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a b s t r a c t 
The performance of depth reconstruction in binocular stereo relies on how adequate the predefined base- 
line for a target scene is. Wide-baseline stereo is capable of discriminating depth better than the narrow- 
baseline stereo, but it often suffers from spatial artifacts. Narrow-baseline stereo can provide a more 
elaborate depth map with fewer artifacts, while its depth resolution tends to be biased or coarse due to 
the short disparity. In this paper, we propose a novel optical design of heterogeneous stereo fusion on a 
binocular imaging system with a refractive medium, where the binocular stereo part operates as wide- 
baseline stereo, and the refractive stereo module works as narrow-baseline stereo. We then introduce 
a stereo fusion workflow that combines the refractive and binocular stereo algorithms to estimate fine 
depth information through this fusion design. In addition, we propose an efficient calibration method for 
refractive stereo. The quantitative and qualitative results validate the performance of our stereo fusion 
system in measuring depth in comparison with homogeneous stereo approaches. 

© 2016 Elsevier Inc. All rights reserved. 
1. Introduction 

There have been many approaches to acquiring depth informa- 
tion of real scenes such as passive stereo [1] , active stereo [2] , 
time-of-flight imaging [3] , depth from defocus [4] , etc. Among 
them, passive stereo imaging has been commonly used for distant 
measurements to understand scene shapes. Classical stereo algo- 
rithms employ a pair of binocular stereo images. Such stereo al- 
gorithms estimate depth by evaluating the distance of correspond- 
ing features, so-called disparity, via computing matching costs and 
aggregating the costs [1] . However, owing to the nature of tri- 
angulation in depth estimation, depth accuracy strongly depends 
on the baseline between a stereo pair. For instance, a wide base- 
line elongates the range of the correspondence search so that the 
matching problem cannot be solved with high precision in typical 
locally-optimizing approaches [5] . On the contrary, a narrow base- 
line shortens the resolution of disparity; therefore, the accuracy of 
estimated depth could be degraded [6,7] . 

Recently, Gao and Ahuja [8,9] introduced a single-depth cam- 
era based on refraction. Chen et al. [10] further extended this re- 
fractive mechanism. Such refractive stereo systems estimate depth 
from the change of light direction; therefore, the disparity in re- 
fractive stereo in general is smaller than that in binocular stereo, 
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i.e., its performance is similar to that of binocular stereo with a 
narrow baseline. 

We take inspiration from refractive stereo to combine these two 
heterogeneous stereo systems, where a stereo fusion system is de- 
signed with a refractive medium placed on one of the binocular 
stereo cameras. In this paper, we introduce a novel optical design 
that combines binocular and refractive stereo and its depth pro- 
cess workflow that allows us to fuse heterogeneous stereo inputs 
seamlessly to achieve fine depth estimates. Our system comprises 
a pair of stereo cameras, one of which is covered with a transpar- 
ent medium, allowing for enhanced depth accuracy. The proposed 
approach offers benefits compared to the typical multiview stereo 
[7] in terms of building cost as our system employs just the same 
number of cameras as a binocular stereo does. It is also more ad- 
vantageous than multiview stereo, which consists of two cameras 
on a linear slider [11] , by providing physical stability, i.e., spinning 
the medium is less undemanding than moving a camera on the 
slider frequently at different distances. 

The refractive calibration process that we propose in this pa- 
per is a natural evolution of our previously published research 
[12] . We increase the efficiency of the tedious refractive calibra- 
tion process in the prior work [12] . In this paper, we propose a 
novel refractive calibration method that requires fewer angle sam- 
ples (at least three angles), rather than the dense angle samples, 
from 0 to 360 ° at 10-degree intervals. As such, the novel calibration 
method can accelerate the cumbersome calibration process that 
hinders the usefulness of refractive stereo. We believe that this 
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Fig. 1. (a) Binocular stereo detects depth accurately, whereas it suffers from spatial artifacts caused by occlusions and featureless regions. (b) Refractive stereo improves the 
spatial resolution with fewer artifacts, but its depth resolution is coarse with fewer steps. (c) Our stereo fusion significantly improves both spatial and depth resolution by 
combining these two heterogeneous stereo methods. 
calibration method increases the usefulness of the proposed stereo 
fusion method. 

Fig. 1 shows a brief overview of our method. The following con- 
tributions have been made: 
• A stereo fusion system that combines refractive and binocu- 

lar stereo. We propose a stereo fusion system that combines a 
refractive medium on a binocular base. The medium is placed 
in front of a camera in binocular stereo. 

• Calibration methods for stereo fusion. We develop a workflow 
of calibration for this fusion system that includes radiomet- 
ric, geometric and refractive calibration methods. In particular, 
we propose an efficient calibration method of refractive stereo 
based on xyz-Euler angles, which requires a smaller number of 
angle measurements (at least three angles), rather than dense 
measurements of complete angle variation. This calibration en- 
ables us to obtain the essential points of the entire angles from 
sub-sampled angle measurements. 

• Depth fusion workflow that combines two heterogeneous 
stereo images. Our calibration methods allow us to estimate 
depth from two heterogeneous stereos. The resulting depth 
map achieves a higher depth resolution with fewer artifacts 
than that of traditional homogeneous stereo. 

2. Binocular vs. refractive disparity 
This section describes the foundational differences of binocular 

and refractive stereo, surveying state-of-the-art depth-from-stereo 
methods. 
2.1. Multi-baseline stereo 

Binocular disparity in stereo imaging describes pixel-wise dis- 
placement of parallax between corresponding points on a pair of 
stereo images taken from different positions. Searching correspon- 
dence on an epipolar line is necessary prior to computing dispar- 
ity. As disparity d depends on its depth, we can recover the depth z 
using simple trigonometry as follows: 
z = f b /d, (1) 
where f is the focal length of the camera lens, and b is the distance 
between the center of projections for the two cameras, the so- 
called baseline. In particular, the baseline b determines the depth 
resolution of the stereo system, and b is also related with occlusion 

error. Therefore, baseline must be adapted to the scene configura- 
tion for optimal performance. There is no universal configuration 
of baseline for real-world conditions. 

Wide-baseline stereo reserves more pixels for disparity than 
narrow-baseline stereo does. Therefore, wide-baseline systems can 
discriminate depth with a higher resolution. On the other hand, 
the search range of correspondences increases, and in turn, it in- 
creases the chances of false matching. The estimated disparity map 
is plausible in terms of depth, but it includes many small regions 
without depth as spatial artifacts (of holes) on the depth map. This 
missing information is caused by occlusion and false matching in 
featureless or pattern-repeated regions, where the corresponding 
point search fails. 

Narrow-baseline stereo has a relatively short search range of 
correspondence. The search range of correspondence is shorter 
than that of wide-baseline stereo. There are fewer chances for false 
matching, so accuracy and efficiency in cost computation can be 
enhanced. In addition, the level of spatial noise in the disparity 
map is low because the occluded area is small. However, narrow- 
baseline stereo reserves a small number of pixels for depth dis- 
crimination. The depth-discriminative power decreases accordingly, 
whereas the spatial artifacts in the disparity map are reduced. It 
trades off the discriminative power for the reduced spatial artifacts 
in the disparity map. 
2.1.1. Multi-baseline stereo approaches 

This fundamental limitation of the baseline in binocular stereo 
has been addressed by the use of more than two cameras, so- 
called multi-baseline or multi-view stereo. Okutomi and Kanade 
[6] proposed a multi-baseline stereo method, which is a variant of 
multi-view stereo. The proposed system consists of multiple cam- 
eras on a rail. They presented the matching cost design for the 
multi-baseline setup. Instead of computing the color difference of 
a pixel on the reference view and the corresponding point on the 
other view, the color differences of all views are summed up. This 
multi-baseline stereo gives more accurate depth estimates than 
binocular stereo does. 

Furukawa and Ponce [13] presented a hybrid patch-based multi- 
view stereo algorithm that is applicable to objects, scenes, and 
crowded scene data. Their method produces a set of small patches 
from matched features, which allows the gaps between neighbor- 
ing feature points to be filled in, yielding a fine mesh model. 
Gallup et al. [14] estimated the depth of a scene by adjusting the 
baseline and the resolutions of images from multiple cameras so 
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that depth estimation becomes computationally efficient. This sys- 
tem exploits the advantages of multi-baseline stereo while requir- 
ing the mechanical support of moving cameras. Nakabo et al. [11] 
presented a variable-baseline stereo system on a linear slider. They 
controlled the baseline of the stereo system in relation to the tar- 
get scene to estimate the accurate depth map. 

Zilly et al. [7] introduced a multi-baseline stereo system with 
various baselines. Four cameras are configured in multiple base- 
lines on a rail. The two inner cameras establish a narrow-baseline 
stereo pair while two outer cameras form a wide-baseline stereo 
pair. They then merge depth maps from two different baselines. 
The camera viewpoints in the multi-baseline systems are secured 
mechanically at fixed locations in general. This design restricts the 
spatial resolution along the camera array while the depth map is 
being reconstructed. Refer to [15] for the in-depth investigation of 
other multi-view methods. 

Compared to the previous multi-baseline systems, we utilize 
a refractive medium on a rotary stage that is installed ahead of 
one of the binocular cameras. Our system requires only two cam- 
eras for binocular stereo, which is more efficient than other multi- 
baseline systems [7] that employ more than two cameras. In multi- 
baseline systems [11] , it is cumbersome to move a camera along a 
linear slider. This manual operation may suffer from misregistra- 
tion and broken calibration of multiview images, and such systems 
require a large space to operate for the camera movement. In the 
proposed system, we simply rotate a medium, instead of a camera, 
and can avoid any problems caused by the change of camera po- 
sition. The form factor of our system is much smaller than that of 
multi-baseline systems [7,11] . 
2.2. Refractive stereo 

Refractive stereo estimates depth using the refraction of light 
via a transparent medium. We follow the derivation of Gao and 
Ahuja [9] to formulate the optical geometry in refractive stereo. 
Suppose point p in a three-dimensional scene is projected to p d on 
an image plane through the optical center of an objective lens C di- 
rectly without any transparent medium (see Fig. 2 a). Insertion of a 
transparent medium in the light path changes the transport of the 
incident beam from p , and it reaches p r on the image plane with 
a lateral displacement d (between with and without the medium). 
The displacement between p d and p r on the image plane is called 
refractive disparity . 

Now we can compute the depth z of p using simple trigonom- 
etry following [8,9] : 
z = f R 

r , (2) 
where r is a refractive disparity completed by searching a pair of 
corresponding points, f is the focal length, and R is the ratio of 

lateral displacement d to sin ( θp ): 
R = d 

sin (θp ) . (3) 
Here θp is the angle between −→ 

p r C and the image plane. To obtain 
the value of R , we first compute cos ( θp ) as 
cos (θp ) = −→ 

p r e · −→ 
p r C 

∣∣−→ 
p r e ∣∣∣∣∣−→ 

p r C ∣∣∣ . (4) 
Then we plug sin ( θp ) into Eq. (3) after computing sin ( θp ) with 
this equation: 
sin 2 (θp ) + cos 2 (θp ) = 1 . (5) 
Lateral displacement d , the parallel-shifted length of the light pass- 
ing through the medium, is determined as [16] 
d = 

⎛ 
⎝ 1 −

√ 
1 − sin 2 (θi ) 
n 2 − sin 2 (θi ) 

⎞ 
⎠ t sin (θi ) , (6) 

where t is the thickness of the medium, n is the refractive index of 
the medium, and θ i is the incident angle of the light. Here, sin ( θ i ) 
can be obtained in a similar manner as the case of sin ( θp ) using 
the following equation: 
cos (θi ) = −→ 

p r C · −→ 
eC ∣∣∣

−→ 
p r C ∣∣∣∣∣∣−→ 

eC ∣∣∣ . (7) 
The refracted point p r lies on a line, the so-called essential line , 

passing through essential point e (an intersecting point of the nor- 
mal vector of the transparent medium to the image plane) and p d 
(see Fig. 2 b). This property can be utilized to narrow down the 
search range of correspondences onto the essential line, allowing 
us to compute matching costs efficiently. It is worth noting that 
disparity in refractive stereo depends on not only the depth z of p 
but also the projection position p d of light and the position of the 
essential point e , whereas disparity in traditional stereo depends 
on only the depth z of the point p . Before estimating a depth, we 
calibrate these optical properties in refractive stereo in advance. 
2.2.1. Refractive stereo approaches 

