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Fig. 1. Current polarimetric acquisition systems are limited to static, opaque objects. In this work, we present a novel appearance acquisition method that
allows us to obtain biophysically-based polarimetric BSSRDF and surface geometry of dynamic faces. Our polarimetric appearance parameters include index
of refraction, specular roughness, single scattering roughness, specular intensity, and single scattering intensity. We also introduce an end-to-end multispectral
optimization with heterogeneous subsurface scattering, revealing biophysically-based skin parameters including inner- and outer-layer hemoglobin, eumelanin
and pheomelanin. Our model is compatible with popular human skin models in graphics. Please refer to the supplemental video for dynamic results.

Acquisition and modeling of polarized light reflection and scattering help
reveal the shape, structure, and physical characteristics of an object, which is
increasingly important in computer graphics. However, current polarimetric
acquisition systems are limited to static and opaque objects. Human faces, on
the other hand, present a particularly difficult challenge, given their complex
structure and reflectance properties, the strong presence of spatially-varying
subsurface scattering, and their dynamic nature. We present a new polarimet-
ric acquisition method for dynamic human faces, which focuses on capturing
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spatially varying appearance and precise geometry, across a wide spectrum
of skin tones and facial expressions. It includes both single and heteroge-
neous subsurface scattering, index of refraction, and specular roughness
and intensity, among other parameters, while revealing biophysically-based
components such as inner- and outer-layer hemoglobin, eumelanin and
pheomelanin. Our method leverages such components’ unique multispectral
absorption profiles to quantify their concentrations, which in turn inform
our model about the complex interactions occurring within the skin layers.
To our knowledge, our work is the first to simultaneously acquire polari-
metric and spectral reflectance information alongside biophysically-based
skin parameters and geometry of dynamic human faces. Moreover, our po-
larimetric skin model integrates seamlessly into various rendering pipelines.

CCS Concepts: • Computing methodologies→ Reflectance modeling.

Additional Key Words and Phrases: Polarization imaging, multispectral
imaging, skin reflectance modeling
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1 INTRODUCTION
Polarization can provide valuable information about the shape and
physical characteristics of an object. As a result, polarization-based
systems have become increasingly important in computer graphics.
These require capturing and processing four-dimensional Stokes
vectors to account for all potential polarization states.

Furthermore, the capture of polarimetric reflectance requires con-
trol over incident and outgoing light, which are both Stokes vectors,
so the reflectance function is often represented by a four-by-four
Mueller matrix that links each component of the incident light with
its outgoing counterpart. The complexity of this matrix increases
the computational cost of estimating polarization appearance pa-
rameters, requiring additional observations with different incoming
and outgoing directions and polarization states. Ellipsometry is
the most common technique to estimate this matrix, using struc-
tured optical measurements to characterize how light interactions
affect the polarization state. Current methods to capture spatially
varying polarimetric reflectance techniques need to apply strong
assumptions to make the problem tractable. As a result, they are
still limited to acquiring polarimetric appearance information from
static opaque objects.

In this work, we lift these restrictions and capture the polarimetric
reflectance of dynamic deformable objects with strong, spatially-
varying subsurface scattering. We specifically target the challenging
case of human faces, which are both deformable and translucent.
Figure 1 compares two different polarization rendering results by a
state-of-the-art method [Hwang et al. 2022] and ours. By accounting
for heterogeneous subsurface scattering, our model yields more
precise results, closer to the photographic reference.
Estimating such subsurface scattering is challenging since light

scatters through the multiple translucent layers of skin. We base
our subsurface scattering appearance model on biophysical com-
ponents, in particular melanin (eumelanin and pheomelanin) and
hemoglobin (oxy-hemoglobin and deoxy-hemoglobin). Our hard-
ware setup captures six spectral observations, and we rely on the
unique spectral absorption profiles of these biophysical components
to estimate their individual contribution to the final appearance.

Our algorithm is made up of two stages. First, we capture polari-
metric observations of the subject’s static face from a wide range
of angles, from which we optimize the appearance parameters that
serve as initialization for the next stage. In the second stage, for
each frame, we follow a similar optimization, starting from the out-
come of the first stage. With this approach, we obtain per-frame
high-quality dynamic geometry, as well as spatially-varying appear-
ance parameters represented as texture maps. We use polarization
imaging for estimating specular reflectance, single scattering and
geometrical detail, while we approximate the biophysical param-
eters from the spectral observations of subsurface scattering. To
our knowledge, our technique is the first to capture polarimetric
reflectance on dynamic deformable objects. We show results across
a wide spectrum of skin tones and facial expressions (both in the
main paper and supplemental material). Moreover, our polarimet-
ric skin model integrates seamlessly into many existing rendering
pipelines. Our code is available for research purposes1.

1https://github.com/KAIST-VCLAB/polarimetric-bssrdf-dynamic-face.git

2 RELATED WORK
Polarimetric imaging. Polarimetric imaging has widely been used

in computer graphics. Passive systems use cameras fitted with po-
larizers, positioned in front of the lens (e.g., [Atkinson and Hancock
2006; Cao et al. 2023; Cui et al. 2019; Deschaintre et al. 2021; Huynh
et al. 2013; Kadambi et al. 2015; Miyazaki et al. 2003; Riviere et al.
2017; Tozza et al. 2017; Zhu and Smith 2019]), or the image sen-
sor [Ba et al. 2020; Dave et al. 2022; Lei et al. 2022; Zhao et al. 2022],
while active systems incorporate both polarized light sources and
polarized cameras (e.g., [Azinović et al. 2023; Ghosh et al. 2010, 2008;
Ma et al. 2007; Riviere et al. 2020]). In general, these setups only
measure specific polarization states, such as linear polarization at
particular angles or circular polarization.

Other works aim to capture polarimetric appearance across differ-
ent polarization states [Baek and Heide 2021, 2022; Baek et al. 2018].
Hwang et al. [2022] combined a polarization-array camera with a
polarized flashlight. However, these approaches are limited to static
scenes and do not take subsurface scattering explicitly into account.
In contrast, our work allows us to capture polarimetric information
on dynamic faces, including the effects of subsurface scattering.

