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1 Related Work Overview
We summarize the contributions of related methods for face acquisition in Table 1.

2 Polarization and subsurface scattering

2.1 Stokes-Mueller Formalism
A Stokes vector represents the polarization state of a light wave and is denoted as s = [𝑠0, 𝑠1, 𝑠2, 𝑠3]⊺ ∈ R4×1.
The elements of the Stokes vector include: 𝑠0 = 𝐿, the intensity of the light; 𝑠1 = 𝐿𝜓 cos 2𝜍 cos 2𝜒 , and 𝑠2 =

𝐿𝜓 sin 2𝜍 cos 2𝜒 , the power of the 0° and 45° linear polarization components, respectively; and 𝑠3 = 𝐿𝜓 sin 2𝜒 ,
the power of the right circular polarization component. 𝜍 is the polarization angle, 𝜒 is the ellipticity angle, and
𝜓 =

√︃
𝑠2

1 + 𝑠2
2 + 𝑠2

3/𝑠0 is the degree of polarization (DoP), defined as the ratio of the magnitude of the polarized
vector elements to the intensity of the light. The effect on the polarization of the interaction between light and
any element can be represented by a Mueller matrixM ∈ R4×4, that transforms a Stokes vector sin into sout as
sout =Msin. For a complete description of polarized light, see the works of Collett [2005] and Wilkie and Weidlich
[2012].
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Table 1. Comparison with other face capture methods. A green check mark indicates that the component is acquired by the
corresponding method. While many dynamic face acquisition methods obtain specular albedo by leveraging polarized light,
none of them can obtain a polarimetric BSSRDF parametrization, including the linear polarization components of reflectance.
Furthermore, our method is the first to measure all five listed BSSRDF parameters simultaneously with the biophysical
parameters of dynamic human faces. LP stands for linear polarization filter. BP stands for bandpass filter for multispectral
acquisition. Cyan check marks on the diffuse column means the method does not explicitly model the diffuse appearance.
On the dynamic column, the cyan check marks mean the method does not perform tracking. In the specular and subsurface
scattering columns, cyan check marks indicate the use of global (or fixed) parameters for humans.

Method Camera Filter Geometry Diffuse Dynamic
Polarization Face BSSRDF parameters

Polarized
light

Polarimetric
reflectance

Biophysical
Params.

Specular
albedo

Specular
roughness

Single
scattering

Subsurface
scattering

Refractive
index

Ph
ot
om

et
ric

st
er
eo

Weyrich et al. [2006] RGB — ✔ ✔ — — — — ✔ ✔ — ✔ —
Ma et al. [2007] RGB LP ✔ ✔ — ✔ — — — — — — —
Ghosh et al. [2008] RGB LP ✔ ✔ — ✔ — — ✔ ✔ ✔ ✔ —
Ghosh et al. [2011] RGB LP ✔ ✔ — ✔ — — ✔ — — — —
Fyffe et al. [2011] RGB — ✔ ✔ ✔ — — — ✔ — — — —
Fyffe and Debevec [2015] RGB LP ✔ ✔ ✔ ✔ — — ✔ — — — —
Gotardo et al. [2015] RGB LP ✔ ✔ ✔ ✔ — — — — — — —
Fyffe et al. [2016] RGB — ✔ ✔ — — — — ✔ ✔ — — —
LeGendre et al. [2018] Mono LP ✔ ✔ — ✔ — — ✔ — — — —

Le
ar
ni
ng

Li et al. [2020] RGB LP ✔ ✔ ✔ ✔ — — ✔ — — — —
Bi et al. [2021] RGB — ✔ ✔ ✔ — — — — — — — —
Liu et al. [2022] RGB LP ✔ ✔ ✔ ✔ — — ✔ — — — —
Zhang et al. [2022] RGB LP ✔ ✔ ✔ ✔ — — ✔ — — — —

Bi
op

hy
sic

al

Preece and Claridge [2004] Mono BP — — — — — ✔ — — — — —
Donner et al. [2008] Mono BP — — — — — ✔ — — — — —
Jimenez et al. [2010] RGB — — ✔ ✔ — — ✔ — — — — —
Alotaibi and Smith [2017] RGB — ✔ ✔ — — — ✔ — — — — —
Gitlina et al. [2020] RGB — — ✔ — — — ✔ — — — — —
Aliaga et al. [2022] RGB — — ✔ — — — ✔ — — — — —
Aliaga et al. [2023] RGB — — ✔ — — — ✔ — — — — —

St
er
eo

m
at
ch
in
g Bradley et al. [2010] RGB — ✔ ✔ ✔ — — — — — — — —

Beeler et al. [2010] RGB — ✔ ✔ ✔ — — — — — — — —
Beeler et al. [2011] RGB — ✔ ✔ ✔ — — — — — — — —
Gotardo et al. [2018] RGB — ✔ ✔ ✔ — — — ✔ — — — —
Riviere et al. [2020] RGB LP ✔ ✔ ✔ ✔ — — ✔ ✔ — ✔ —
Azinović et al. [2023] RGB LP ✔ ✔ — ✔ — — ✔ — — — —
Ours Polar BP ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

2.2 Fresnel Equation
The change of Stokes vectors by the transmission and reflection of light can be represented using the Fresnel
Mueller matrix F𝐹 ∈{T,R} that takes into account the different effects on light polarized along the plane of incidence
(𝐹 ∥ ) and light polarized perpendicular to it (𝐹⊥). Here 𝐹 ∈ {T ,R} refers to the Fresnel transmission (T ) or
reflection (R) coefficients. The Fresnel Mueller matrix is given by

F𝐹 ∈{T,R} =


𝐹⊥+𝐹 ∥

2
𝐹⊥−𝐹 ∥

2 0 0
𝐹⊥−𝐹 ∥

2
𝐹⊥+𝐹 ∥

2 0 0
0 0

√
𝐹⊥𝐹 ∥ cos𝛿

√
𝐹⊥𝐹 ∥ sin𝛿

0 0 −
√
𝐹⊥𝐹 ∥ sin𝛿

√
𝐹⊥𝐹 ∥ cos𝛿


, (1)

where 𝛿 is the retardation phase shift. The value of 𝛿 is 0 when the incident angle is larger than the Brewster
angle, and 𝜋 otherwise.

The Fresnel coefficients for reflection and transmission, denoted as R⊥, R ∥ , T⊥, and T ∥ , can be calculated as

R⊥ =

(
𝜂1 cos𝜃1 − 𝜂2 cos𝜃2
𝜂1 cos𝜃1 + 𝜂2 cos𝜃2

)2
,R ∥ =

(
𝜂1 cos𝜃2 − 𝜂2 cos𝜃1
𝜂1 cos𝜃2 + 𝜂2 cos𝜃1

)2
, (2)

T⊥ =

(
2𝜂1 cos𝜃1

𝜂1 cos𝜃1 + 𝜂2 cos𝜃2

)2
,T ∥ =

(
2𝜂1 cos𝜃1

𝜂1 cos𝜃2 + 𝜂2 cos𝜃1

)2
. (3)
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These coefficients describe the polarization state of light after being reflected or transmitted at an interface, and
depend on the refractive indices of the media on either side of the interface (𝜂1 and 𝜂2) as well as the incident
(𝜃1) and exitant (𝜃2) angles. We also define T + = (T⊥ + T ∥ )/2 and T − = (T⊥ − T ∥ )/2 using the Fresnel
transmittance coefficients, respectively.