Nishimoto and Shirai [17] first introduced a refractive camera 
system in which a refractive medium is placed in front of a camera. 
Rather than computing depth from refraction, their method esti- 
mates depth using a pair of a direct image and a refracted one, as- 
suming that the refracted image is equivalent to one of the binoc- 
ular stereo images. Lee and Kweon [18] presented a single camera 
system that captures a stereo pair with a bi-prism. The bi-prism is 
installed in front of the objective lens to separate the input image 

Fig. 2. (a) Cross-section view of the light path in refractive stereo. (b) Close-up view of refractive light transport in 3D. 
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Fig. 3. (a) Our system prototype. (b) Point p is farther from the camera than point q . If there were no transparent medium in front of the right camera, points p and q are 
projected at pixels p d and q d via perspective projection. As the rays are refracted by the transparent medium, they are projected into p r and q r with the offsets of refractive 
disparities, which depend on the pose of the medium and the depths of p and q . (c) The left camera is installed next to the right camera with a baseline. Owing to parallax, 
the corresponding points are projected to p b and q b with binocular disparity. Note that these offsets are larger than p r and q r . 
into a stereo pair with refractive shift. The captured image includes 
a stereo image pair with a baseline. Depth estimation is analogous 
to the traditional methods. Gao and Ahuja [8,9] proposed a sem- 
inal refractive stereo method that captures multiple refractive im- 
ages with a glass medium tilted at different angles. This method 
requires the optical calibration of every pose of the medium. It was 
extended by placing a glass medium on a rotary stage in [9] . The 
rotation axis of the tilted medium is mechanically aligned to the 
optical axis of the camera. Although the mechanical alignment is 
cumbersome, this method achieves more accurate depth than the 
previous one does. 

Shimizu and Okutomi [19,20] introduced a mixed approach that 
combines refraction and reflection phenomena. This method super- 
poses a pair of reflection and refraction images via the surface of 
a transparent medium. These overlapping images are utilized as 
a pair of stereo images. Chen et al. [10,21] proposed a calibra- 
tion method for refractive stereo. This method finds the pairs of 
matching points on refractive images with the SIFT algorithm [22] 
to estimate the pose of a transparent medium. They then search 
corresponding features using the SIFT flow [23] . By estimating the 
rough scene depth, they recover the refractive index of a transpar- 
ent medium. 
3. System implementation 

We propose a novel stereo fusion system that exploits the ad- 
vantages of refractive and binocular stereo. This section describes 
technical details of the hardware design and calibration methods 
for the proposed system. 
3.1. Hardware design 

Our stereo fusion system consists of two cameras and a trans- 
parent medium on a mechanical support structure. The focal 
length of both camera lenses is 8 mm. The cameras are placed 
on a rail in parallel with a baseline of 10 cm to configure binoc- 
ular stereo. We place a transparent medium on a rotary stage for 
refractive stereo in front of one of the binocular stereo cameras. 
Fig. 3 (a) presents our system prototype. Fig. 3 (b) and (c) compare 
disparity changes by the refractive medium (b) and the baseline in 
stereo (c), respectively. Suppose we have two points, p and q ∈ R 3 , 
where point p is farther from the camera than point q . In Fig. 3 (b), 

if there is no transparent medium, points p and q will be projected 
at pixels p d and q d via perspective projection, respectively. How- 
ever, as we have the medium, rays are refracted and projected at 
pixels p r and q r due to refraction caused by the medium. Note that 
the refractive disparity (the offset distance) depends on the depth 
of point, i.e., the refractive disparity of distant point p is shorter 
than that of q , and the orientation of refractive disparity depends 
on the pose of the medium. In Fig. 3 (c), the left camera is installed 
next to the right camera with a baseline. The corresponding pix- 
els p d and q d are projected on p b and q b with binocular disparities. 
Comparing the refractive and the binocular disparity, the refractive 
disparities p r and q r are smaller than those of binocular disparities 
p b and q b . Refractive stereo is equivalent to narrow-baseline stereo 
while binocular stereo is equivalent to wide-baseline stereo in our 
system. 

Our transparent medium is a block of clear glass. The mea- 
sured refractive index of the medium is 1.41 ( η = sin (20 . 00 ◦) / 
sin (14 . 04 ◦) ), and the thickness of the medium is 28 mm. We built 
a customized cylinder to hold the medium, cut in 45 ° from the 
axis of the cylinder. The tilted medium spins around the optical 
axis from 0 ° to 360 ° with angle intervals while capturing images. 
The binocular stereo baseline and the tilted angle of the medium 
are fixed rigidly during image capturing. For the input images of a 
scene, multiple images refracted by the medium are captured on 
a camera and another image is obtained from the other camera 
without the glass. Note that the refractive medium is not detached 
while capturing the input. 
3.2. Calibration 

Our stereo fusion system requires several stages of prior calibra- 
tion to estimate depth information. This section summarizes our 
calibration processes. 
3.2.1. Geometric calibration 

We first calibrate the extrinsic/intrinsic parameters of the cam- 
eras, including the focal length of the objective lens, the center 
point of the image plane and the lens distortion in order to con- 
vert the image coordinates into the global coordinates. For the ge- 
ometric calibration, we captured 14 different positions on a chess- 
board. This allows us to derive an affine relationship between the 
two cameras and rectify the coordinates of these cameras with re- 
spect to the constraint epipolar line [24] . 
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Fig. 4. (a) Presents the calibrated results of 36 essential points measured by Baek and Kim’s method [12] . (b) shows the locations of 36 refracted points from a direct point 
in the coordinates of (763,229) at a distance of 40 cm. This figure shows that the direct point is refracted to 36 different positions depending on the medium orientation. 
3.2.2. Refractive calibration 

Refractive stereo demands several optical calibrations related 
with the glass medium, such as thickness, its refractive index, and 
the essential points of glass orientation. This section presents our 
novel calibration method for refractive stereo. 

Analogous to the rectification of the epipolar line in binocular 
stereo, refractive stereo requires calibration of the essential point 
e , where essential lines converge to the essential point e outside 
the image plane (see Section 2.2 for details on essential points and 
lines); i.e., the refracted point p r passes through the virtually unre- 
fracted pixel p d and reaches the essential point e on the essential 
line (see Fig. 2 b). 