Face acquisition. Numerous methods have been developed to ac-
quire high-quality geometric shapes and the appearance of static
faces (e.g., [Azinović et al. 2023; Debevec et al. 2000; Fyffe 2010;
Fyffe et al. 2016, 2011; Ghosh et al. 2010, 2008; Imai 1998; LeGendre
et al. 2018; Ma et al. 2007; Shrestha and Hardeberg 2010; Weyrich
et al. 2006]). Since they all require multiple structured light pat-
terns and/or input from various viewpoints, they are unsuitable for
dynamic captures.

Dynamic face capture methods, on the other hand, often use pas-
sive illumination, taking images of objects under uniform lighting
conditions. Multi-view camera systems rely on stereo matching
for geometry acquisition [Beeler et al. 2010], or tracking in image
space [Beeler et al. 2011; Bradley et al. 2010], but do not reconstruct
the appearance of skin. Monocular single-shot [Sengupta et al. 2018;
Tran et al. 2018, 2019; Tran and Liu 2019], video sequences [Cao
et al. 2015; Garrido et al. 2013; Ichim et al. 2015; Shi et al. 2014], or
binocular video sequences [Valgaerts et al. 2012] have been used
to obtain both geometric information and appearance. These ap-
proaches typically assume simplified reflectance models of human
skin, for instance, including only diffuse albedo or not taking sub-
surface scattering into account [Gotardo et al. 2018]. Riviere et al.
[2020] developed a passive stereo-capture system to acquire specular
reflectance and diffuse albedo. As opposed to our work, the method
assumes a pre-determined subsurface scattering profile, while each
frame needs to be processed independently for animated sequences.
Since single-shot input is ill-conditioned for human skin acquisition,
recent research has turned to learning from active multi-view light-
ing systems [Bi et al. 2021; Li et al. 2020; Liu et al. 2022; Zhang et al.
2022]. These learning-based methods are constrained by the training
and test datasets, which do not describe the reflectance of human
faces in a physically-based way. In contrast, our multispectral polari-
metric subsurface scattering model yields approximate meaningful,
spatially-varying, and time-resolved biophysically-based appear-
ance parameters for dynamic faces.
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Biophysical appearance acquisition. Existing methods to approxi-
mate biophysical parameters of human skin usually rely on simpli-
fied models, such as assuming diffuse reflectance, not taking into
account subsurface scattering, or not handling dynamic changes
in appearance. Tsumura et al. [1999, 2003] created an image-based
method to separate the spatial patterns of melanin and hemoglobin
in human skin through independent-component analysis of a skin
color image. This model was later extended to take into account
the more complex properties of skin [Krishnaswamy and Baranoski
2004] based on multispectral images [Chen et al. 2015; Donner
et al. 2008; Preece and Claridge 2004], RGB diffuse reflectance im-
ages [Aliaga et al. 2022; Alotaibi and Smith 2017], or different light-
ing conditions [Aliaga et al. 2023; Gitlina et al. 2020; Li et al. 2024].
Some of these methods require precomputed textures for inverse
rendering, which may lead to visible discretization artifacts or rely
on rendered datasets. Regarding dynamic models, Jimenez et al.
[2010] presented a method focused on the acquisition of simplified
hemoglobin maps from cross-polarizing filters, requiring multiple
captures with the subject repeating the same movements. Later,
Iglesias-Guitian et al. [2015] introduced a statistically-based model
of human skin that captured the time-varying effects of aging, as
the structure of skin and its chromophores change over the years.
In contrast, our technique disambiguates the dynamic changes of
biophysically-based components, such as oxy-hemoglobin, deoxy-
hemoglobin, eumelanin or pheomelanin, as well as their full dif-
fusion profiles, through a multispectral observation of subsurface
scattering without requiring impractical repeated motions. More-
over, our system is capable of simulating appearance changes that
occur within seconds, instead of decades.

3 REFLECTANCE MODEL OF SKIN
We describe here the main aspects of our reflectance model for skin,
including our polarimetric BSSRDF and biophysically-based parame-
ters; please refer to the supplemental document for additional details
(Supplemental Section 2).

3.1 Polarimetric BSSRDF Model
A Stokes vector represents the polarization state of a light wave, and
is denoted as s = [𝑠0, 𝑠1, 𝑠2, 𝑠3]⊺ ∈ R4×1. Polarized light s𝑖 reflects
off a surface as s𝑜 = 𝑆P(𝝎𝑖 ,𝝎𝑜 )s𝑖 , where 𝑆 = (n · 𝝎𝑖 )/Γ2 is the
shading term with attenuation, Γ is the distance between the light
source and the surface, and P(𝝎𝑖 ,𝝎𝑜 ) is the polarimetric reflectance
model that yields a Mueller matrix for incoming 𝝎𝑖 and outgoing
𝝎𝑜 directions [Wilkie and Weidlich 2012].
Subsurface scattering describes how light enters a surface at

point x𝑖 and exits at a different point x𝑜 . Different from existing
polarimetric reflectance models [Baek and Heide 2021; Baek et al.
2018; Hwang et al. 2022], we explicitly take into account heteroge-
neous subsurface scattering. This is important for human skin since,
although light becomes depolarized during multiple scattering, it
gets polarized again when transmitted back out, thus becoming an
additional source of reflectance information.

Our polarimetric reflectance model can then be expressed as P =

P𝑠 +P𝑠𝑠 +P𝑠𝑠𝑠 , where P𝑠 , P𝑠𝑠 , and P𝑠𝑠𝑠 represent the specular, single
scattering, and subsurface scattering components, respectively. We
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Fig. 2. Spectral absorption coefficients of each biophysical component in the
human skin: oxy-hemoglobin, deoxy-hemoglobin, eumelanin, pheomelanin,
and skin base.

adopt the specular and single scattering terms from the recent state-
of-the-art model by Hwang et al. [2022] (Supplemental Section 2.4),
and expand the model with our new subsurface scattering term P𝑠𝑠𝑠 ,
described in the following paragraphs.

Subsurface scattering. We model subsurface scattering P𝑠𝑠𝑠 from
a diffusion profile 𝜌𝑠𝑠𝑠 ( | |x𝑖 − x𝑜 | |) as

P𝑠𝑠𝑠 =
∑

x𝑖 ∈S
C𝑛→𝑜 (−𝜙𝑜 )FT (x𝑜 , 𝜃𝑜 ;𝜂𝑜 )D(𝜌𝑠𝑠𝑠 ( | |x𝑖 − x𝑜 | | ) )

·FT (x𝑖 , 𝜃𝑖 ;𝜂𝑖 )C𝑖→𝑛 (𝜙𝑖 )

=
∑︁
x𝑖 ∈S

𝜌𝑠𝑠𝑠 ( | |x𝑖 − x𝑜 | | )
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𝑖
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𝑜 𝜁𝑖𝜁𝑜 0

0 0 0 0

 ,
(1)

where C𝑛→𝑜 (−𝜙𝑜 ) and C𝑖→𝑛 (𝜙𝑖 ) are the coordinate conversion ma-
trices, D is the depolarization matrix, FT is the Mueller matrix form
of the Fresnel transmission coefficients T that takes into account
the different effects on light polarized along the plane of incidence
(∥) and perpendicular to it (⊥). The +/− superscript operators refer
to T + = (T⊥ + T ∥ )/2 and T − = (T⊥ − T ∥ )/2. Here 𝜁 and 𝜉 are
sin(2𝜙) and cos(2𝜙) of the polarimetric azimuth angle 𝜙 between
the light frame and the interaction plane, and 𝜙{𝑖,𝑜 } = 𝜙{𝑖,𝑜 } − 𝜋/2
is the corresponding rotation angle. The sum

∑
x𝑖 ∈S takes into ac-

count the fact that all incoming points x𝑖 of the surface S contribute
to the outgoing illumination.
The diffusion profile 𝜌𝑠𝑠𝑠 is obtained from the absorption and

scattering coefficients of two layers, which depend on a set of
biophysically-based parameters as described in Section 3.2, by ap-
plying the multipole approximation [Donner and Jensen 2005]. We
assume that the parameters vary slowly relative to the mean free
path of light, and therefore are locally homogeneous. For efficiency
purposes, per-layer profiles are approximated to weighted sums
of separable Gaussian functions [d’Eon et al. 2007; Donner et al.
2008]. In the rest of the paper, we omit the dependance of 𝜌𝑠𝑠𝑠 on
the distance | |x𝑖 − x𝑜 | | for the sake of brevity.

3.2 Biophysically-Based Model
Similar to other works [Donner and Jensen 2006; Donner et al. 2008;
Jimenez et al. 2010], we adopt a two-layer model, where each layer is
characterized by its absorption and reduced scattering coefficients.
Figure 2 shows the spectral absorption coefficients of each compo-
nent, included in our model as explained in the next paragraphs.

ACM Trans. Graph., Vol. 43, No. 6, Article 275. Publication date: December 2024.
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Outer-layer absorption. The spectral absorption coefficient of the
outer layer 𝜎out𝑎 is mainly due to the presence of melanin in the
epidermis, and, to a lesser extent, to the presence of hemoglobin
in the upper dermis, and is defined as [Donner et al. 2008; Jimenez
et al. 2010]

𝜎out𝑎 =𝐶m (𝛽m𝜎em𝑎 + (1 − 𝛽m)𝜎pm𝑎 ) (2)

+𝐶h,out (𝛾out𝜎
oxy
𝑎 + (1 − 𝛾out)𝜎deoxy𝑎 ) + (1 −𝐶m −𝐶h,out)𝜎b𝑎 ,

where 𝐶m and 𝐶h,out are the fractions of melanin and hemoglobin
in the outer layer, respectively, 𝛽m is the fraction of eumelanin in
melanin, 𝛾out is the oxy-hemoglobin fraction in hemoglobin. The
values of 𝐶m, 𝐶h,out, and 𝛽m are estimated from our captured data
while 𝛾out is a constant (see Section 5.3). The different spectral
absorption coefficients 𝜎𝑎 of eumelanin (em), pheomelanin (pm),
oxy-hemoglobin (oxy), deoxy-hemoglobin (deoxy), and base (b) are
given by previous work [Jacques 1998; Prahl 1999].

Inner-layer absorption. The inner layer consists of a rich network
of capillaries containing hemoglobin in the dermis. Its absorption
coefficient 𝜎 in𝑎 is mainly explained by hemoglobin, and can be ex-
pressed as [Donner and Jensen 2006]

𝜎 in𝑎 =𝐶h,in (𝛾in𝜎
oxy
𝑎 + (1 − 𝛾in)𝜎

deoxy
𝑎 ) + (1 −𝐶h,in)𝜎b𝑎 , (3)

where 𝐶h,in is the fraction of the hemoglobin in the inner layer,
and 𝛾in is its oxy-hemoglobin fraction. The value of 𝐶h,in is also
estimated from our captured data. We assume that the fractions of
oxy-hemoglobin to hemoglobin in the inner and outer layers are the
same and have a fixed value 𝛾 = 𝛾in = 𝛾out = 0.75 as other existing
models [Donner et al. 2008; Jimenez et al. 2010].

Reduced scattering. The spectral reduced scattering coefficient of
the outer layer 𝜎out

′
𝑠 at wavelength 𝜆 nm is defined as [Bashkatov

et al. 2005]

𝜎out
′

𝑠 (𝜆) = 14.74 × 𝜆−0.22 + 2.2𝐸11 × 𝜆−4 . (4)

The reduced scattering coefficient of the inner layer is 50% of the
outer scattering coefficient, so it does not need to be explicitly
estimated.

4 MULTISPECTRAL POLARIMETRIC IMAGING
We summarize here the main aspects of our hardware design and
polarimetric image formation model, and refer the reader to the
supplemental material (Supplemental Section 3) for more details.

4.1 Capture Hardware
Our capture system is shown in Figure 3. It consists of a multi-
spectral, polarimetric module in the center, and four additional 3D
imaging modules surrounding it. The polarimetric imaging module
is composed of two polarization machine vision cameras (BFS-U3-
51SPC-C), synchronized at 20 fps, each of them fitted with a different
multispectral filter from off-the-shelf Dolby 3D glasses. Each polar-
ization camera captures four linearly polarized components (0°, 45°,
90°, 135°) at 2448×2048 resolution. Note that conventional polari-
metric cameras have a lower SNR and resolution than color cameras.
The cameras are surrounded by 40 linearly-polarized ∼1500 lumen
LED light sources (CXA-1512 6500K, operating at 350mA with 36V)

(eight modules of five LEDs each) in a near-coaxial setup. Each
Dolby 3D glass further filters the wavelength range of each of the
camera’s conventional red, green, and blue filters, effectively halving
the range for each channel (the left camera captures the higher half,
while the right one captures the lower one), yielding a coverage of
the whole spectrum for a total of six samples (see Figure 4). This is
particularly useful for the spectral response of human skin, in which
the spectral absorption profiles of its components are identifiably
different (Figure 2). Finally, each 3D imaging module consists of
two machine vision cameras to capture dynamic 3D geometry. All
cameras are synchronized (Supplemental Section 3.2).

4.2 Polarimetric Image Formation
Existing polarimetric acquisition methods can capture diffuse and
specular information [Baek et al. 2018, 2020] or even single scatter-
ing [Hwang et al. 2022], assuming that target objects are opaque.
We introduce a novel subsurface scattering term (Equation (1)) to
handle translucency, as in human skin.
Since our light sources and cameras are in a near-coaxial setup,

we can apply sparse ellipsometry algebraic simplifications to our
polarimetric BSSRDF model [Hwang et al. 2022]. Given our lin-
early polarized captured images from each camera 𝐼0, 𝐼90, 𝐼45, 𝐼135,
we compute the following observations:

• The unpolarized subsurface scattering observation is defined
as 𝐼𝑠𝑠𝑠 = 2𝐼90 = 𝑆

∑
x𝑖 ∈S 𝜌𝑠𝑠𝑠T ++.

• The polarized subsurface scattering observation is defined as
𝐼𝜁 = 𝐼135 − 𝐼45 = 𝑆

∑
x𝑖 ∈S 𝜌𝑠𝑠𝑠T −+𝜁 .

• The specular-dominant polarization observation is defined as
𝐼𝑠 = 𝐼0−𝐼90 = 𝑆 (𝜅𝑠,𝑠𝑠R+−∑x𝑖 ∈S 𝜌𝑠𝑠𝑠T −+𝜉). Here,𝜅𝑠,𝑠𝑠 is the
summation of the specular reflection term 𝜅𝑠 and the single
scattering reflection term 𝜅𝑠𝑠 . It contains a combination of
specular reflection, single scattering, and multiple subsurface
scattering.

Here, R+ = (R⊥ +R ∥ )/2 represent Fresnel reflection coefficients,
T ++ = T +T + is the multiplication of the positive Fresnel trans-
mission coefficients, and T −+ = T −T + is the multiplication of
the negative/positive coefficients. Please refer to the supplemental
document for the complete mathematical details of our polarimetric
image formation model (Supplemental Section 3.1).

We acquire these observations per frame and use them as input to
our optimization algorithm (described in the next section), to obtain
our full dynamic data.

5 RECONSTRUCTION OF DYNAMIC SKIN
APPEARANCE AND FACE GEOMETRY

Our reconstruction algorithm consists of two stages (see Figure 5 for
an overview). The first stage is a static initialization from multiple
views of the same face, rotated thanks to a revolving chair. We
first obtain the face’s mesh from stereo pairs (Section 5.1); we then
simultaneously optimize the displacement map plus the polarimetric
appearance parameters (Section 5.2), then optimize the biophysical
parameters (Section 5.3). At each iteration, the face is rendered
in order to calculate the loss function with respect to the input
observations. The second stage is a dynamic per-frame optimization,
in which, starting with the results of the first stage, we optimize all
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Fig. 3. Our multispectral polarimetric imaging setup. (a) Our system consists of a multispectral polarization module (yellow box) that captures four different
linear polarization angles with six multispectral channels and four 3D stereo imaging modules (green boxes). (b) A closeup image of the stereo module
composed of two machine vision cameras. Stereo pairs are used to acquire dense depth maps to obtain a complete geometry model and its corresponding
texture mapping for each frame. (c)–(e) Closeup images of the multispectral polarization camera module equipped with two polarization cameras (d) covered
with two different Dolby filters and 40 LED lights, separated into eight modules of five LEDs, each shown in (e). Our multispectral polarization module
captures six different multispectral channels using two different Dolby filters for three RGB channels. Each light is covered with a vertical polarization filter.
(f) Schematic diagram of the system configuration. The module also captures four different orientations of linear polarization. The eight light modules are
placed at a distance of approximately 10 cm. As the subject is placed 100 cm away, light and camera become almost coaxial at a 5.72◦ angle. These cameras are
synchronized through GPIO cables. We capture images at 20 fps.
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Fig. 4. Multispectral-channel calibration and light spectral power distri-
bution (black line). We disassemble left and right glass lenses from Dolby
multispectral 3D anaglyph glasses to use each as a bandpass filter in front
of two sRGB cameras. Each color channel is subdivided into two sub-color
channels, resulting in six multispectral channels.

the necessary parameters for every frame of the captured video in a
similar manner as the first stage.
In more detail, given our hardware setup, from the four linearly

polarized images (𝐼0, 𝐼90, 𝐼45, 𝐼135) and the four stereo view pairs,
we obtain six-channel multispectral observations 𝐼𝑠𝑠𝑠 , 𝐼𝜁 and 𝐼𝑠
through our image formation model (Section 4.2). We next search
the geometric correspondences of spatially varying dynamic appear-
ance changes over time. We aim to couple polarimetric appearance,
biophysically-based skin parameters and the surface geometry to
track appearance parameters on a face over time. In particular, the
index of refraction 𝜂 (which affects all Fresnel coefficients), albedo
(𝜌𝑠 and 𝜌𝑠𝑠 ) and roughness (𝛼𝑠 and 𝛼𝑠𝑠 ) of the specular (s) and single
scattering (ss) components, and the diffusion profile 𝜌𝑠𝑠𝑠 , expressed
as a function of biophysical parameters (𝐶m, 𝛽m, 𝐶h,in, 𝐶h,out).
All these parameters, plus a displacement map 𝐻 encoding ge-

ometry details, are spatially varying and are represented as texture
maps over the skin’s surface. In the following, we explain each stage
in more detail and refer the reader to the supplemental material for
additional details (Supplemental Section 5).