2.3 Coordinate Conversions in Polarization
Different from conventional BRDF formulation, polarimetric rendering requires a coordinate conversion matrix
C(𝜗) for a given angle 𝜗 :

C(𝜗) =


1 0 0 0
0 cos 2𝜗 sin 2𝜗 0
0 − sin 2𝜗 cos 2𝜗 0
0 0 0 1

 . (4)

The polarimetric BRDF should be defined with respect to the coordinate systems of the incident Stokes vector
and exitant Stokes vector. A common coordinate system often used for polarimetric BRDFs consists of three
orthonormal vectors [Hwang et al. 2022]: the 𝑧-axis follows the direction of light propagation, the 𝑦-axis (ȳ𝑖,𝑜 ) is
aligned with the camera up vector and the 𝑥-axis (x̄𝑖,𝑜 ) is perpendicular to both. The plane of incidence of the
specular lobe and single-scattering lobe is defined with respect to the halfway vector h while the diffuse lobe is
defined by the surface normal n.

2.4 Polarimetric Reflectance Model
We adopt the specular and single scattering terms of the polarimetric reflectance model from the recent state-of-
the-art model by Hwang et al. [2022].

Specular term. The polarized specular reflection P𝑠 is defined as
P𝑠 = 𝜅𝑠Cℎ→𝑜 (−𝜑𝑜 )FR (𝜃𝑑 ;𝜂)C𝑖→ℎ (𝜑̃𝑖 ), (5)

where 𝜃𝑑 = cos−1 (h · 𝝎𝑖 ) is the zenith angle between incident light 𝝎𝑖 and the halfway vector h [Rusinkiewicz
1998], FR is the Mueller matrix form of the Fresnel reflection coefficients R and Cℎ→𝑜 (−𝜑𝑜 ) and C𝑖→ℎ (𝜑̃𝑖 ) are
the coordinate conversion matrices. The rotation angles are given as 𝜑̃𝑖,𝑜 = 𝜑𝑖,𝑜 − 𝜋/2, where 𝜑𝑖,𝑜 = tan−1 ((h ·
ȳ𝑖,𝑜 )/(h · x̄𝑖,𝑜 )). The term 𝜅𝑠 = 𝜌𝑠

D(𝜃ℎ ;𝛼𝑠 ) G(𝜃𝑖 ,𝜃𝑜 ;𝛼𝑠 )
4(n·𝝎𝑖 ) (n·𝝎𝑜 ) is the specular reflection term, where 𝜃ℎ = cos−1 (h · n) is the

zenith angle between the normal n and h, D represents the GGX distribution function [Walter et al. 2007], 𝛼𝑠 is
specular roughness term, G is Smith’s geometric attenuation function of shadowing/masking term [Heitz 2014],
and 𝜌𝑠 is the specular albedo.

Single scattering term. The practical single scattering term, on the other hand, is defined as
P𝑠𝑠 ≈ 𝜅𝑠𝑠Cℎ→𝑜 (−𝜑̃𝑜 )FR (𝜃𝑑 ;𝜂)C𝑖→ℎ (𝜑̃𝑖 ), (6)

where 𝜅𝑠𝑠 = 𝜌𝑠𝑠
D(𝜃ℎ ;𝛼𝑠𝑠 ) G(𝜃𝑖 ,𝜃𝑜 ;𝛼𝑠𝑠 )

4(n·𝝎𝑖 ) (n·𝝎𝑜 ) is the single scattering reflection term, and 𝛼𝑠𝑠 and 𝜌𝑠𝑠 represent roughness
and albedo of the single scattering term, respectively.

Subsurface scattering term. Refer to the main paper.

2.5 Human Skin Rendering with Subsurface Scattering
For translucent materials, exitant radiance 𝐿𝑜 (x𝑜 ,𝝎𝑜 ) is computed by convolving the incident light 𝐿𝑖 (x𝑖 ,𝝎𝑖 )
with a bidirectional scattering surface reflectance distribution function (BSSRDF) Ψ [Nicodemus et al. 1977]:

𝐿𝑜 (x𝑜 ,𝝎𝑜 ) =
∫
𝐴

∫
2𝜋

Ψ(x𝑖 ,𝝎𝑖 ; x𝑜 ,𝝎𝑜 )𝐿𝑖 (x𝑖 ,𝝎𝑖 ) (n · 𝝎𝑖 )𝑑𝝎𝑖𝑑𝐴(x𝑖 ). (7)
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Donner and Jensen [2005] approximate the BSSRDF of multi-layered translucent homogeneous materials using
the multipole diffusion model:

Ψ(x𝑖 ,𝝎𝑖 ; x𝑜 ,𝝎𝑜 ) =
1
𝜋
T +
𝑖 (𝝎𝑖 ;𝜂𝑖 )𝑅( | |x𝑖 − x𝑜 | |)T +

𝑜 (𝜃𝑜 ;𝜂𝑜 ), (8)

where 𝑅 is the diffuse reflectance profile and T +
𝑖 and T +

𝑜 are the Fresnel transmittance at the incident point x𝑖
and the exitant point x𝑜 .

Given the absorption coefficients 𝜎𝑎 , reduced scattering coefficients 𝜎 ′
𝑠 , refractive index 𝜂, and the thickness of

the outer layer 𝑑 , the multipole diffusion approximation gives the forward reflectance profile 𝑅f
out and forward

transmittance profile 𝑇 f
out of the outer layer

𝑅f
out (𝑟 ) =

∑︁𝑛

𝑘=−𝑛

(
𝑃 (𝜎tr, 𝑧𝑟,𝑘 ) − 𝑃 (𝜎tr, 𝑧𝑣,𝑘 )

)
, (9)

𝑇 f
out (𝑟 ) =

∑︁𝑛

𝑘=−𝑛

(
𝑃 (𝜎tr, 𝑑 − 𝑧𝑟,𝑘 ) − 𝑃 (𝜎tr, 𝑑 − 𝑧𝑣,𝑘 )

)
, (10)

where 𝑧𝑟,𝑘 and 𝑧𝑣,𝑘 are the positions of the 𝑘-th positive and negative point sources, respectively. 𝑃 (𝜎, 𝑧) =
𝛼 ′ ·𝑧 (1+𝜎 ·𝑑𝑧 )

4𝜋𝑑3
𝑧

𝑒−𝜎 ·𝑑𝑧 is the influence by the point source. 𝑑𝑧 =
√
𝑟 2 + 𝑧2 is the distance between the surface of the

object and the point source. 𝛼 ′ = 𝜎 ′
𝑠/𝜎 ′

𝑡 is the reduced albedo, 𝜎tr =
√︁

3𝜎𝑎𝜎 ′
𝑡 is the effective transport coefficient,

and 𝜎 ′
𝑡 = 𝜎𝑎 + 𝜎 ′

𝑠 is the reduced extinction coefficient.
By solving the boundary conditions about the extrapolated boundaries using a multipole expansion, (2𝑛 + 1)

multipoles are placed as
𝑧𝑟,𝑘 = 2𝑘 (𝑑 + 𝑧𝑏 (0) + 𝑧𝑏 (𝑑)) + 𝑙,

𝑧𝑣,𝑘 = 2𝑘 (𝑑 + 𝑧𝑏 (0) + 𝑧𝑏 (𝑑)) − 𝑙 − 2𝑧𝑏 (0),
(11)

where 𝑙 = 1/𝜎 ′
𝑡 is the mean free path, 𝑧𝑏 (0) = 2𝐴(0)𝐷 and 𝑧𝑏 (𝑑) = 2𝐴(𝑑)𝐷 are extrapolation distances at depth