Gao and Ahuja [8,9] estimate essential points by solving an op- 
timization problem with a calibration target at a known distance. 
They precompute the positions of the essential points at the en- 
tire angles by mechanically changing the normal orientation of 
the glass to each angle. Chen et al. [10] estimate essential points 
directly from a target scene without pre-calibration of essential 
points. Instead of capturing the calibration targets, they capture 
a target scene with and without the glass medium and apply the 
SIFT algorithm [10] to search correspondences of the refracted and 
unrefracted points. Their calibration process is simpler than that 
of previous works [8,9] . However, the accuracy of the calibration 
depends on the SIFT performance in searching correspondences. 

Recently, Baek and Kim [12] calibrate essential points through 
dense measurements of essential lines at each medium orienta- 
tion using a calibration target. They take an image of a chessboard 
without the medium first in order to compare it with other re- 
fracted images at different poses of the medium. Once they take 
a refracted image in a pose, they extract corner points from both 
the direct and the refracted images, where corresponding feature 
points appear at different positions due to refraction. Superposing 
these two images, they draw lines by connecting the correspond- 
ing points with all feature corners following Chen et al. [10] . They 
then compute the arithmetic mean of the intersection points’ coor- 
dinates to approximate essential point e φ per angle φ. They repeat 
this process for every angle φ ∈ $, where $ is the set of angles 
for calibration. Fig. 4 (a) presents the calibrated essential points for 
$ measured from 36 different orientations. 

Whereas Gao and Ahuja [8,9] require the measurement be- 
tween the target and the camera in addition to measuring essential 
lines, the method proposed by Baek and Kim [12] does not require 
measurement of the distance from the camera to the chessboard, 
and thus is more convenient. Note that Gao and Ahuja [9] should 
capture four angles of the medium iteratively, until the rotation 
axis of the medium meets the principal axis of the camera. Con- 

trary to Chen et al. [10] , Baek and Kim [12] employ a calibration 
target to enhance the reliability of refractive calibration. However, 
since their calibration requires rigorous measurements of the en- 
tire angle variation, their measurement step in refractive calibra- 
tion is very cumbersome and introduces any measurement errors. 

In order to overcome the problem of cumbersome measure- 
ments in the calibration process, we propose a modified approach 
of the previous refractive calibration introduced by Baek and Kim 
[12] . We were motivated to reduce the number of per-angle mea- 
surements of correspondences while estimating the entire essential 
points. 
Euler angle-based calibration. We propose a novel parametric ap- 
proach of refractive calibration on essential points. The key idea is 
to approximate the entire essential points of every angle by using 
a parametric rotation of xyz-Euler angles, where the rotation axis 
vector is optimized from a subset of measured essential points. 

Suppose we already estimated a certain number of essential 
points e φ for sampled angles φ ∈ $ following Baek and Kim 
[12] . Let the rotation axis of the medium be a unit vector u = 
[ u x , u y , u z ] T , where ∥ u ∥ 2 = 1 . We denote the unit normal vector 
of the medium at angle ϕ as n ( ϕ ) = [ n x ( ϕ ) , n y ( ϕ ) , n z ( ϕ ) ] T , where 
∥ n ( ϕ ) ∥ 2 = 1 . Without loss of generality, we set the reference an- 
gle (one of the measured angles) as zero degree. When we rotate 
the medium by degree ϕ from the reference angle with respect to 
the rotation axis u , the corresponding normal vector n ( ϕ) of the 
medium can be computed as follows: 
n ( ϕ ) = T ( ϕ, u ) n ( 0 ) , (8) 
where T ( ϕ, u ) is a rotation matrix that rotates a given vector n (0) 
by degree ϕ with respect to u . T ( ϕ, u ) is defined as an xyz-Euler 
angle rotation matrix with a rotation axis u following [25] : 
T ( ϕ, u ) = 

⎡ 
⎣ u 2 x v + c u x u y v − u z s u x u z v + u y s 

u y u x v + u z s u 2 y v + c u y u z v − u x s 
u z u x v − u y s u z u y v + u x s u 2 z v + c 

⎤ 
⎦ , (9) 

where c is defined as cos ϕ, s is sin ϕ, and v := 1 − c. 
Let e ϕ be the essential point for a pose of the medium, ro- 

tated about degree ϕ from the reference pose with respect to u . 
The essential point e ϕ in the image plane is located on a line that 
passes through the center of optics C . By definition, the unit nor- 
mal vector of the medium n ( ϕ) is on the same line (see Fig. 5 ). We 
then formulate this relation between the essential point e ϕ and the 
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Fig. 5. For angle ϕ of the medium, essential point e ϕ is formed as an intersection 
point in the image plane on a line that passes through the center of optics C . The 
unit normal vector of the medium n ( ϕ) is on the same line. 
normal n ( ϕ) as follows: 
n ( ϕ ) = e ϕ − C 

∥ e ϕ − C ∥ 2 . (10) 
We denote the right-hand side in Eq. (10) , (e φ − C )/ ∥∥e φ − C ∥∥

2 , 
as K φ . Our goal is to formulate essential points from any given 
angle rotation as a parametric calibration model. This axis vector 
u and the reference normal ˆ n ( 0 ) satisfy Eqs. (8) and (10) from 
known values K φ and can be formulated as an objective function: 
min 

u , ̂ n ( 0 ) ∑ 
φ∈ $

∥∥T ( φ, u ) ̂  n ( 0 ) − K φ∥∥
2 s . t . ∥∥ˆ n ( 0 ) ∥∥

2 = 1 and ∥ u ∥ 2 = 1 , 
(11) 

where ˆ n ( 0 ) is the optimized reference normal of the medium. Note 
that it is feasible to use n (0) directly instead of introducing ˆ n (0) 
using Eq. (10) . However, we found that when one of direct mea- 
sured normals is used as n (0) in optimization of Eq. (11) , opti- 
mized essential points can be biased occasionally upon an initial 
measurement error of n (0). We therefore choose to apply a joint 
optimization approach to find both optimal ˆ n (0) and u in order to 
enhance global accuracy. 

We solve this non-linear objective function using a non-linear 
optimization algorithm [26] . Note that we have six unknown vari- 
ables of u and ˆ n (0) . Since the unit normal vector n ( ϕ) has rank 2, 
Eq. (11) gives us two equations per angle φ. Therefore, we need at 
least three samples to solve Eq. (11) . See Fig. 12 for the impact of 
the number of input angles. 

