

Polarimetric BSSRDF Acquisition of Dynamic Faces

Hyunho Ha Inseung Hwang Nestor Monzon Jaemin Cho Donggun Kim Seung-Hwan Baek Adolfo Muñoz Diego Gutierrez Min H. Kim

Universidad POSTECH

Sponsored by

Polarization

Polarization

Polarization

Stokes Vector and Mueller Matrix

Face Model

- Oiliness
 - Main specular reflection

- Outer layer
 - Epidermis + upper part of the dermis
 - $C_{
 m h,out}$
- C_{m}

Fraction of hemoglobin

Fraction of melanin

Fraction of eumelanin in melanin

Bm

- Inner layer
 - Lower part of the dermis

3–6 December 2024 Tokyo International Forum, Japan ASIA.SIGGRAPH.ORG/2024

Human Skin: Subsurface Scattering

Bidirectional Subsurface Scattering Reflectance Distribution Function

Related Work

• Human face: beneath skin

Donner et al. 2008

Aliaga et al. 2022

(e) D65' (f) D65' recon. (g) W27 (h) W27 record

Gitlina et al. 2010

Jimenez et al. 2010

Aliaga et al. 2023

8

Sponsored by

3–6 December 2024

Tokyo International Forum, Japan ASIA.SIGGRAPH.ORG/2024

Related Work

9

Polarimetry

Ghosh et al. 2010

Baek et al. 2018

Kadambi et al. 2010

Vertex Vertex Vertex AoP image + DoP image

Zhao et al. 2020

Hwang et al. 2022 Sponsored by Organized by Koelnmesse

3–6 December 2024 Tokyo International Forum, Japan ASIA.SIGGRAPH.ORG/2024

Goals

Specular appearance

Polarimetric reflectance Multispectral subsurface scattering

Biophysical parameters

Geometry

Inverse rendering

Sponsored by

Full rendering

Angle of linear polarization

Hardware

• Capture multispectral polarimetric stereo images

Hardware: Stereo Imaging

Rectified

Disparity

Right

Geometric information

Two color machine vision cameras

Objects

Left

Rectified

Organized by **••••** koelnmesse

Hardware: Polarimetric Imaging

Hardware: Multispectral Imaging

Our pBSSRDF includes 3 types of reflection

- Specular
- Single scattering
- Subsurface scattering

$\mathbf{P} = \mathbf{P}_s + \mathbf{P}_{ss} + \mathbf{P}_{sss}$

Polarimetric BSSRDF: Specular

Polarimetric BSSRDF: Single Scattering

Polarimetric BSSRDF: Subsurface Scattering

Optimization Strategy

Static stage

Initial mesh and texture

20

Optimization Strategy

Static stage

Initial mesh and texture

Dynamic stage per frame

Per-frame tracked mesh and texture

Optimization Strategy

Static Capture Stage

Stereo camera module

Stage: Static capture

lnmesse

Dynamic Capture Stage

Stereo camera module

Stage: Dynamic capture

Optimization of Polarimetric BSSRDF and Normal

$\min_{\eta,\alpha_s,\alpha_{ss},\rho_s,\rho_{ss},\bar{\rho}_{sss},H} \lambda_{\psi} \mathcal{L}_{\psi} + \lambda_{sss} \mathcal{L}_{sss} + \lambda_s \mathcal{L}_s + \lambda_{\phi} \mathcal{L}_{\phi} + \mathcal{L}_{reg}$

 \mathcal{L}_{ψ} : refractive index loss \mathcal{L}_{s} : specular and \mathcal{L}_{sss} : subsurface scattering loss \mathcal{L}_{ϕ} : normal loss

 $\mathcal{L}_{\mathcal{S}}$: specular and single scattering loss \mathcal{L}_{ϕ} : normal loss

Sponsored by

Optimization of Biophysical Parameters

26

Optimization of Biophysical Parameters

Rendering each wavelength (420nm ~ 670nm)

3-6 December 2024 Tokyo International Forum, Japan ASIA.SIGGRAPH.ORG/2024

Sponsored by

Organized by

•••• koelnmesse

27

Hierarchical Optimization of Biophysical Parameters

Validation

	01.	3.6 1			D 100
	Object	Material	$\eta_{ m gt}$	$\eta_{ m ours}$	Diff.
	1	Red billiard	1.485	1.446	0.038
1 6	2	Green billiard	1.469	1.516	0.047
	3	Blue billiard	1.504	1.503	0.001
2 7	4	White billiard	1.463	1.410	0.053
	5	POM	1.462	1.447	0.015
3 8	6	Fake pearl	2.295	2.263	0.032
	7	Yellow silicone	1.303	1.297	0.005
4 9	8	Pink silicone	1.177	1.211	0.034
	9	White silicone	1.248	1.272	0.024
5 10	10	Light green silicone	1.343	1.311	0.032

4X

 $\begin{array}{c} & \longleftrightarrow \\ Cam. & Light \end{array}$

e camera Rotating a linear polarization filter on the light **Polarization rendering**

Full rendering

Multispectral two-layer subsurface scattering

0.3

0.0

0.5

0.0

Full rendering

Hemoglobin (outer)

Hemoglobin (inner)

Pressing forehead

Comparison

Geometry Comparison

Heterogeneous Multi-layered Translucent Materials

36

Editing Face Parameters

Photograph

Rendering

Increase outer hemoglobin Increase melanin

Restrict by the two-layer skin model

Photo.

He. (outer) He. (inner)

- Low resolution and SNR compared to RGB

- Future research could be on eyes and ears

- Darker skin cannot be estimated properly

- Near-coaxial setup of camera and light

Interactive discussion at Table 8

Project Website

https://vclab.kaist.ac.kr/siggraphasia2024

Sponsored by