Static initialization with multiview input

Dynamic per-frame optimization

Mesh and texture
mapping

Displacement map and
polarimetric parameters
𝐻, 𝜌𝑠 , 𝜌𝑠𝑠 , 𝜌𝑠𝑠𝑠 , 𝛼𝑠 , 𝛼𝑠𝑠 , 𝜂

Biophysical
skin parameters

𝐶m, 𝛽m, 𝐶h,in, 𝐶h,out

Mesh and vertex
tracking

Displacement map and
polarimetric parameters

𝐻, 𝜌𝑠 , 𝜌𝑠𝑠 , 𝜌𝑠𝑠𝑠

Biophysical
skin parameters

𝐶m, 𝛽m, 𝐶h,in, 𝐶h,out

Fig. 5. Overview of our reconstruction algorithm. It consists of two stages:
first, the initialization takes multiple views of a static face (top). We then
perform a per-frame optimization from a single view (bottom). Both stages
follow a similar procedure: first, we obtain a mesh from stereo pairs (left),
then we iteratively optimize a displacement map and a set of polarimetric
appearance parameters (middle), and lastly, we use inverse rendering to
iteratively optimize the biophysical parameters of human skin (right).

5.1 Geometry Reconstruction and Tracking
At both stages (static initialization and dynamic per-frame opti-
mization), we first estimate the base mesh geometry using stereo
matching [Beeler et al. 2010; Lipson et al. 2021] and Poisson surface
reconstruction [Kazhdan et al. 2006]. With this initial geometry, we
apply cylindrical texture mapping so that all the spatially-varying
appearance parameters and small geometry variations (encoded as
displacement map 𝐻 ) are modeled as textures. Note that previous
work [Hwang et al. 2022] optimized vertices and their normals di-
rectly, requiring an additional Poisson reconstruction process at
every iteration, which resulted in a blurrier geometry. By directly
optimizing geometric details in the form of a displacement map 𝐻 ,
we obtain detailed, more accurate geometrical reconstructions. 𝐻 is
optimized together with the polarimetric appearance parameters
(Section 5.2). We assign 𝑢𝑣 texture coordinates during the initializa-
tion stage after the first mesh has been optimized; in the subsequent
per-frame optimization we track vertices, but texture coordinates
remain unchanged. As a result, textures remain stable along frames,
which improves the convergence of our optimization.

During the dynamic per-frame optimization stage, we additionally
track corresponding vertices from the initial mesh via optical flow.
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We stabilize the tracking by progressively computing the weighted
average of the per-frame tracked motion with an anchor-based
approach [Beeler et al. 2011], which yields the final per-frame mesh
with stable texture coordinates per vertex.

5.2 Optimization of Polarimetric Appearance Parameters
After optimizing the mesh, we optimize the spatially-varying ap-
pearance parameters that are related to polarization: index of refrac-
tion 𝜂, the albedo 𝜌𝑠 and roughness 𝛼𝑠 of the specular component,
the albedo 𝜌𝑠𝑠 and roughness 𝛼𝑠𝑠 of the single scattering component,
and a multiple scattering albedo 𝜌𝑠𝑠𝑠 , which is a rough approxima-
tion of the diffusion profile 𝜌𝑠𝑠𝑠 ( | |x𝑖 − x𝑜 | |). This value will be
later refined to a full diffusion profile when estimating the face’s
biologically-based parameters (Section 5.3). We also optimize the
displacement map 𝐻 , which provides the high-frequency details of
the geometry. Parameters 𝜂, 𝛼𝑠 and 𝛼𝑠𝑠 remain constant in time,
and thus they only need to be optimized in the initialization stage.

Inspired by Gotardo et al. [2018], this initialization stage consists
on rotating the static face, assuming parameter consistency across
frames. As shown in previous work [Nagano et al. 2015], roughness
might temporally vary when the skin is stretched or becomes sweaty,
but estimating both roughness parameters 𝛼𝑠 and 𝛼𝑠𝑠 from a single
view at each frame is an ill-posed problem. The small errors coming
from this assumption are compensated by albedos 𝜌𝑠 and 𝜌𝑠𝑠 and
the geometrical variations coming from the displacement map 𝐻 ,
all of which are estimated per frame.
In particular, we minimize the following energy function:

min
𝜂,𝛼𝑠 ,𝛼𝑠𝑠 ,𝜌𝑠 ,𝜌𝑠𝑠 ,𝜌𝑠𝑠𝑠 ,𝐻

𝜆𝜓L𝜓 + 𝜆𝑠𝑠𝑠L𝑠𝑠𝑠 + 𝜆𝑠L𝑠 + 𝜆𝜙L𝜙 + Lreg, (5)

where L𝑠𝑠𝑠 is our subsurface scattering loss, L𝜓 is the refractive
index loss, L𝑠 is the specular and single scattering loss, L𝜙 is the
azimuthal loss, Lreg is the regularization term, and 𝜆𝜓 = 0.002,
𝜆𝑠𝑠𝑠 = 1, 𝜆𝑠 = 1, 𝜆𝜙 = 1 are the corresponding loss weights. We
inherit the specular, single scattering, refractive index loss functions
from Hwang et al. [2022] and the regularization term (that accounts
for spatial and temporal coherency) from Riviere et al. [2020]. Previ-
ous work [Hwang et al. 2022] solves these loss terms by alternating
the optimization of the refractive index loss (L𝜓 ) and the specular
and single scattering loss (L𝑠 ) with azimuthal loss (L𝜙 ), using a
sequential quadratic programming algorithm. In contrast, we use
a backward gradient descent-based method that minimizes losses
simultaneously. Moreover, while current techniques are limited to
polarimetric appearance of static and opaque objects, we capture
translucency effects in our initialization stage and track dynamic
changes during optimization (Supplemental Section 5).