After optimizing u , we can compute the essential point e ϕ at 
any arbitrary angle ϕ of the medium. The essential point e ϕ is the 
intersection point of a line that passes through the center of optic 
C displaced with f along the −z axis (see Fig. 5 ). Therefore, we can 
compute the essential point e ϕ as follows: 
e ϕ = T ( ϕ, u ) ̂  n ( 0 ) 

−T z ( ϕ, u ) ̂  n ( 0 ) f + C, (12) 
where T z ( ϕ, u ) is the z-axis vector of T ( ϕ, u ). 

In our experiment, we select a set of angles & to be used to 
estimate corresponding essential points from the estimated u with 
Eq. (8) . We denote the set of essential points as E for depth esti- 
mation. 
3.2.3. Radiometric calibration 

Matching costs are calculated by comparing the intrinsic prop- 
erties of color at feature points. Since we attach a transparent 
medium on one of the stereo cameras, it is critical to achieve 
consistent camera responses with and without the medium. In 
our system, the right camera is attached with the glass medium 

while the left camera is without any medium. We found that there 
are mismatches of colors captured in the same scene. We there- 
fore characterize these two cameras via radiometric calibration to 
match colors with each other. To do this, we employed a Gretag- 
Macbeth ColorChecker target of 24 color patches. We first captured 
an image from the refractive module with the medium and an im- 
age from the other camera without the medium. Then, we lin- 
earized these two RGB images with known gamma values as in- 
verse gamma correction. Since we had two sets of the linear RGB 
colors for the 24 patches, A and B (with and without the medium), 
of which the dimensions were 24 × 3 each, we determined an 
affine transformation M of A to B as a camera calibration func- 
tion (a 3 × 3 matrix) using least-squares [27] . Once we charac- 
terized two camera responses, we applied this color transform M 
for the linear RGB image which was reconstructed from the im- 
ages taken by the camera with the medium (see Section 4.1.3 ). 
This color characterization allowed us to evaluate matching costs 
for disparity through identical color reproductions of the two dif- 
ferent cameras. 
4. Depth reconstruction in stereo fusion 

Our stereo fusion workflow is composed of two stages. We 
first estimate an intermediate depth map from a set of refractive 
stereo images (from the camera with the refractive medium) and 
reconstruct a synthetic direct image. Then, this virtual image and 
a direct image (from the other camera without the medium in a 
baseline) are used to estimate the final depth map referring to the 
intermediate depth map from refractive stereo. Fig. 6 presents the 
workflow of our stereo fusion method. 
4.1. Depth from refraction 

Depth reconstruction from binocular stereo has been well- 
studied regarding matching cost computation, cost aggregation, 
disparity computation, and disparity refinement [1] , whereas depth 
reconstruction from refraction has been relatively less discussed. In 
this section, we describe our approach for refractive stereo for re- 
constructing an initial depth map. 
4.1.1. Matching cost in refractive stereo 

Binocular stereo algorithms often define the matching cost vol- 
umes of every pixel per disparity [1] , where a disparity value in- 
dicates a certain depth distance directly in binocular stereo. This 
linear relationship can be universally applied for all the pixels in 
stereo images. However, it is worth noting that the refractive dis- 
parity of a pixel depends on not only depth but also on its image 
coordinates and the pose of the medium in refractive stereo; i.e., 
the refractive disparities of a point on the object’s surface could 
be different when the pixel position or the pose of the medium 
is different. We therefore define the matching cost volumes based 
on the depth, rather than the disparity, in our refractive stereo al- 
gorithm, following a plane sweeping stereo method [28] . This ap- 
proach allows us to apply a cost volume approach for refractive 
stereo. 

Suppose we have a geometric position set P of the refracted 
points p r ( p d , z , e ) of direct point p d at depth z (see Fig. 2 ) with 
essential point e ( e ∈ E ): 
P (p d , z) = { p r (p d , z, e ) | e ∈ E } . (13) 
This set P can be derived analytically by refractive calibration 
( Section 3.2.2 ) so that we precompute this set P for computational 
efficiency. 

We denote L as the set of colors observed at the refracted po- 
sitions P , where l is a color vector in a linear RGB color space 
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Fig. 6. Schematic diagram of our stereo fusion method. (a) Our refractive stereo method estimates an intermediate depth map from refractive stereo. (b) Our stereo fusion 
method reconstructs a final depth map from a pair of an image from binocular stereo and a synthetic direct image obtained using the intermediate depth map. 
( l ∈ L ). Assuming that the surface of the direct point p d is Lamber- 
tian, the colors of the refracted points L ( p d , z ) would be the same. 
We use the similarity of L ( p d , z ) for the matching cost C of p d with 
hypothetical depth z [29] . Note that our definition of the matching 
cost is proportional to the similarity, different from the typical def- 
inition of the matching cost in traditional stereo algorithms. The 
definition of the matching cost is as follows: 
C(p d , z) = 1 

| L (p d , z) | ∑ 
l∈ L (p d ,z) K(l − l ) . (14) 

K is an Epanechnikov kernel [30] following: 
K(l) = {1 − ∥ l/h ∥ 2 , ∥ l/h ∥ ≤ 1 

0 , otherwise , (15) 
where h is a normalization constant ( h = 0 . 01 ). Here, l is a mean 
color vector of all elements in a set of L . We compute l̄ with five 
iterations in L ( p d , z ) using the mean shift method [31] as follows: 
l̄ = 

∑ 
l∈ L ( p d ,z) K(l − l̄ ) l 

∑ 
l∈ L ( p d ,z) K(l − l̄ ) . (16) 

z in our refractive stereo is a discrete depth, the range of which 
is set between 60 cm and 120 cm at 3 cm intervals. Note that we 
build a refractive cost volume per depth for all the pixels in the 
refractive image. 
4.1.2. Cost aggregation for depth estimation 

To improve the spatial resolution of the intermediate depth 
map in refractive stereo, we aggregate the refractive matching cost 
using a window kernel G . 

Advanced cost aggregation techniques, such as guided image 
[32] and bilateral weights [33] , require a prior knowledge of the 
scene, i.e., a unrefracted direct image. However, we do not capture 
the direct image in our experiments because this requires detach- 
ment of the medium for every scene. Therefore, we first aggregate 
the refractive matching costs using a Gaussian kernel G : 
G (p d , q d ) = 1 

2 πσ 2 exp (−|| p d − q d || 2 
2 σ 2 

)
, (17) 

where σ is set to 9.6 as a parameter. 
We filter the refractive matching cost at a pixel p d in a depth 

z , where this kernel convolves C ( p d , z ) with the matching costs of 
neighboring pixels with a weighting factor G ( p d , q d ) [34] : 
C A (p d , z) = ∑ 

q d ∈ w G (p d , q d ) C(q d , z) , (18) 

where q d is a pixel inside a squared window w, the size of which 
is 7 × 7. 

