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Fig. 1. (a) We propose a complete polarimetric BRDF model that defines both specular and diffuse polarimetric reflection. The model enables us to capture
spatially-varying polarimetric BRDF and high-frequency normals using a compact setup with a single projector and camera. Images (b) – (e) show environment
rendering results of 3D objects captured from a novel light and view.

Capturing appearance often requires dense sampling in light-view space,
which is often achieved in specialized, expensive hardware setups. With
the aim of realizing a compact acquisition setup without multiple angu-
lar samples of light and view, we sought to leverage an alternative optical
property of light, polarization. To this end, we capture a set of polarimetric
images with linear polarizers in front of a single projector and camera to
obtain the appearance and normals of real-world objects. We encountered
two technical challenges: First, no complete polarimetric BRDF model is
available for modeling mixed polarization of both specular and diffuse reflec-
tion. Second, existing polarization-based inverse rendering methods are not
applicable to a single local illumination setup since they are formulated with
the assumption of spherical illumination. To this end, we first present a com-
plete polarimetric BRDF (pBRDF) model that can define mixed polarization
of both specular and diffuse reflection. Second, by leveraging our pBRDF
model, we propose a novel inverse-rendering method with joint optimization
of pBRDF and normals to capture spatially-varying material appearance:
per-material specular properties (including the refractive index, specular
roughness and specular coefficient), per-pixel diffuse albedo and normals.
Our method can solve the severely ill-posed inverse-rendering problem
by carefully accounting for the physical relationship between polarimetric
appearance and geometric properties. We demonstrate how our method
overcomes limited sampling in light-view space for inverse rendering by
means of polarization.
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1 INTRODUCTION
Capturing rich material appearance is critical for photorealistic ren-
dering. Traditionally, material acquisition is often achieved by dense
sampling in light-view space [Ghosh et al. 2010, 2011, 2008; Holroyd
et al. 2010; Nagano et al. 2015; Nam et al. 2016; Tunwattanapong
et al. 2013]. In addition to the long acquisition time for dense angular
sampling, accurate optical calibration requires considerable effort
and time. This limits accessibility of appearance acquisition for ca-
sual users. To address costs for material acquisition, several groups
have sought alternative solutions [Nam et al. 2018; Nielsen et al.
2015; Riviere et al. 2017; Xu et al. 2016]. Our work is devised with the
same objective of capturing rich material appearance with minimal
cost. We identified the potential for a compact setup that can be
built with a single projector and camera. To this end, we exploited
an alternative optical property of light, polarization, to overcome
limited sampling in light-view space.

However, we encountered two technical challenges: First, there
is no complete polarimetric BRDF (pBRDF) model that can define po-
larization of both specular and diffuse reflection. Traditional pBRDF
models [Hyde IV et al. 2009; Priest and Gerner 2000] formulate only
specular polarization, assuming the polarization of diffuse reflection
is negligible to avoid modeling complexity. Shape-from-polarization
(SfP) methods [Cui et al. 2017; Kadambi et al. 2015] account for
either specular or diffuse polarization exclusively, yielding a per-
pixel binary labeling problem. Second, existing polarization-based
methods for inverse rendering [Ghosh et al. 2011, 2008; Ma et al.
2007; Nagano et al. 2015] are formulated with the assumption of
spherical illumination, such as a light stage or natural illumination
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captured with a light probe. Therefore, they are inapplicable to a
simple setup with single local illumination.

In this work, we present two novel contributions: First, we devise
a complete pBRDF model that can define mixed polarization of both
specular and diffuse reflection. Second, by leveraging our pBRDF
model, we propose a novel inverse-rendering method with joint
optimization of pBRDF and normals to estimate spatially-varying
appearance: per-material specular properties including the refrac-
tive index, specular roughness and specular coefficient, per-pixel
diffuse albedo and normals.
Since our optimization formulation carefully accounts for the

physical relationship between various polarimetric appearance and
geometric properties simultaneously, our method can solve the
severely ill-posed inverse-rendering problem successfully in a com-
pact setup. In particular, compared to existing SfP approaches, our
method can capture surface normals with high accuracy, thanks to
joint optimization of spatially-varying pBRDF and normals.
In summary, our main contributions are as follows:
• A complete pBRDF model that defines mixed polarization of
both specular and diffuse reflection and
• A novel inverse-rendering method that can estimate spatially
varying appearance and high-frequency normals simultane-
ously using our pBRDF model.

2 RELATED WORK
Focusing on polarization, we review existing pBRDFmodels, inverse-
rendering methods using polarization, and shape-from-polarization
methods. We refer the reader to recent review works on appear-
ance acquisition [Guarnera et al. 2016; Weinmann and Klein 2015;
Weyrich et al. 2009] and works that present a comprehensive back-
ground on polarization [Wilkie and Weidlich 2012].

2.1 Polarimetric BRDF Models
Various pBRDF models have been proposed to characterize polariza-
tion of reflection accurately [Hyde IV et al. 2009; Priest and Gerner
2000]. They define reflection as a mixture of unpolarized diffuse and
polarized specular reflection; i.e., the diffuse component is assumed
to be unpolarized for the purpose of keeping the mathematical form
of the reflectance uncomplicated, although several studies have
found that this assumption is not always valid [Ellis 1996; Maxwell
et al. 1973; Sun 2007]. A similar simplification on diffuse polarization
has also been employed in simulations of polarimetric appearance.
Several bidirectional rendering works have been proposed for simu-
lating polarized light transport [Jarabo and Arellano 2017; Mojzik
et al. 2016]. They simulate polarimetric light transport of specular
reflection, but diffuse reflection is also assumed as unpolarized.
In the previous approaches for modeling and rendering polari-

metric appearance, the polarization of specular reflection has been
exploited extensively, but the polarization of diffuse reflection has
been ignored to avoid modeling complexity of polarimetric reflec-
tion. However, diffuse polarization is not negligible, as shown in the
physics literature on the Fresnel wave theory [Collett 2005]. In this
work, we introduce a novel pBRDF model that defines polarization
of both specular and diffuse reflection.

2.2 Capturing Appearance from Polarization
In early works, polarization is mainly used for separating specu-
lar and diffuse reflections by cross-polarization, assuming that dif-
fuse polarization is negligible while specular polarization is distinct
[Ghosh et al. 2008; Ma et al. 2007; Nagano et al. 2015]. Subsequent
polarization-based acquisition methods leverage specular polariza-
tion under spherical illumination to estimate appearance parameters
[Ghosh et al. 2010, 2011; Kim et al. 2016; Nagano et al. 2015; Riviere
et al. 2017]. Also, photometric stereo methods with polarization
have been introduced [Miyazaki et al. 2003; