for the stereo matching because a pixel
in a hexagonal block only meets with the wall’s neighboring
pixels, i.e., no directional dependency than rectangular block
shape, which has eight neighboring pixels with four walls
and 4 points. Moreover, it has 20% smaller block size com-
pared with rectangular blocks used in the LL, which elim-
inates the redundancy problem, reducing the memory con-
sumption and the computational complexity of the algorithm.
Once the cost-volume is generated in accordance with Equa-
tions (7) and (8), the matched block is decided in the winner-
takes-all manner. According to the sine theorem, the distance
of the point P with Pl(θl, ϕl) and matched point Pr(θr, ϕr)
of the left and right normalized spherical images can be ex-
pressed as follows: dl = b sinϕr

sin(ϕl−ϕr)
, dr = b sin (π−ϕl)

sin(ϕl−ϕr)
,

where b is the baseline of spherical stereo camera.

5. Results
We validate our method quantitatively and qualitatively with
a synthetic rendering dataset and a real image dataset.

Datasets. For scientific evaluation of the proposed method,
we created and made use of a synthetic 360-degree image
dataset. Synthetic datasets with ground truth depth were
used to generate spherical stereo images. The fisheye stereo
datasets San-miguel, Sponza, and Bedroom were rendered
with a virtual camera of 220◦ FOV [19]. See Table 1 for more
details. In the dataset, three different scenes with different
positions and illumination conditions were generated by
rendering 3D scene models with a synthetic stereo camera.
Each dataset includes omnidirectional stereo images of color
and depth (Table 1). Real datasets were captured by our
custom-built stereo camera system with two commercial 360
cameras (Ricoh Theta) calibrated using [24].

Table 1. Environmental conditions of synthetic datasets
Place Distance Light source

San Miguel Outdoor ~20m Sunlight
Sponza Outdoor ~50m Sunlight

Bedroom Indoor ~4m Point

(a)

Figure 8. The disparity confidence map of Sponza 1. Left (LL
rectification) and right (ours) map shows valid/error pixels in binary
color (white/black). In the near pole region, our method provides
more valid pixels significantly.

Experiments. The accuracy of the proposed spherical stereo
algorithm based on the equal-epiline subdivision scheme
is compared with the LL-based and the CMP-based stereo
matching algorithm in terms of the error-rate and the RMSE.

For fairness in experimental comparison, the geodesic
grid resolution and matching block size are set to keep the
ratios of the vertical image resolution and matching block
radius equal, as shown in Figures 1 and 3b. The optimal
parameters of the LL-based and our methods were deter-
mined with consideration of resolution and computational
cost. Both methods have a similar matching block size with a
radius (r): (4r2+4r+1) for LL and (3r2+3r+1) for ours.
Also, both methods have the same vertical image resolution:
(1280× 2560) for LL and (1024× 2560) for ours. Note that
our method actually uses a 25% less block size and a 20%
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Figure 9. Results of synthetic datasets. Left-top is the left image of fisheye stereo; left-bottom is the ratio of error pixels by 10-pixel-step in
x-axis; GT disparity map; LL-based disparity map; Our disparity map; Comparison of disparity results at two identical positions. Refer to
the supplemental for more results.
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Figure 10. Results of real datasets captured by our 360 stereo camera setup with 7.5cm baseline. Leftmost column shows one of input stereo
images, which is followed by LL-based disparity map and ours. Right-half columns compare disparity maps in closeups.



Table 2. Quantitative comparison with the LL- and CMP-based stereo matching. For the given 1, 3, and 5 of δd, the proposed method shows
improved depth accuracy in terms of the error rate and RMSE for all datasets. Red numbers mean the best.

<1 <3 <5 RMSE
LL CMP Ours LL CMP Ours LL CMP Ours LL CMP Ours

San miguel 1 44.89 41.96 38.52 30.53 28.66 26.07 26.14 24.32 22.99 31.21 31.11 30.89
San miguel 2 44.99 42.01 39.46 35.91 33.13 31.51 31.47 30.21 27.88 29.71 29.55 28.45

Sponza 1 33.79 29.76 22.37 26.28 22.89 16.31 22.65 19.98 13.20 19.26 17.43 13.57
Sponza 2 39.41 38.15 35.71 29.69 28.03 26.32 25.26 23.33 22.30 30.51 30.15 29.36

Bedroom 1 53.41 52.41 48.34 41.11 39.56 37.53 36.52 34.42 33.91 39.13 38.88 37.79
Bedroom 2 51.51 46.41 38.99 38.79 37.65 35.35 34.21 32.85 31.25 39.96 37.77 28.66
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Figure 11. (a) The average of the error rates for six datasets. (b)
The error rate ratio between the LL-based method and the proposed
method. Results are sampled by 10 pixels along the x-axis to handle
the outliers in results.

less vertical resolution of the input image than the LL-based
method.

Figure 8 shows the disparity confidence map, which is the
expression of valid/error pixels in binary color. An error pixel
is defined if the disparity difference of the pixel between the
result disparity map and the ground truth is larger than δd,
and vice versa for a valid pixel. For the given threshold of
error (δd = 1), we discriminate valid/error pixels by compar-
ing disparity with the ground truth. As shown in Figure 8,
error pixels (black-colored) are remarkably found in the near
pole region. The quantitative comparison is performed in
terms of error rate and root-mean-squared error (RMSE) of
the disparity. The percentage of error pixels (error rate, E)
is defined as E = 1

N

∑
(x,y) (| d(x, y)− dGT (x, y) |< δd),

where N is the total number of pixels.
Table 2 is the table of the quantitative results for six

datasets. For all datasets, we have improved results in terms
of the error rate and RMSE on the full image. The proposed
method targets the pole problem, which is related to the
degradation of depth accuracy. The average error rate of six
datasets by the x-axis position ϕ is expressed in Figure 11(a).
The result is sampled by 10 pixels in horizontal resolution.
As can be observed in the figure, as farther from the center,
results of the LL- and CMP-based methods show a larger
error rate than the proposed method. To evaluate the num-
ber of error pixels according to the ϕ, we plot the ratio of
error rate (Figure 11b). For the position of the x-axis sam-
pled by 10 pixels, especially on the near pole region, we
have significantly improved results in error rate up to 40%.
In the center region, which means the near pole region’s
complement region, the value of E is almost the same.

Figure 9 qualitatively compares representative results of
our method with those of the LL-based stereo matching.
Compared with the ground truth maps, our method outper-
forms the LL-based stereo matching method particularly near
pole regions at the leftmost and rightmost ends, showing less
disparity errors and noise.

Figure 12. Real spheri-
cal stereo camera setup.

Figure 10 compares disparity
maps computed by the LL-based
matching and our method from
stereo images captured by a real
camera setup (as shown in Fig-
ure 12). Near pole regions, our
method can provide more sta-
ble depth estimation than the LL-
based approach. Note that we are
using the 20% smaller size of
the transformation resolution and
25% smaller matching block; good or bad indicators of a
very small difference in the center region is acceptable.

6. Conclusion
We have proposed a uniformly tessellated geodesic grid for
spherical stereo. Our geodesic grid achieves more accurate
disparity maps near the pole regions in spherical stereo than
the conventional LL-based rectification. Our equal-epiline
subdivision scheme can be used for low-cost direct block
matching stereo. Our direct stereo matching method just
requires a linear shift after only one projection of fisheye
images using a linearly defined projection function without
requiring any LUT and forward/backward projection. While
our method presents improved disparity in terms of the error
rate and RMSE in a full 360 image, including the near pole
region, it can be performed with a 20% smaller size of image
transformation resolution and a 25% smaller matching block
size.
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