𝑧 = 0 and 𝑧 = 𝑑 , respectively. 𝐴(0) = 1+𝐹 (0)dr
1−𝐹 (0)dr is the change due to internal reflection at the surface, 𝐷 = 1/3𝜎 ′

𝑡 is
the diffusion constant, and 𝐹 (0)dr is average Fresnel reflectance [Egan et al. 1973]:

𝐹 (0)dr ≈
{

−0.4399 + 0.7099
𝜂 (0) − 0.3319

𝜂2 (0) + 0.0636
𝜂3 (0) , 𝜂 (0) < 1

− 1.440
𝜂2 (0) +

0.710
𝜂 (0) + 0.668 + 0.0636𝜂 (0), 𝜂 (0) > 1 (12)

where 𝜂 (0) is the relative refractive index over surface 𝑧 = 0.
For the backward reflectance and transmittance profiles of the outer layer, we can simply swap the upper and

lower surfaces. Forward reflectance profile at the inner layer can be computed by assuming the thickness of the
layer is infinite 𝑑 =∞ and dipole approximation 𝑛 = 0 using Equation (9).

Convolutional form of rendering equation. Computing the analytic form of bidirectional scattering reflectance
is too expensive, so Donner et al. [2008] propose an efficient method that approximates the reflectance and
transmittance profiles of multi-layered heterogeneous materials by constraining the variation of parameters to
be slow relative to the mean free path, which means that properties are locally homogeneous. The efficiency of
this formulation of skin rendering is especially important in our iterative optimization framework.
Given the incident flux Φ(x𝑖 ,𝝎𝑖 ) at a surface point which can be precomputed by the incident radiance in

Equation (7), we can compute the radiant emittance profile,𝑀 (x𝑜 ), by convolving the incident flux Φ with the
reflectance profile 𝑅x𝑜 at exitant point x𝑜 :

𝑀 (x𝑜 ) =
∬

Φ(x𝑖 ,𝝎𝑖 )𝑅x𝑜 ( | |x𝑜 − x𝑖 | |)𝑑𝐴 = Φ ∗ 𝑅x𝑜 . (13)

As opposed to the homogeneous case, the convolution of layer responses in the heterogeneous model depends
on the local position on the interface between the layers. For example, at point x𝑜 , the convolution of the
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heterogeneous profiles of the forward transmission of the outer layer, 𝑇 f
out, and the reflectance of the inner layer,

𝑅f
in results in

(𝑇 f
out ∗ 𝑅f

in)x𝑜 ( | |x𝑜 − x| |) =
∫

𝑇 f
out,x𝑖 ( | |x𝑖 − x| |)𝑅f

in,x𝑜 ( | |x𝑜 − x𝑖 | |)𝑑x𝑖 , (14)

which depends on the convolution of the profile of the second layer 𝑅f
in,x𝑜 at x𝑜 with the transmittance responses

of the first layer 𝑇 f
out,x𝑖 over all local positions on the interface x𝑖 . Note that 𝑅f

in,x𝑜 and 𝑇 f
out,x𝑖 are the profiles at

each x𝑜 and x𝑖 .
Finally, the heterogeneous multi-layered forward reflectance profile 𝑅 can be computed by accounting for the

sum of multiple inter-scattering between the two heterogeneous layers:

𝑅 = 𝑅f
out +

𝑛∑︁
𝑖=0

𝑇 f
out ∗ 𝑅f

in ∗ [𝑅b
out ∗ 𝑅f

in]𝑖 ∗𝑇 b
out . (15)

To efficiently compute the profiles, d’Eon et al. [2007] use the sum of separable Gaussian functions as an accurate
approximation for radially symmetric profiles by minimizing the following equation:

min
𝑤𝑗

∫ ∞

0
𝑟

(
{𝑇, 𝑅}{f,b}{in,out} (𝑟 ) −

𝑚∑︁
𝑗=1

𝑤 𝑗𝐺 (𝑣 𝑗 , 𝑟 )
)2

𝑑𝑟, (16)

where 𝑣 𝑗 and𝑤 𝑗 are the variance and weight, respectively, of the Gaussian function 𝐺 (𝑣, 𝑟 ) = 1
2𝜋𝑣𝑒

−𝑟 2/(2𝑣) . After
optimization, we can approximate our radially symmetric profiles as the sum of separable Gaussian functions:

{𝑇, 𝑅}{f,b}{in,out} (𝑟 ) ≈
𝑚∑︁
𝑗=1

𝑤 𝑗𝐺 (𝑣 𝑗 , 𝑟 ). (17)

The convolution of separable Gaussian functions can be implemented as two 1D convolutions, which is much
more efficient. We also follow Donner et al. [2008] in representing each profile using a fixed set of Gaussians,
where the variance of the Gaussian sets is a power of 4𝑛𝑣0, where the initial variance 𝑣0 is 0.012 mm, from the
mean free path in the outer layer. This results in the following equivalence:

{𝐺 (𝑣0),𝐺 (𝑣0) ∗𝐺 (𝑣0) · · · } = {𝐺 (𝑣0),𝐺 (4𝑣0),𝐺 (42𝑣0), · · · }, (18)

which allows us to compute the convolution of the next wider Gaussian function from the results of the previous
narrow Gaussian function.

3 Polarimetric Imaging

3.1 Polarimetric Image Formation Detail
We now describe a new coaxial image formation designed for the polarimetric BSSRDF model. In our system, our
light sources are equipped with a linear polarizer so that the incident light is linearly polarized, with the Stokes
vector being s𝑖 = [1, 1, 0, 0]⊺ . The Stokes vector s𝑜 reflected from a surface point can be expressed as

s𝑜 = 𝑆Ps𝑖 = 𝑆



𝜅𝑠R+ + 𝜅𝑠𝑠R+ + ∑
x𝑖 ∈S

𝜌𝑠𝑠𝑠 (T +T + − T −T +𝜉)

𝜅𝑠R+ + 𝜅𝑠𝑠R+ − ∑
x𝑖 ∈S

𝜌𝑠𝑠𝑠T −T +𝜉

− ∑
x𝑖 ∈S

𝜌𝑠𝑠𝑠T −T +𝜁

0


, (19)
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where 𝑆 = (n · 𝝎𝑖 )/Γ2 is the shading term with attenuation, Γ is the distance between the light source and the
surface, 𝜅𝑠 is the specular reflection term of 𝜌𝑠 D(𝜃ℎ ;𝛼𝑠 ) G(𝜃𝑖 ,𝜃𝑜 ;𝛼𝑠 )

4(n·𝝎𝑖 ) (n·𝝎𝑜 ) , 𝜅𝑠𝑠 is the single scattering reflection term of
𝜌𝑠𝑠

D(𝜃ℎ ;𝛼𝑠𝑠 ) G(𝜃𝑖 ,𝜃𝑜 ;𝛼𝑠𝑠 )
4(n·𝝎𝑖 ) (n·𝝎𝑜 ) , 𝜉 = cos(2𝜙), and 𝜁 = sin(2𝜙).