Finally, we compute the optimal depth Z ( p d ) of the point p d that 
maximizes the aggregated matching costs: 
Z(p d ) = arg max 

z C A (p d , z) . (19) 
4.1.3. Reconstructing a synthetic direct image 

Even though the levels of the two cameras are the same on a 
rail as traditional binocular stereo, our stereo pair includes more 
than horizontal parallax due to the refraction effect. Prior to com- 
bining the estimated refractive depth and the binocular stereo in- 
put, we reconstruct a synthetic image I d (a direct image without 
the medium) by computing the mean radiance of the set L ( p d , 
Z ( p d )) using the mean shift method ( Eq. (16) ). Note that this set 
L consists of colors gathered from the refracted images. 

Fig. 7 presents the initial depth map Z (a) and the reconstructed 
synthetic direct image I d (d), which is compared with a ground 
truth image (e) that was captured while the medium was de- 
tached. If the refractive depth estimates Z ( p d ) contains some errors, 
the resulting synthetic image I d also contains errors. 
4.1.4. Depth and direct image refinement 

Reconstructing the direct image allows us to apply a depth re- 
finement algorithm with a weighted median filter [35] by treating 
the synthetic direct image as guidance to fill in the holes of the es- 
timated depth map. The weighted median filter replaces the depth 
Z ( p d ) using the median from the histogram h ( p d , ·): 
h (p d , z) = ∑ 

q d ∈ w W (p d , q d ) f (q d , z) , (20) 
where f ( q d , z ) is defined as follows: 
f (q d , z) = {1 , if Z( q d ) − z = 0 

0 , otherwise . (21) 
Here, W is a weight function with a guided image filter [32] , de- 
fined as 
W (p d , q d ) 

= 1 
| w | 2 ∑ 

k :(p d ,q d ) ∈ w k (1 + (l d (p d ) − µk ) ()k + ϵU) −1 (l d (q d ) −µk )) , 
(22) 

where l d ( p d ) is the linear RGB color of p d on the direct image I d , U 
is an identity matrix, k is the center pixel of window w k including 
p d and q d , | w | is the number of pixels in w k , and µk and )k are 
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Fig. 7. (a) Shows an initial depth map. (b) shows the the computed positions of refracted pixels corresponding to the three essential points using the depth estimates (a). 
We recover a synthetic direct image (d) by computing the arithmetic mean of the corresponding refracted pixel colors (b) on the refracted images (c). (d) and (e) compare 
the synthetic image with a ground truth image that was captured while the medium was detached. 
the mean vector and covariance matrix of I d in w k . In our experi- 
ments, we set the size of w k as 9 × 9, and we set ϵ as 0.001. 

This median filter allows us to refine the hole artifacts in the 
depth map while preserving sound depth. Once we obtained this 
refined depth map, we iteratively build a synthetic image again 
using the refined depth map. Fig. 8 compares the initial synthetic 
image and the refined synthetic image from the second iteration. 

We next complete the synthetic direct image from the refracted 
images to be used as the input of binocular stereo. Since these two 
cameras’ color reproductions are different due to the insertion of 
the glass medium, we apply the color calibration matrix (described 
in Section 3.2 ) to the synthetic image. 

4.2. Number of refractive images 
The number of input refractive images is critical to the qual- 

ity of depth estimation in refractive stereo. We were motivated to 
identify the effects of number of input refractive images; therefore, 
we evaluated point-wise errors in estimating the depth on a planar 
surface at a known distance. We computed the root-mean-square 
error (RMSE) of depth estimates on a planar surface, indicated as a 
red rectangle in Fig. 9 (a). Fig. 9 (b) shows that the RMSE decreased 
very fast, while the input increased to six refractive images. Hence, 
we determined that we could utilize six refractive images as in- 
put considering the tradeoff between computation cost and depth 

Fig. 8. (a) Shows the refined depth map with weighted median filtering [35] . A synthetic direct image (c) is computed again using the refined depth map (a), used for 
binocular stereo later. (b) is the initial synthetic image. The refined synthetic image (e) has more details than the initial synthetic image (d). 
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Fig. 9. (a) The red square indicates the area used for finding effects of number of input refractive images for depth accuracy. The book cover is a planar surface orthogonal to 
the camera optical axis with a constant depth. (b) The depth error quickly decreased significantly up to six refractive inputs with different angles. No significant improvement 
is observed with more than six inputs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

Fig. 10. The binocular depth map (a) includes artifacts due to false matching caused by occlusions, featureless regions and repeated patterns. Using the intermediate refrac- 
tive depth map (b), we can limit the search range of a corresponding point p d between d post and d pre v for instance. This significantly reduces false matching frequency in 
estimating depth. 

Fig. 11. The top rows compares the three different depth maps of binocular only stereo (a), refractive only stereo (b) from the intermediate stage of our fusion method and 
our stereo fusion (c) for a scene (d). Our stereo fusion method (c) does not suffer from false matchings occurring at binocular only stereo (a). The bottom-right table presents 
the measured depth values on three points in the scene, demonstrating that our method can discriminate close surfaces, such as (i) and (iii), as much as binocular stereo 
does. Note that refractive stereo cannot distinguish the depth differences between (i) and (iii). 
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Fig. 12. (a) Shows the measured essential points (circles), and the essential points (solid line) calibrated from nine sampled angles. (b) describes the averaged calibration 
error of normals. The calibration error decreases rapidly up to nine sampled angles. We therefore chose nine angles for our calibration. (c) shows the refractive depth map 
obtained by 36 essential points measured. We reconstruct a plausible depth map (d), with 36 reconstructed essential points, obtained by nine sampled angles for calibration. 
Quantization artifacts shown in the depth maps will be handled by our stereo fusion stage. 
accuracy. Note that we use six refractive images with 60 ° intervals 
for capturing results in this paper. 
4.3. Depth in stereo fusion 