Subsurface scattering loss. We formulate L𝑠𝑠𝑠 by comparing the
rendered subsurface scattering image 𝐼𝑡𝑠𝑠𝑠 at time 𝑡 with the captured
image 𝐼𝑡𝑠𝑠𝑠 as L𝑠𝑠𝑠 =

∑
𝑡 V𝑡 (𝐼𝑡𝑠𝑠𝑠 − 𝐼𝑡𝑠𝑠𝑠 )2, where V𝑡 is the visibility

texture map at frame 𝑡 for each view. Optimizing the full diffusion
profile 𝜌𝑠𝑠𝑠 along with the rest of the variables is both computation-
ally expensive and ill-conditioned. Therefore, as anticipated earlier,
we account for a single multiple scattering albedo 𝜌𝑠𝑠𝑠 to approx-
imate all the observations of subsurface scattering effects. Since
Fresnel transmittance of human skin does not change rapidly along
the surface, we approximate the subsurface scattering reflectance as

𝐼𝑡𝑠𝑠𝑠 = 𝑆𝜌𝑠𝑠𝑠T ++. Once 𝜌𝑠𝑠𝑠 and the rest of the polarimetric appear-
ance parameters are optimized, we obtain the full diffusion profile
by optimizing the rest of the biophysical parameters, as explained
in Section 5.3.

5.3 Optimization of Biophysically-based Parameters
To estimate a full diffusion profile 𝜌𝑠𝑠𝑠 from a multispectral observa-
tion of subsurface scattering 𝜌𝑠𝑠𝑠 , we rely on the spectral profiles of
the absorption coefficients of oxy-hemoglobin, deoxy-hemoglobin,
eumelanin, pheomelanin, and the skin base parameter. Since their
absorption coefficients are different with respect to their spectral
structure (see Figure 2), we can leverage our multispectral mea-
surements (Figure 4) to disambiguate the concentrations of the
different biophysical components of our skin model (𝐶m, 𝛽m, 𝐶h,in,
and 𝐶h,out).

We minimize the photometric loss between 𝜌𝑠𝑠𝑠 and the rendered
subsurface scattering using the full diffusion profile. The main chal-
lenge is the differentiation of the diffusion profile with respect to
the biophysical parameters, since forward optimization is neither ef-
ficient nor scalable for high-resolution textures [Donner et al. 2008].
To tackle the lack of end-to-end derivatives, we propose a coordinate
descent method [Wright 2015] using alternating least squares. Our
optimization is thus split into two subproblems: first, obtaining the
weights of the Gaussians that define 𝜌𝑠𝑠𝑠 ; second, estimating the
biophysical parameters of 𝜌𝑠𝑠𝑠 .
We discretize the spectral absorptions into fifteen multispectral

channels. To calculate the photometric loss, we convert these chan-
nels into our camera’s six channels using our system’s spectral cali-
bration functions. For efficiency, early-stage iterations are calculated
at a coarser resolution. We use nine Gaussians to approximate each
profile and merge this subsurface scattering with the contributions
from the specular and single scattering components to render the
full appearance model. This efficient method enables fast gradient
descent iterations to approximate the skin’s biophysical parameters
(Supplemental Section 5.3).

6 RESULTS AND VALIDATION
We estimate a per-texel polarimetric BSSRDF that consists of a
three-by-three Mueller matrix of linear polarization. Note that our
reflectance function is nine times larger than the conventional BSS-
RDF. Our code runs on a machine equipped with an AMD EPYC
7763 CPU of 2.45 GHz and an NVIDIA A100 GPU. In the first stage of
our method, polarimetric appearance optimization takes around 180
minutes with 200 frames, while biophysical multispectral optimiza-
tion takes 50 minutes. In the second stage, polarimetric optimization
takes around 180 minutes with 50 frames, and biophysical optimiza-
tion takes about 20 minutes.
We illustrate the versatility of our reconstructions on eleven

subjects with different skin tones, genders, and ethnicities, per-
forming various dynamic facial expressions. Our method requires a
near-coaxial light-camera configuration, with the subject’s face posi-
tioned at the optical center of our polarimetric imaging unit during
the capture. In our first initialization stage, participants maintain a
neutral facial expression while the lighting and viewpoint angles
change by spinning their heads. In the second stage, we instruct
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Fig. 6. Our dynamic face reconstruction results. We record data from 11 individuals, each exhibiting diverse skin tones, gender identities, and ethnic
backgrounds. Our method successfully captures polarimetric reflectance parameters, biophysical parameters, and geometry with high accuracy. Refer to the
supplemental document (Appendix A) and video for more results of dynamic faces.
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Fig. 7. Validation of our multispectral reflectance. Our multispectral system
enables accurate reconstructions of spectral reflectance compared to the
ground-truth measurements. Results using trichromatic channels exhibit
larger deviations from the ground truth.

the participants to perform various facial expressions. Note that we
use a completely novel viewpoint of an RGB camera to render
and validate the results. Please refer to the supplemental video for
the capturing environments of our setup. Figure 6 and the appendix
of the supplemental document show, for each subject, the result-
ing polarimetric BSSRDF, biophysical skin parameters, refractive
index, normals, and geometry. These parameters present distinct
variations across different subjects, according to their skin tone.

Validation. We first validate our results comparing our estimated
spectral reflectance with the ground-truth reflectance measured
by a hyperspectral camera (SpecIM). Figure 7 shows how our re-
construction results closely match the ground-truth measurements.
In addition, to validate the accuracy of the refractive index that
our method estimates, we compare our estimated refractive indices
with the reference refractive indices of spherical objects, measured
by their Brewster angles [Baek et al. 2020]. As shown in Table 1,
our system can measure the refractive indices of objects with high
accuracy.