The multi-layered subsurface scattering light interaction events lead to depolarization. As a result, the difference
between Fresnel transmittances for parallel and perpendicular polarized light in both incoming and outgoing
directions approaches zero: T −

𝑜 T −
𝑖 ≈ 0. In addition, a near-coaxial setup allows for convenient simplifications in

our polarimetric reflectance model [Baek et al. 2018; Hwang et al. 2022]. Geometrically, a coaxial setup results in
𝝎𝑖 ≈ 𝝎𝑜 , 𝜙𝑖 ≈ 𝜋 − 𝜙𝑜 , 𝜑𝑖 ≈ 2𝜋 − 𝜑𝑜 , 𝜁𝑖 ≈ −𝜁𝑜 , and 𝜉𝑖 ≈ 𝜉𝑜 . In addition, the incident angle is, by definition, below
the Brewster angle, so cos𝛿 = −1 for both the specular and the single scattering terms, (where 𝛿 is the phase shift
delay, 𝛿 = 0 when the incident angle is larger than the Brewster angle, 𝛿 = 𝜋 otherwise). Last, while we define
Fresnel reflection coefficients as R+ = (R⊥ + R ∥ )/2, R× =

√
R⊥R ∥ , and R− = (R⊥ − R ∥ )/2 (R⊥ and R ∥ being

the perpendicular and parallel components, respectively), in a near-coaxial setup the parallel and perpendicular
Fresnel reflection coefficients become very similar, thus R ∥ ≈ R⊥; this results in R− ≈ 0 and R+ ≈ R× .

Our simplified version of the Mueller matrix thus becomes

P ≈



𝜅𝑠,𝑠𝑠R+ + ∑
x𝑖 ∈S

𝜌𝑠𝑠𝑠T ++ − ∑
x𝑖 ∈S

𝜌𝑠𝑠𝑠T −+𝜉
∑

x𝑖 ∈S
𝜌𝑠𝑠𝑠T −+𝜁 0

− ∑
x𝑖 ∈S

𝜌𝑠𝑠𝑠T −+𝜉 𝜅𝑠,𝑠𝑠R+ 0 0

− ∑
x𝑖 ∈S

𝜌𝑠𝑠𝑠T −+𝜁 0 −𝜅𝑠,𝑠𝑠R+ 0

0 0 0 −𝜅𝑠,𝑠𝑠R+


, (20)

where 𝜅𝑠,𝑠𝑠 = 𝜅𝑠 + 𝜅𝑠𝑠 is the sum of the specular and single scattering reflection terms, T ++ = T +T + is the
multiplication of the positive Fresnel transmission coefficients, and T −+ = T −T + is the multiplication of the
negative/positive coefficients.

We then capture the reflected light with a polarization camera that outputs the image I corresponding to four
linear-polarization angles as

I =


𝐼0
𝐼90
𝐼45
𝐼135

 =
1
2


1 1 0 0
1 −1 0 0
1 0 1 0
1 0 −1 0

 s𝑜

=
𝑆

2



2𝜅𝑠R+ + 2𝜅𝑠𝑠R+ + ∑
x𝑖 ∈S

𝜌𝑠𝑠𝑠 (T +T + − 2T −T +𝜉)∑
x𝑖 ∈S

𝜌𝑠𝑠𝑠T +T +

𝜅𝑠R+ + 𝜅𝑠𝑠R+ + ∑
x𝑖 ∈S

𝜌𝑠𝑠𝑠 (T +T + − T −T +𝜉 − T −T +𝛼)

𝜅𝑠R+ + 𝜅𝑠𝑠R+ + ∑
x𝑖 ∈S

𝜌𝑠𝑠𝑠 (T +T + − T −T +𝜉 + T −T +𝛼)


.

(21)

From the captured images 𝐼0, 𝐼90, 𝐼45, 𝐼135, we extract each component of the total reflection. First, 𝐼90 can be used
to extract the unpolarized subsurface-scattering component. We define the unpolarized subsurface scattering
observation 𝐼𝑠𝑠𝑠 as

𝐼𝑠𝑠𝑠 = 𝑆
∑︁
x𝑖 ∈S

𝜌𝑠𝑠𝑠T +T + = 2𝐼90, (22)

where S is the set of the surface points x𝑖 of the face.
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Information about the polarized subsurface scattering term can also be obtained by subtracting 𝐼135 from 𝐼45,
which we define as a subsurface scattering polarization observation 𝐼𝜁 as

𝐼𝜁 = 𝑆
∑︁
x𝑖 ∈S

𝜌𝑠𝑠𝑠T −T +𝜁 = 𝐼135 − 𝐼45. (23)

Lastly, subtracting 𝐼0 by 𝐼90, we can obtain a combination of specular reflection, single scattering, and oriented
subsurface scattering parameters. We define this combination as the specular-dominant polarization observation
𝐼𝑠 as

𝐼𝑠 = 𝑆 (𝜅𝑠R+ + 𝜅𝑠𝑠R+ −
∑︁
x𝑖 ∈S

𝜌𝑠𝑠𝑠T −T +𝜉) = 𝐼0 − 𝐼90. (24)

3.2 Spectral/Geometry Calibration of the System
In order to capture the spectral reflectance information of the human face, we calibrate each Dolby lens transmit-
tance and the polarized camera response function. We use a spectrometer capture device (JETI) with a white
Spectralon (99% reflectance) to first capture the transmittance of Dolby lenses by dividing the spectral distributions
of the transmitted light by the original light. For the camera response function, we select one of the polarization
cameras and capture the Spectralon images, lit by LED lights equipped with a liquid crystal tunable filter (LCTF),
which transmits a selected wavelength band. First, we estimate the spectral transmittance of the LCTF filter
(similarly to the Dolby lens). Then, we capture the images every 10 nm in range 420 nm– 670 nm. To calibrate
across polarization cameras, we capture an image by placing a sphere-shaped Spectralon at the location where
the face will be captured. Then, we normalize the captured value to the predicted camera response function with
light. For color cameras, we use a color checker to calibrate the color camera by a 3×3 matrix. To calibrate our
camera’s intrinsic and extrinsic parameters, we use a ChArUco checkerboard. We capture multiple images of
varying checkerboard poses and minimize the reprojection errors.

4 Computation Details

4.1 Computing Normals from Heights
The non-unit normal vector ñ at each pixel is computed from the displacement map 𝐻 [Riviere et al. 2020] as

ñ = (𝑠u t̂u +
𝜕𝐻

𝜕u n̂) × (𝑠v t̂v +
𝜕𝐻

𝜕v n̂)

=
[
t̂u t̂v n̂

] 
𝑠u 0 0
0 𝑠v 0
0 0 𝑠u𝑠v



−𝛿𝐻

𝛿u
−𝛿𝐻

𝛿v
1

 ,
(25)

where t̂u and t̂v are the finite differences in 𝑢 and 𝑣 directions of the tangent vector t of the initial mesh. n̂ is the
unit normal vector of the mesh at the pixel, 𝑠u and 𝑠v are the original lengths of tangent vectors of the initial
mesh. We then normalize ñ to obtain a unit vector.

5 Optimization Details

5.1 Polarimetric Inverse Rendering Details
For the first polarimetric inverse rendering step, specifically, we minimize the following energy function:

min
𝜂,𝛼𝑠 ,𝛼𝑠𝑠 ,𝜌𝑠 ,𝜌𝑠𝑠 ,𝜌𝑠𝑠𝑠 ,𝐻

𝜆𝜓L𝜓 + 𝜆𝑠𝑠𝑠L𝑠𝑠𝑠 + 𝜆𝑠L𝑠 + 𝜆𝜙L𝜙 + Lreg, (26)
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whereL𝜓 is the refractive index loss,L𝑠𝑠𝑠 is the subsurface scattering loss,L𝑠 is the specular and single scattering
loss, L𝜙 is the azimuthal loss, and Lreg is the regularizer term, 𝜆𝜓 = 0.002, 𝜆𝑠𝑠𝑠 = 1, 𝜆𝑠 = 1, 𝜆𝜙 = 1 are the weights
assigned to each loss, respectively.