Our binocular stereo with a wider baseline allows us to dis- 
criminate depth with a higher resolution than refractive stereo 
(equivalent to narrow-baseline stereo). We take inspiration from a 
coarse-to-fine stereo method [36,37] to develop our stereo fusion 
method. Our refractive stereo yields an intermediate depth map 
with a high spatial resolution that is on a par with that of narrow- 
baseline stereo. However, it is not surprising that the z -depth reso- 
lution of this depth map is discrete and coarse. We utilize the fine 
depth map from refractive stereo to increase the z -depth resolu- 
tion as high as possible with a high spatial resolution by limiting 
the search range of matching cost computation in binocular stereo 
using the refractive depth map. To this end, we can significantly 
reduce the chances of false matching while estimating depth from 
binocular stereo between direct and synthetic images. This enables 
us to achieve a fine depth map from binocular stereo, taking ad- 
vantages of a high spatial resolution in refractive stereo. 
4.3.1. Matching cost in stereo fusion 

Now we have a direct image I b from the camera without the 
medium in the binocular module and the synthetic image I d re- 
constructed from the refractive stereo module ( Section 4.1.4 ) with 
its depth map. Depth candidates with uniform intervals are not re- 
lated linearly to the disparities with pixel-based intervals. Hence, 
we define a cost volume for stereo fusion on the disparity instead 
in order to fully utilize the image resolution. To fuse the depth 
from binocular and refractive stereo, we build a fusion matching 
cost volume F ( p d , d ) per disparity for all pixels as follows. The fu- 

sion matching cost F is defined as a norm of the intensity differ- 
ence: 
F (p d , d) = ∥∥l d (p d ) − l b (p ′ d ) ∥∥, (23) 
where p ′ 

d is a pixel shifted by a disparity d from p d , and l b (p ′ 
d ) is 

a color vector of p ′ 
d on image I b . 

4.3.2. Cost aggregation in stereo fusion 
In order to aggregate sparse matching costs, we first tried to 

use a guided image filter that consists of multiple box filters, as 
done when refining refractive depth. Prior to applying this filter, 
we reduce the search range of correspondence differently per each 
pixel using the depth map obtained from refractive stereo. Since 
the guided filter exploits integral images, which need to be con- 
structed for every pixel and every depth candidate, its computa- 
tional cost increases significantly due to the wide range of valid 
depth candidates for high depth resolution. Instead of the guided 
filter, we use a bilateral filter W in Eq. (24) , as the filter can be ap- 
plied to the different ranges of depths per pixel independently. We 
achieve a significant improvement in computational cost by apply- 
ing the bilateral image filter within a narrowed search range us- 
ing the depth prior from refractive stereo, while maintaining high 
depth resolution. The size of the kernel w is 9 × 9, and the value 
of ϵ is 0.001 in our experiments. The aggregated cost of the fusion 
matching costs in our method is defined as 
F A (p d , d) = ∑ 

q d ∈ w W (p d , q d ) F (q d , d) . (24) 
Here W is the bilateral image filter [34] defined as 
W (p d , q d ) = exp {−d(p d , q d ) 

σ 2 
s − c(p d , q d ) 

σ 2 
c 

}
, (25) 



62 S.-H. Baek, M.H. Kim / Computer Vision and Image Understanding 146 (2016) 52–66 

Fig. 13. Depth maps of a scene (a) are computed by five different methods. (b) and (c) show depth maps produced by global [38] and local binocular stereo [32] methods. 
(d) shows the depth maps obtained by a patchmatch-based binocular stereo method [39] . (e) presents depth maps produced by a refractive stereo method [10] . Our method 
(f) estimates depth accurately without suffering from severe artifacts. 
where d ( p d , q d ) is the Euclidean distance between p d and q d , c ( p d , 
q d ) is the sum of differences of colors of RGB channels, and σ s and 
σ c are the standard deviations for spatial distance and color dif- 
ference, respectively. In our experiment, we selected the window 
size, σ s , and σ c as 9, 7, and 0.07 respectively. 

Suppose the depth of point p d is estimated as Z ( p d ) from refrac- 
tive stereo. As we compute the refractive matching cost and aggre- 
gate the cost per discrete depth interval +z in refractive stereo, let 
the actual depth of p d be between (Z(p d ) − +z) and (Z(p d ) + +z) 
as Z pre v and Z post . The corresponding disparities of Z pre v and Z post 
can be computed as d pre v and d post using Eq. (1) . Note that d post 
is smaller than d pre v . We therefore estimate the optimal disparity 
D ( p d ) by searching the aggregated cost volume F A ( p d , d ) within the 

range [ d post , d pre v ] as follows: 
D (p d ) = arg min 

d F A (p d , d) . (26) 
Note that we compute Eq. (24) within the range of [ d post , d pre v ] ex- 
clusively for computational efficiency. 

The ground true disparity of an orange pixel in Fig. 10 (a) is 
approximately 200. However, the disparity from binocular stereo 
was estimated as 160 because the minimum aggregated cost of 
binocular disparity has a local minimum, yielding a wrong depth 
estimate. As a result, we were motivated to take a coarse-to-fine 
approach using both binocular and refractive disparity maps. As 
shown in Fig. 10 (b), the refractive depth map tends to have fewer 
spatial artifacts. We use this refractive disparity map as a guide 
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Fig. 14. Depth maps of a scene (a) are computed by five different methods. (b) and (c) show depth maps produced by global [38] and local binocular stereo [32] methods. 
(d) shows the depth maps obtained by a patchmatch-based binocular stereo method [39] . (e) presents depth maps produced by a refractive stereo method [10] . Our method 
(f) estimates depth accurately without suffering from severe artifacts. 
map for searching aggregated disparities. The search range is set 
to [ d post , d pre v ] around the refractive depth estimate with a thresh- 
old. To this end, we are capable of preventing faulty estimates in 
our stereo fusion. 
5. Results 
5.1. Implementations 

We conducted several experiments to evaluate the performance 
of our stereo fusion method. We computed depth maps, the resolu- 
tion of which was 1280 × 960 with 140 depth steps, on a machine 
equipped with an Intel i7-3770 CPU and 16GB RAM with CPU par- 
allelization. The computation times for estimating the depth map 
from six refractive inputs was about 77 s for the first stage of re- 
fractive stereo and about 33 s for the second-half stage of stereo 

fusion. The total computation time on runtime is about 110 s We 
precomputed the refracted essential points per pixel in the image 
plane beforehand for computational efficiency. 
5.2. Evaluation of refractive calibration 