Polarimetric reflectance. Our work is the first to capture polari-
metric reflectance functions of human faces in the form of the 3 × 3
Mueller matrices, as shown in Figure 8(a). It allows us to simulate
polarimetric face appearance changes by the linear polarization
angle changes on the camera (Figure 8(b)). Also, this enables us
to explore other polarization metrics, such as the angle of linear
polarization (AoLP) or the degree of polarization (DoP), as shown in

(a) Positive and negative 3D Mueller matrix

(b) Various camera polarization angle

20×Frame #69 20× 20× 20×

20× 40×2× 20× 40×2×

M(0,0) M(0,1) M(0,2)

M(1,0) M(1,1) M(1,2)

M(2,0) M(2,1) M(2,2)

M(0,0) M(0,1) M(0,2)

M(1,0) M(1,1) M(1,2)
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0° 30° 60° 90° 120° 150°

Fig. 8. Our polarimetric reflectance results. (a) Positive and negative values
of polarimetric reflectance function as a 3D Mueller matrix. We scale the
intensity of each image for visualization purposes. (b) Polarization rendering
simulates various polarimetric reflections of linear polarization angles for
the camera.

Table 1. Validation on refractive index measurements. We compare our
estimations 𝜂ours with known refractive indices 𝜂gt of ten real-world objects.
We achieve a high accuracy with the mean reconstruction error of 0.028.

1

2

3

4

5

6

7

8

9

10

Object Material 𝜂gt 𝜂ours Diff.
1 Red billiard 1.485 1.446 0.038
2 Green billiard 1.469 1.516 0.047
3 Blue billiard 1.504 1.503 0.001
4 White billiard 1.463 1.410 0.053
5 POM 1.462 1.447 0.015
6 Fake pearl 2.295 2.263 0.032
7 Yellow silicone 1.303 1.297 0.005
8 Pink silicone 1.177 1.211 0.034
9 White silicone 1.248 1.272 0.024
10 Light green silicone 1.343 1.311 0.032

the second row of Figure 6. We also show the captured index of re-
fraction, which is crucial for our optimization and is only obtainable
thanks to this polarimetric information.
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Fig. 9. Validation of our polarimetric reflectance. We compare the degree
of polarization of our estimated pBSSRDF with that of the ground-truth
measurement by a polarization camera.

Table 2. Ablation study of the impact of each component in the specular-
dominant polarization observation. We average the RMSE values over 200
different novel camera poses with 11 different participants.
Refractive index and

azimuthal loss
Single scattering

parameters
Refractive index

parameter Average RMSE

✔ - - 4.44·10−2

✔ ✔ - 4.13·10−2

✔ ✔ ✔ 3.94·10−2

Existing methods of face capture [Azinović et al. 2023; Gotardo
et al. 2018; Riviere et al. 2020] use a single refractive index value
being assumed for the entire face region. In contrast, we optimize
spatially-varying refractive-index values as well as polarimetric
appearance parameters, which are critical to achieve accurate re-
construction of polarimetric appearance as shown in Figure 9. The
skin on the face has varying concentrations of oil and moisture,
with higher levels on the forehead and nose compared to the cheeks
or lips. In order to validate our pBSSRDF measurement, we com-
pare the degree of polarization of our polarimetric rendering with
that of the ground-truth measurement captured by a reference po-
larization camera. Our polarimetric rendering with the estimated
pBSSRDF demonstrates a strong agreement with the ground-truth
measurement of the degree of polarization, showing high accuracy.
Moreover, as shown in Table 2, leveraging the polarimetric loss term
with spatially varying single scattering and refractive index param-
eters results in the minimum RMSE error on the specular-dominant
polarization observation.

Multispectral optimization. Figure 10 shows our multispectral
optimization results rendered from our estimated biophysically-
based parameters. It can be seen how, as expected, sharper details
can be recovered at shorter wavelengths, since longer wavelengths
scatter further inside the skin [Donner and Jensen 2006].
Moreover, our method can handle dynamic changes in the ap-

pearance of different nature. Figure 11 shows time-varying changes
in the distribution of the biophysically-based parameters caused
by wrinkles in the forehead, while Figure 12 illustrates changes in
the hemoglobin concentration due to applied pressure. At Frame #1,
such concentration is lower around the pressed region, but after
approximately two seconds, blood re-enters the area (see Frames #10
and #20). As expected, there is no significant change in melanin
concentration.

Comparison with prior works. We directly compare our results
with the recent, state-of-the-art face acquisition method of Riviere
et al. [2020], and the polarimetry method of Hwang et al. [2022]
with static scenes as shown in Figure 13. Comparisons with the
work by Riviere et al. [2020] are difficult, since there is no publicly
available code or dataset. Therefore, we have implemented their

Multispectral subsurface scat. rendering
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522 nm 556 nm 573 nm

590 nm 624 nm 658 nm
Dolby filter rendering
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Right

Full rendering
Frame #58

437 nm

607 nm

505 nm

Fig. 10. Our multispectral optimization results. Our method includes multi-
spectral subsurface-scattering rendering across 15 different wavelengths,
revealing wavelength-dependent scattering characteristics, like enhanced
texture detail at shorter wavelengths. We generate RGB images from these
multispectral images using Dolby left/right-filter responses, supplementing
the standard sRGB image.
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Fig. 11. Dynamic parameter changes. Our captured biophysical parameter
map shows both blood flow changes and melanin map changes, caused by
the wrinkles, being consistent with the dynamic appearance of the forehead.
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Fig. 12. Blood flow alterations in the forehead region after removing applied
pressure. Hemoglobin concentrations in the outer layer return to their
previous level as blood re-enters the pressed region.

method based on our own framework, increasing the number of
input images from twelve in the original work to 200, to provide a
more fair comparison.
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Fig. 13. Comparison of appearance with state-of-the-art face acquisition model [Riviere et al. 2020] using our implementation and static polarimetric
acquisition [Hwang et al. 2022]. Riviere et al. [2020] model over-estimated the specular highlights due to the absence of spatially-varying specular roughness,
single scattering, and refractive index. Hwang et al. [2022] fails to reconstruct the specular highlights in the forehead and nose (yellow) and baked the
specularity in the cheek (green) due to their alternative and cluster-based optimization scheme. Our method successfully reconstructs the highlight details of
specular reflection in the nose and forehead region, together with detailed pore-level appearance. We also compute the average RMSE of the 200 different
poses on a novel RGB camera on 11 participants, as shown in the right plot. Our method achieves the smallest reconstruction error on both specular and full
rendering images.