Subsurface scattering loss. We formulate a photometric loss of subsurface scattering L𝑠𝑠𝑠 by evaluating the
rendered subsurface scattering image 𝐼 𝑡𝑠𝑠𝑠 with the captured image 𝐼 𝑡𝑠𝑠𝑠 at each frame 𝑡 of multiview input:

L𝑠𝑠𝑠 =
∑︁

𝑡
V𝑡

(
𝐼 𝑡𝑠𝑠𝑠 − 𝐼 𝑡𝑠𝑠𝑠

)2
, (27)

where V𝑡 is the visibility texture map at frame 𝑡 for each view. The visibility map V𝑡 is 1 at the visible pixel region
and 0 otherwise.
Solving the subsurface scattering optimization problem directly is computationally expensive and ill-posed.

And thus, as mentioned in the main paper, we break the optimization process into two steps to make it more
manageable. In the first step, we make the reasonable assumption that the Fresnel transmittance of human skin
does not change dramatically across the surface, as the refractive index and roughness of the skin typically change
smoothly over the surface. Based on this assumption, we approximate the subsurface scattering reflectance
as 𝐼 𝑡𝑠𝑠𝑠 = 𝑆𝜌𝑠𝑠𝑠T +T +, where 𝜌𝑠𝑠𝑠 implicitly encompasses the approximated overall observation of subsurface
scattering effects at the exitant point originated from multiple incident locations.

In the following second stage, we use the optimized surface scattering reflectance 𝜌𝑠𝑠𝑠 and further decompose
this value using our novel inverse subsurface scattering optimization method. This two-step approach allows us
to address the complex problem of subsurface scattering optimization in a more efficient and comprehensive
manner.

Specular and single scattering loss. Current methods for human face skin modeling [Ghosh et al. 2008; Ma et al.
2007; Riviere et al. 2020] and pBRDF optimization [Baek and Heide 2021; Baek et al. 2018; Hwang et al. 2022]
often require augmentation or clustering techniques to compensate for the limited number of specular samples
per texel when determining specular and single scattering parameters. Thanks to our stereo imaging module,
we can obtain a dense set of light-view samples for each texel by merging all video sequence frames into the
reference frame as participants rotate their heads. This approach enables a more comprehensive analysis of skin
and pBRDF properties, eliminating the need for augmentation or clustering. We formulate the specular and single
scattering loss as

L𝑠 =
∑︁

𝑡
V𝑡

(
𝐼 𝑡𝑠 − 𝐼 𝑡𝑠

)2
, (28)

where 𝐼 𝑡𝑠 is computed using Equation (24) by using 𝜌𝑠𝑠𝑠T −T +𝜉 instead of
∑

x𝑖 ∈S 𝜌𝑠𝑠𝑠T −T +𝜉 and 𝜉 = cos(2𝜙).

Refractive index loss. The refractive index loss is particularly relevant because it globally affects appearance
at multiple levels, and our work provides a spatially-varying index of refraction from images. We adopt the
refractive-index loss fromHwang et al. [2022] that formulates the degree of polarization (DoP) of the multi-layered
subsurface scattering reflections𝜓 = |T −/T + | using unpolarized subsurface scattering image 𝐼𝑠𝑠𝑠 , subsurface
scattering polarization image 𝐼𝜁 , and specular polarization image 𝐼𝑠 as

𝜓 =

����√︃(𝐼𝜁 )2 + (𝐼𝜉 )2/𝐼𝑠𝑠𝑠
���� , (29)

where 𝐼𝜉 = 𝐼𝑠 −𝜅𝑠𝑆R+−𝜅𝑠𝑠𝑆R+ = −𝑆𝜌𝑠𝑠𝑠T −T +𝜉 . With this observed DoP, the refractive index loss term becomes

L𝜓 =
∑︁
𝑡

V𝑡
(
𝜓 (𝜂, 𝜃 𝑡𝑜 ) −𝜓 𝑡

)2
, (30)
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where 𝜓 is the predicted DoP value, which can be formulated using refractive index 𝜂 and the surface zenith
angle 𝜃 𝑡𝑜 [Atkinson and Hancock 2006]. The value of 𝜂 is only optimized at the static initialization stage, but this
loss term is also influenced by the local geometry defined by the displacement map 𝐻 , which is updated at every
frame.

Azimuthal loss. We implement the azimuthal loss of shape from polarization as proposed by Hwang et al.
[2022]:

L𝜙 =
∑︁
𝑡=1

V𝑡W𝑡
𝜙

(
(𝐼 𝑡
𝜁
− 𝐼 𝑡

𝜁
)2 + (𝐼 𝑡

𝜉
− 𝐼 𝑡

𝜉
)2

)
, (31)

where 𝐼 𝑡
𝜁
= 𝑆𝜌𝑠𝑠𝑠T −T +𝜁 𝑡 and 𝐼 𝑡

𝜉
= −𝑆𝜌𝑠𝑠𝑠T −T +𝜉𝑡 denote the diffuse polarized images obtained by optimized

azimuth angles 𝜁 𝑡 = sin(2𝜙𝑡 ) and 𝜉𝑡 = cos(2𝜙𝑡 ) at frame 𝑡 , respectively. Note that diffuse polarization can be
computed as 𝑆𝜌𝑠𝑠𝑠T −T + =

√︃
(𝐼 𝑡
𝜁
)2 + (𝐼 𝑡

𝜁
)2. The initial geometry extracted from multi-view stereo effectively

resolves the 𝜋 ambiguity of shape from polarization [Atkinson and Hancock 2006; Kadambi et al. 2015]. We
calculate the weight matrix W𝑡

𝜙
by determining the normalized mean value of 𝐼𝑠𝑠𝑠 .

Regularization loss. Our regularization loss term is designed to preserve spatial and temporal consistency and
is formulated as

Lreg = 𝜆𝐻tregL𝐻treg + 𝜆𝐻sregL𝐻sreg + 𝜆𝛼𝑠L𝛼𝑠 + 𝜆𝛼𝑠𝑠L𝛼𝑠𝑠 + 𝜆𝜂L𝜂, (32)
where L𝐻treg and L𝐻sreg represent temporal and spatial regularization losses for the displacement map, L𝛼𝑠 , L𝛼𝑠𝑠 ,
and L𝜂 are correspond to spatial regularization losses for specular, single scattering roughness, and refractive
index, 𝜆𝐻treg = 1, 𝜆𝐻sreg = 1000, 𝜆𝛼𝑠 = 200, 𝜆𝛼𝑠𝑠 = 200, 𝜆𝜂 = 400 are the respective weights assigned to each loss.
To preserve the geometry information of our optimized mesh relative to the initial geometry, we apply a

temporal regularization loss term to our displacement map:

L𝐻treg = 𝐻 2. (33)

For spatial smoothness, we use the Laplacian operator on the displacement map:

L𝐻sreg =
∑︁
x∈S

(
∇2𝐻 (x)

)2
, (34)

where S represents the valid texture region containing the human face surface.
We assume that local spatial variations in roughness on the human face are minimal, although significant

differences can be observed between distinct regions. The local variation of specularity mainly originates
from variations in the specular albedo. Additionally, some specific pixels may not have a sufficient number of
observations to estimate the parameters. We formulate the spatial smoothness term for the refractive index and
the roughness parameter of both specular and single scattering as