Our refractive calibration method makes our system more effi- 
cient than our previous system [12] , by enabling us to utilize any 
angle of the medium from a smaller number of measurements in 
calibration (see Section 3.2.2 ). For validation of our refractive cali- 
bration method, we compare the measured 36 essential points and 
the reconstructed essential points using our calibration method. 
We first evaluate the effects of the cardinality of sampled angles 
| $|. The reconstruction error is defined as the arithmetic mean of 
L2 norms of the differences between the measured normals n and 
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Fig. 15. Depth maps of a scene (a) are computed by five different methods. (b) and (c) show depth maps produced by global [38] and local binocular stereo [32] methods. 
(d) shows the depth maps obtained by a patchmatch-based binocular stereo method [39] . (e) presents depth maps produced by a refractive stereo method [10] . Our method 
(f) estimates depth accurately without suffering from severe artifacts. 
the reconstructed normals ˆ n , obtained by Eqs. (10) and (12) , re- 
spectively. 

Fig. 12 (a) presents the measured 36 essential points (marked as 
circles), along with the reconstructed essential points (solid line), 
with nine sampled angles ( | $| = 9 ). Calibration error decreases 
rapidly up to nine samples, as shown in Fig. 12 (b). We therefore 
chose nine angles for our calibration. We estimate two depth maps 
(see Fig. 12 (c) and (d)): one from 36 measured essential points, 
and the other from 36 reconstructed points, with calibration of 
nine sampled angles. 
5.3. Quantitative evaluation 

The first row in Fig. 11 compares three different depth maps ob- 
tained by binocular only stereo (a), refractive only stereo (b) and 
our proposed stereo fusion method (c). Although the depth esti- 

mation of binocular only stereo (a) appears sound, (a) suffers from 
typical false matching artifacts around the edges of the front ob- 
ject due to occlusion. Refractive only stereo (b), obtained from the 
intermediate stage of our fusion method, presents depth without 
artifacts, but the depth resolution is significantly discretized and 
coarse. Our stereo fusion (c) overcomes the disadvantages of the 
homogeneous stereo methods. It estimates depth as well as binoc- 
ular stereo without severe artifacts. 

We quantitatively evaluated the accuracy of our stereo fusion 
method in comparison with the other methods in Fig. 11 (d). We 
measured three points in the scene using a laser distance meter 
(Bosch GLM 80) and compared the measurements by the three 
methods. The accuracy of our method is as high as that of the 
binocular only method (averaged distance error: ∼ 2 mm), while 
it is superior to that of the refractive only method (aver. error: 
∼ 6 mm). 
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5.4. Qualitative evaluation 

The first rows (a) in Figs. 13 , 14 and 15 present input images. 
The second rows (b) in these figures are results of the graphcut- 
based method [38] . The third rows (c) are results of a local binoc- 
ular stereo method [32] . The fourth rows present results of a 
patchmatch-based stereo method [39] . Note that we utilize left and 
right images captured without any transparent medium as input 
for the compared binocular stereo methods [32,38,39] . The fifth 
rows (e) show results of a refractive stereo method [10] . The last 
rows (f) present results of our stereo fusion method. 

We compared our proposed method with a renowned graphcut- 
based algorithm [38] with an image of the same resolution. Global 
stereo methods in general allow for an accurate depth map, while 
requiring high computational cost. It is not surprising that this 
global method was about eight times slower than our method, al- 
though it produces an elaborate depth map. 

We also compared our method with two local binocular meth- 
ods [32,39] , which compute matching cost as the norm of the in- 
tensity difference. In binocular methods [32,39] , the range of depth 
candidates is the same globally for every pixel. He et al. [32] pro- 
duce depth maps with some notable artifacts, and it took about 
212 s to compute, which is two times slower than our method. 
The patchmatch-based stereo method [39] presents depth accuracy 
similar to that of the graphcut-based algorithm [38] . It took about 
720 s, which is slightly faster than the graphcut-based method 
[38] . Thanks to the reduced range in searching matching cost, our 
stereo fusion method outperforms other two local stereo methods 
in terms of computational time, without sacrificing depth accuracy. 

A refractive method using SIFT flow [10] was also compared to 
ours. Six refractive images were employed for both methods. While 
the refractive method suffers from wavy artifacts caused by SIFT 
flow and its depth resolution is very coarse, typical of refractive 
stereo, our method estimates depth accurately with fewer spatial 
artifacts in all test scenes. 
6. Future work 

Our hardware design requires at least one rotation of the 
medium to obtain a depth map using more than two refracted im- 
ages. The transparent medium was manually rotated in our exper- 
iments. It restricts the applications of our system to static scenes. 
Making the medium smaller and motorizing the rotation unit to 
apply our system to dynamic scenes remains to be explored in our 
future work. 

Our pipeline currently consists of two stages: refractive depth 
estimation and stereo fusion. As our stereo fusion follows a coarse- 
to-fine approach, errors on the refractive depth map could be 
transferred to the final depth estimates. In our future work, we 
would like to resolve this problem by accounting for depth estima- 
tion and stereo fusion as a unified optimization problem to obtain 
a high-fidelity depth map. 

Since optical refraction is related with spectral dispersion, we 
would like to apply our stereo fusion paradigm to hyperspectral 
imaging, exploiting refraction effects on spectral dispersion. We 
anticipate that the combination of hyperspectral imaging and re- 
fractive stereo imaging can broaden various fields of hyperspectral 
3D imaging applications [40–43] . 
7. Conclusions 

We proposed a novel optical design combining binocular and 
refractive stereo and introduced a stereo-fusion workflow. Our 
stereo fusion system is capable of estimating depth information 
with a high depth resolution and fewer artifacts at a speed that is 

competitive with other local and global binocular methods. We val- 
idated that our proposed method combines the advantages of both 
traditional binocular and refractive stereo. Also, our refractive cali- 
bration method makes our system more efficient than the previous 
method [12] by reducing the calibration cost of refractive stereo. 
Our quantitative and qualitative evaluation demonstrates that our 
fusion method outperforms the traditional homogeneous methods 
in terms of artifacts and depth resolution. In addition to these ad- 
vantages, our stereo fusion can be easily integrated into any exist- 
ing binocular stereo systems by simply introducing a transparent 
medium in front of a camera, allowing for a significant improve- 
ment in a depth map with fewer artifacts. 
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