(a) Generic stereo matching (b) Hwang et al. [2022] (c) Ours

Fig. 14. Comparison of geometry reconstruction. By leveraging multiview
polarimetric information in our optimization of the displacement map, our
method yields more precise geometric reconstructions. (a) Generic stereo
matching (similar to Beeler et al. [2010]’s method without mesoscopic
augmentation). (b) Poisson-based inverse rendering [Hwang et al. 2022]. (c)
Our method.

As shown in the figure, assuming homogeneous specular rough-
ness and refractive index makes Riviere et al. [2020] overestimate
specular highlights. On the other hand, Hwang et al. [2022] under-
estimates them due to their alternative, cluster-based optimization
scheme. Our reconstruction of specular highlights and overall re-
flectance is more accurate, thanks to spatially varying specular
roughness, single scattering, refractive index, and joint optimiza-
tion. We also compute the RMSE of the specularity and the full
rendering (right bar plot) images in 200 different poses of the 11
participants. Our method gives the smallest RMSE value on both
images.
In terms of geometric accuracy, Figure 14 shows how our ap-

proach leads to artifact-free, more detailed reconstructions than
previous approaches using generic stereo-matching [Beeler et al.
2010] without mesoscopic augmentation, or Poisson-based inverse
rendering optimization [Hwang et al. 2022].
Moreover, Figure 15 compares the impact of our two-layer het-

erogeneous model as similar to that of Donner et al. [2008], by
using structured light patterns. Previous methods based on diffuse
albedo [Gotardo et al. 2018; Hwang et al. 2022] cannot accurately
simulate subsurface scattering in human skin. Although homoge-
neous subsurface scattering models [Donner and Jensen 2006] com-
bined with albedo-mapped models [Riviere et al. 2020] can simulate
subsurface scattering, they cannot clearly depict the heterogeneity
of the spatially varying parameters, as demonstrated in our method.
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Fig. 15. Full and strip light rendering results of texture-based [Gotardo et al.
2018], homogeneous subsurface scattering-based [Donner and Jensen 2006],
homogeneous subsurface scattering with albedo-map based on [Riviere et al.
2020], and our heterogeneous subsurface scattering method using estimated
parameter maps. Each plot shows the intensity variation across the vertical
cross-section line (red) and the horizontal line (blue).

(a) Full rendering (b) He. (outer) (2×) (c) Mel. (outer) (4×)
Frame #8

Fig. 16. Editing face biophysical parameters. (a) Rendering with the orig-
inal parameters. (b) Increased outer layer hemoglobin (2×). (c) Increased
melanin (4×).

Face appearance editing. Lastly, our model enables the editing and
the exploration of the effect of the different components on the skin’s
final appearance. Figure 16 shows how changes in hemoglobin and
melanin affect such appearance. As expected, when the hemoglobin
concentration in the outer layer increases, the subject’s skin tone
becomes reddish, while an increase in melanin leads to a more
tanned appearance.
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7 DISCUSSION AND LIMITATIONS
We have presented a novel polarimetric imaging system that obtains
3D geometry and polarimetric reflectance of dynamic deformable
surfaces made of translucent materials, for the particular case of
human faces. The system is comprised of multispectral polarization
cameras, polarized light sources and stereo imaging modules. Our
skin BSSRDF model is two-layered, based on the main biophysically-
based components, which we approximate through a multispectral
optimization based on their distinctive spectral profiles.
Our system’s spatial resolution is half (2K) of conventional ma-

chine vision cameras (4K). We anticipate that the spatial resolution
of BSSRDFs can be significantly improved when higher-resolution
polarimetric cameras become available in the future. Additionally,
our off-the-shelf Dolby filters have spectral overlaps at specific
wavelengths (570nm–620nm, Figure 4); the three-channel sRGB
colors converted from our six-channel multispectral optimization
via linear color transformation might thus exhibit a subtle error.
Theoretically, this could be fixed by using custom bandpass filters
that do not overlap. Last, we do not explicitly include ambient oc-
clusion to make the optimization manageable. As a consequence,
for high-frequency geometry variations ambient occlusion shading
may be misinterpreted as reflectance, which in turn may lead to
small, local melanin variations.

Our optimization obtains a set of parameter maps, both polarimet-
ric and biophysically-based. While we have validated the accuracy
of some of the obtained parameters (index of refraction), we cannot
claim that each individual parameter (particularly, the biophysically-
based ones) is fully accurate. Still, the resulting global polarimetric
appearance is a good match w.r.t. the input, and the behavior of
each component is plausible.
We have shown results across a wide spectrum of skin tones.

However, we have noticed that inner layer components, especially
hemoglobin, may be underestimated for subjects with very dark
skin (Figure 17). This is because estimating non-invasive in-vivo
biophysical parameters relies on the energy returned from the skin.
When such energy is low, both existing methods and commercial
products [Fawzy et al. 2022; Shi et al. 2022] may fail. This is therefore
a common issue affecting very dark skin tones. Our methodology,
nevertheless, could be applied to different multi-layered appearance
models with different compositions, which is an interesting avenue
for future work. Moreover, applying other spectral illumination
setups [Aliaga et al. 2023; Gitlina et al. 2020; Preece and Claridge
2004] is an exciting exploration for future research.

Photograph Full rendering

0.4 0.00.0 0.2 0.0 0.3 0.0 0.8

He. (outer) He. (inner) Melanin Rel. eumelanin

Fig. 17. Limitation example with very dark skin. While our algorithm suc-
cessfully reconstructs both the geometry and appearance, it underestimates
the contribution of the inner layer of hemoglobin because most of the in-
cident light gets absorbed by melanin and eumelanin present in the outer
layer.
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