L𝛼𝑠 =
∑︁
x∈S

(𝛼𝑠 (x) − 𝛼𝑠 (x))2 ,

L𝛼𝑠𝑠 =
∑︁
x∈S

(𝛼𝑠𝑠 (x) − 𝛼𝑠𝑠 (x))2 ,

L𝜂 =
∑︁
x∈S

(𝜂 (x) − 𝜂 (x))2 ,

(35)

where 𝜂 (x) is the average refractive index values of the neighboring pixels of x, 𝛼𝑠 (x) and 𝛼𝑠𝑠 (x) are the average
specular and single scattering roughness values of the neighboring pixels of x, respectively. We employ a 5×5
window to calculate the average pixel value.
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5.2 Dynamic Inverse Rendering Details
By the given roughness parameter from the static reconstruction, we solve the following energy function to
estimate the other parameters in the dynamic capture per each frame 𝑡 :

min
𝜌𝑡𝑠 ,𝜌

𝑡
𝑠𝑠 ,𝜌

𝑡
𝑠𝑠𝑠 ,𝐻

𝑡
𝜆̃𝑠𝑠𝑠L𝑠𝑠𝑠 + 𝜆̃𝑠L𝑠 + 𝜆̃𝜙L𝜙 + L̃reg, (36)

where L𝑠𝑠𝑠 , L𝑠 , L𝜙 are inherited from the static capture loss (Equation (26)). 𝜆̃𝑠𝑠𝑠 = 1, 𝜆̃𝑠 = 1, 𝜆̃𝜙 = 0.2 are the
weights assigned to each loss, respectively.

Here, we defined a dynamic regularization term L̃reg as

L̃reg = 𝜆̃𝐻 𝑡
treg

L̃𝐻 𝑡
treg

+ 𝜆̃𝐻 𝑡
sreg L̃𝐻 𝑡

sreg + 𝜆̃𝜌𝑡𝑠 L̃𝜌𝑡𝑠
+ 𝜆̃𝜌𝑡𝑠𝑠 L̃𝜌𝑡𝑠𝑠

+ 𝜆̃𝜌𝑡𝑠𝑠𝑠 L̃𝜌𝑡𝑠𝑠𝑠
, (37)

where L̃𝐻 𝑡
treg

and L̃𝐻𝑡
sreg are the dynamic temporal and spatial regularization loss for displacement map which are

similar to Equations (33) and (34), L̃𝜌𝑡𝑠
, L̃𝜌𝑡𝑠𝑠

, L̃𝜌𝑡𝑠𝑠𝑠
are the temporal regularization loss term for specular, single

scattering, and subsurface scattering, and 𝜆̃𝐻 𝑡
treg

= 0.001, 𝜆̃𝐻 𝑡
sreg = 500, 𝜆̃𝜌𝑡𝑠 = 0.01, 𝜆̃𝜌𝑡𝑠𝑠 = 0.01, and 𝜆̃𝜌𝑡𝑠𝑠𝑠 = 0.01 are

the weights assigned to each loss, respectively.
Our temporal regularization term for specular and single scattering intensity prevents flickering artifacts in

the sequence:
L̃𝜌𝑡𝑠

=
∑︁
𝑡=1

(
𝜌𝑡𝑠 − 𝜌0

𝑠

)2
, L̃𝜌𝑡𝑠𝑠

=
∑︁
𝑡=1

(
𝜌𝑡𝑠𝑠 − 𝜌0

𝑠𝑠

)2
. (38)

In short-term dynamic sequences, changes in the color of human skin are mainly caused by variations in
the hemoglobin ratio, which affects the chromaticity of the skin color. We incorporated it into our temporal
subsurface scattering regularization term to minimize the difference between the albedo of the static results and
that of the current frame, weighted by the intensity of the albedo:

L̃𝜌𝑡𝑠𝑠𝑠
=

∑︁
𝑡=1

𝑊 𝑡
𝜌𝑠𝑠𝑠

(
𝜌𝑡𝑠𝑠𝑠 − 𝜌0

𝑠𝑠𝑠

)2
, (39)

where𝑊 𝑡 = | ¤̄𝜌0
𝑠𝑠𝑠 − ¤̄𝜌𝑡𝑠𝑠𝑠 | is the weight map which is computed by the difference between the intensity of the

average subsurface scattering in the static results ¤̄𝜌0
𝑠𝑠𝑠 and the intensity of the average subsurface scattering in

the current frame ¤̄𝜌𝑡𝑠𝑠𝑠 . Finally, using the estimated average subsurface scattering reflectance 𝜌𝑡𝑠𝑠𝑠 at the frame, we
optimize the face parameters, which are the same as the static scene reconstruction.

5.3 Optimization of Biophysically-based Parameters Details
In order to optimize biophysically-based parameters using photometric loss from rendering, we propose a
coordinate descent method [Wright 2015] using alternating least squares, designed to make this optimization
problem manageable. We split our optimization problem into two. The first subproblem is to obtain the spectral
weights 𝑤 𝑗 of the Gaussian functions from the reflectance and transmittance diffusion profiles with initial
variables as

min
𝑤𝑗

∫ ∞

0

(
{𝑇, 𝑅}{f,b}{in,out} (𝑟 ) −

𝑚∑︁
𝑗=1

𝑤 𝑗𝐺 (𝑣 𝑗 , 𝑟 )
)2

𝑑𝑟 . (40)

The second subproblem is to optimize the biophysical parameters from the spectral observation 𝜌𝑠𝑠𝑠 obtained
from polarimetric inverse rendering with 𝜌𝑠𝑠𝑠 :

min
𝐶hd,𝐶he,𝐶m,𝛽m

(𝜌𝑠𝑠𝑠 − 𝜌𝑠𝑠𝑠 )2 , (41)

as rendered with the approximated sum of separable Gaussians.
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To render the subsurface scattering component with optimizing variables, we formulate the total reflectance 𝑅
(or transmittance 𝑇 ) of each profile as the sum of Gaussians (SoG) as described in Section 2.5:∑︁

𝑗=0
𝑤𝑖,x𝑜 , 𝑗 = 𝑅𝑖,x𝑜 = 2𝜋

∫ ∞

0
𝑅𝑖,x𝑜 (𝑟 )𝑟𝑑𝑟 (42)

=

𝑛∑︁
𝑘=−𝑛

(
sign(𝑧𝑟,𝑘 )𝑒−𝜎tr |𝑧𝑟,𝑘 | − sign(𝑧𝑣,𝑘 )𝑒−𝜎tr |𝑧𝑣,𝑘 |

)
,

where𝑤𝑖,x𝑜 , 𝑗 is the weight of 𝑗-th variance of the 𝑖-th layer’s SoG at the exitant pixel x𝑜 , 𝑟 is the distance between
the incident surface point and the exitant surface point, sign() is the sign function, and 𝜎tr is the effective
transport coefficient. 𝑧𝑟,𝑘 and 𝑧𝑣,𝑘 are the positions of the 𝑘-th positive and negative point sources in Equation (11),
respectively.
Using the total reflectance (or transmittance), we can rephrase the SoG by approximately convolving total

reflectance using the normalized SoG as

𝐺𝑅𝑖,x𝑜
(𝑟 ) =

∑︁
𝑗=0

𝑤𝑖,x𝑜 , 𝑗𝐺 (𝑣 𝑗 , 𝑟 ) ≈ 𝑅𝑖,x𝑜

∑︁
𝑗=0

𝑤̄𝑖,x𝑜 , 𝑗𝐺 (𝑣 𝑗 , 𝑟 ) (43)

= 𝑅𝑖,x𝑜𝐺𝑅𝑖,x𝑜
(𝑟 ),

where
∑

𝑗=0 𝑤̄𝑖,x𝑜 , 𝑗 = 1. We can approximate this equation similarly to texture blurring in subsurface scattering
rendering methods [d’Eon et al. 2007; Donner and Jensen 2005; Jensen et al. 2001]:

𝑅𝑖,x𝑜 ≈
∫

𝑅𝑖,𝑥𝐺𝑅𝑖,x𝑜
( | |x𝑜 − x| |)𝑑x = 𝑅𝑖 ∗𝐺𝑅𝑖,x𝑜

. (44)

Ghosh et al. [2008] measure the translucency of the human skin using a contact probe, and they show that
it does not significantly vary spatially. Moreover, state-of-the-art face acquisition methods that consider the
blurring due to the subsurface scattering [Riviere et al. 2020] and the human skin rendering techniques [d’Eon
et al. 2007; Jimenez et al. 2015] also use a fixed parameter of blurriness.
Following these observations, we assume that the level of blurriness is spatially homogeneous:

𝑅𝑖,x𝑜

∑︁
𝑗=0

𝑤̄𝑖,x𝑜 , 𝑗𝐺 (𝑣 𝑗 ) ≈ 𝑅𝑖,x𝑜

∑︁
𝑗=0

𝑤̄𝑖, 𝑗𝐺 (𝑣 𝑗 ) = 𝑅𝑖,x𝑜𝐺𝑅𝑖
, (45)

where 𝐺𝑅𝑖
=

∑
𝑗=0 𝑤̄𝑖, 𝑗𝐺 (𝑣 𝑗 ). Then, finally, we can approximate the subsurface scattering of the human skin 𝑅̃ as

𝑅̃ = 𝑅f
out ∗𝐺𝑅f

out
+ ((𝑇 f

out ∗𝐺𝑇 f
out
) · 𝑅f

in ∗𝐺𝑅f
in
) ·𝑇 b

out ∗𝐺𝑇 b
out

+ · · · . (46)

We use gradient descent optimization to acquire the face skin parameters. To estimate the SoG of each profile,
we first downsample the images. As the distance of the neighboring pixel becomes larger, we can ignore the
spatial blurring. Then, we can render the per-pixel intensity just considering the multi-layer interaction between
the total reflectance as

𝑅x𝑜 = 𝑅f
out,x𝑜 +

∑︁
𝑛=0

𝑇 f
out,x𝑜𝑅

f
in,x𝑜 [𝑅

b
out,x𝑜𝑅

f
in,x𝑜 ]

𝑛𝑇 b
out,x𝑜 . (47)

Then, we fit SoG to each diffusion profile using the median intensity pixel. At the original resolution, we
minimize the difference between the rendered images using Equation (46) and the subsurface scattering albedo
images from polarimetric inverse rendering.

We use a fixed-size discrete kernel for each SoG. At each pixel x𝑜 , we first compute the distance between the
neighboring pixel, which is within the kernel size, and x𝑜 . Using this distance, we can compute the discrete SoG
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Table 2. Estimated biophysical parameters (mean and standard deviation) of subjects on the forehead and cheek with
different levels of skin tone.

Forehead
Skin I II III IV

Photograph

Sk
in

pa
ra
m
. He. (inner) 0.03691 (0.00563) 0.02072 (0.00792) 0.03622 (0.00903) 0.02654 (0.00837)

He. (outer) 0.01701 (0.00256) 0.08323 (0.02069) 0.07337 (0.00441) 0.10450 (0.01002)
Melanin 0.03243 (0.00183) 0.05036 (0.00400) 0.06155 (0.00228) 0.08909 (0.00330)
Rel. eumel. 0.09607 (0.00393) 0.04759 (0.01404) 0.05304 (0.00658) 0.05291 (0.00629)

Re
fle
c. Refrac. idx 1.44248 (0.01258) 1.41736 (0.01182) 1.39902 (0.00759) 1.41017 (0.00734)

Spec. rough. 0.58061 (0.02791) 0.57004 (0.04008) 0.54546 (0.02790) 0.54927 (0.02887)
SS. rough. 0.96929 (0.00980) 0.97965 (0.00731) 0.95140 (0.01186) 0.98458 (0.00542)

Cheek
Skin I II III IV

Photograph

Sk
in

pa
ra
m
. He. (inner) 0.02672 (0.00645) 0.01722 (0.00643) 0.05753 (0.00970) 0.02135 (0.01118)

He. (outer) 0.04337 (0.00637) 0.05639 (0.00652) 0.09753 (0.01057) 0.09513 (0.01790)
Melanin 0.02891 (0.00286) 0.04335 (0.00434) 0.03993 (0.00435) 0.07982 (0.00686)
Rel. eumel. 0.07224 (0.00821) 0.03684 (0.00971) 0.02355 (0.01014) 0.05559 (0.01228)

Re
fle
c. Refrac. idx 1.41323 (0.01404) 1.42730 (0.01083) 1.41453 (0.01454) 1.42888 (0.01116)

Spec. rough. 0.51574 (0.02848) 0.64520 (0.03452) 0.53625 (0.02827) 0.58147 (0.02452)
SS. rough. 0.96598 (0.00951) 0.95688 (0.01927) 0.97491 (0.00971) 0.97636 (0.00948)

kernel, which represents the subsurface scattering reflectance. To ensure energy conservation, we normalize the
kernel.

6 Implementation Details
Optimization. To compute all the losses in each iterative optimization, we use a PyTorch RMSprop optimizer.

We use a 2K×2K resolution texture to optimize whole parameters. For the static initialization stage, we use 200
frames that represent different views. We implement a patch-based gradient descent optimization with a 256×256
size of the patch. For the dynamic sequence, we estimate appearance parameters per frame, and we similarly
use patch-based gradient descent optimization. Our code runs on a machine equipped with an AMD EPYC 7763
CPU of 2.45 GHz and a single NVIDIA A100 GPU. For the static initialization, the polarimetric inverse rendering
takes 180 minutes (150 iterations) on 200 frames (views), and the biophysical multispectral optimization takes 50
minutes (1,000 iterations at coarse resolution and 250 full-resolution iterations). Dynamic inverse rendering takes
180 minutes for 50 frames (150 iterations) in addition to the additional biophysical multispectral optimization
of 20 minutes per frame (100 iterations at coarse resolution and 100 full-resolution iterations for subsurface
scattering).

7 Additional Results
In this section, we provide additional results of face acquisition.
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Biophysical Parameters. We analyze the estimated biophysical parameters of the forehead and cheek areas of
subjects with different levels of skin tone. Table 2 shows the estimated parameters as well as captured photographs.
We show that, as expected, darker skin exhibits higher concentration levels of estimated melanin. Moreover, the
estimated refractive indices of the skin fall into the range from 1.35 to 1.55, which shows a good agreement with
previous biophysical studies [Anderson and Parrish 1981; Van Gemert et al. 1989].

8 Additional Discussion
Impact of multispectral polarimetric imaging. Our system utilizes multiple polarimetric cameras equipped with

off-the-shelf multispectral filters. Polarimetric inverse rendering enables us to separate the components of the
polarimetric reflectance function. In addition, this yields a refractive index per texel. Accurate values for this
refractive index are crucial for the estimation of subsurface scattering, as it disambiguates its contribution to
appearance. Then, thanks to the multispectral input, we obtain concentration maps for individual biophysical
components. We observe that the combination of both polarimetric and multispectral input is effective in
estimating the overall range of subsurface scattering with high accuracy.

Spatial resolution. We utilize a polarization camera with a spatial resolution of 2448×2048. However, due to four
linear polarization filters and four color filters (RGBG), its effective resolution is reduced to 612×512. Although
we leverage the recent proposed demosaicing algorithm [Morimatsu et al. 2020] to enhance the spatial resolution
of the images in 2K, our system’s overall spatial resolution is half of that provided by conventional machine
vision cameras (4K). We anticipate that the spatial resolution of BSSRDFs can be significantly improved when
higher-resolution polarimetric cameras become available in the future.

Near-coaxial setup for polarimetric imaging. Our coaxial imaging configuration has the potential to substantially
alleviate the optimization challenges associated with polarimetric inverse rendering as evidenced by Baek et al.
[2018] and Hwang et al. [2022]. However, this setup requires only one directional light to be activated when the
corresponding directional camera captures the subject. In essence, this constraint prevents multiple polarimetric
cameras at different orientations from capturing the subject simultaneously, allowing for a more efficient capture
process.

Potential applications of photoplethysmography. Recent progress in photoplethysmography [Vilesov et al. 2022]
allows for precise heart rate measurements by integrating a traditional RGB camera with radar signals. This
represents a promising future research direction alongside our biophysical component measurements. However,
polarization cameras, which include additional polarization filters, tend to have lower light efficiency than
standard RGB cameras and often suffer from a low signal-to-noise ratio. This makes it challenging to distinguish
temporal changes in skin appearance caused by heart rate fluctuations over time. As advancements continue
in polarization camera technology, the prospect of using these devices for photoplethysmography presents an
intriguing future research opportunity.
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Table 3. Symbols and notations used in the paper.
Symbol Description

Ve
ct
or
s/
A
ng

le
s

n, h Normal/halfway vector
𝜙𝑖 , 𝜙𝑜 Azimuth angle between the incident/exitant light along the plane of incidence of the normal vector
𝜑𝑖 , 𝜑𝑜 Azimuth angle between the incident/exitant light along the plane of the incidence of the halfway vector
𝜃𝑖 , 𝜃𝑜 , 𝜃ℎ Zenith angle between the normal and the incident/exitant/halfway vector
𝜃𝑑 Zenith angle between the incident light and the halfway vector
x𝑖 , x𝑜 Incident/exitant point
𝝎𝑖 ,𝝎𝑜 Incident/exitant light direction
𝜁 {𝑖, 𝑜} sin(2𝜙{𝑖,𝑜 })
𝜉{𝑖,𝑜 } cos(2𝜙{𝑖,𝑜 })
𝛿 Retardation (delay) phase shift (0 when the incident angle is larger than the Brewster angle, 𝜋 otherwise)

Po
la
rim

et
ry

s𝑖 , s𝑜 Stokes vector of the incident/exitant light to an object surface
sin, sout Stokes vector before/after the transformation event
𝐼0, 𝐼90, 𝐼45, 𝐼135 0/90/45/135 degree linear polarized image
𝐼𝑠 , 𝐼𝑠𝑠𝑠 Specular/Subsurface scattering observation image
𝐼𝜁 Subsurface scattering polarization observation image
𝜂 Index of refraction
M Mueller matrix
C Coordinate conversion matrix
D Depolarized matrix
F𝐹 ∈{T,R} Fresnel Mueller matrix for transmission (T ) / reflection (R)
T ∥ ,R ∥ Fresnel transmission/reflection coefficient along the plane of incidence
T⊥,R⊥ Fresnel transmission/reflection coefficient perpendicular to the plane of incidence
T +,R+ (T⊥ + T ∥ )/2, (R⊥ + R ∥ )/2
T −,R− (T⊥ − T ∥ )/2, (R⊥ − R ∥ )/2
P𝑑 , P𝑠 , P𝑠𝑠 Mueller matrix for diffuse/specular/single scattering reflection
P𝑠𝑠𝑠 Mueller matrix for subsurface scattering

BS
SR

D
F

D,G Normal GGX distribution/Smith’s geometric attenuation function
𝜅𝑠 , 𝜅𝑠𝑠 Specular/single scattering term
𝜅𝑠,𝑠𝑠 𝜅𝑠 + 𝜅𝑠𝑠
𝛼𝑠 , 𝛼𝑠𝑠 Roughness parameter of specular/single scattering
𝜌𝑠 , 𝜌𝑠𝑠 , 𝜌𝑑 Albedo of specular/single scattering/diffuse
𝜌𝑠𝑠𝑠 Subsurface scattering reflectance function
𝜌𝑠𝑠𝑠 Averaged subsurface scattering reflectance value

Su
bs
ur
fa
ce

sc
at
te
rin

g
pa
ra
m
et
er

𝜎
oxy
𝑎 , 𝜎

deoxy
𝑎 Spectral absorption coefficient of oxy/deoxy hemoglobin

𝜎em
𝑎 , 𝜎

pm
𝑎 Spectral absorption coefficient of eumelanin/pheomelanin

𝜎b
𝑎 Spectral absorption coefficient of base human skin

𝜎out
𝑎 , 𝜎 in

𝑎 Spectral absorption coefficient of outer/inner layer
𝜎out′
𝑠 , 𝜎 in′

𝑠 Reduced scattering coefficient of outer/inner layer
𝛼 ′ Reduced albedo
𝜎 ′
𝑡 , 𝑙 Reduced extinction coefficient and mean free path

𝜎tr Effective transport coefficient
𝑧𝑟,𝑘 , 𝑧𝑣,𝑘 Position of the positive/negative monopole
𝐷 Diffusion constant
𝐹 (0)dr Average Fresnel reflectance at the surface depth 0
𝐴(0) (1 + 𝐹 (0)𝑑𝑟 )/(1 − 𝐹 (0)𝑑𝑟 )
𝐶h,out,𝐶h,in Fraction of hemoglobin in outer/inner layer
𝐶m Fraction of melanin in the inner layer
𝛽m Fraction of eumelanin in the inner layer melanin
𝛾out, 𝛾in Oxy-hemoglobin fraction in outer/inner hemoglobin

Su
bs
ur
fa
ce

Sc
at
te
rin

g

Φ Incident flux
𝑀 Radiant emittance profile
𝐿𝑖 , 𝐿𝑜 Incident/exitant radiance
Ψ Bidirectional scattering-surface reflectance-distribution function
𝑅f
out,𝑇

f
out Forward reflectance/transmittance profile of the outer layer

𝑅b
out,𝑇

b
out Backward reflectance/transmittance profile of the outer layer

𝑅f
in Forward reflectance profile of the inner layer

𝑅𝑖 ,𝑇𝑖 Total reflectance/transmittance profile at layer i
𝐺 Gaussian function
𝑣 𝑗 Variance of the sum of the Gaussian at index 𝑗

𝐺𝑅𝑖 ,𝐺𝑇𝑖 Sum of Gaussian of reflectance/transmittance profile at layer 𝑖
𝐺𝑅𝑖

,𝐺𝑇𝑖
Normalized sum of Gaussian of reflectance/transmittance profile at layer 𝑖
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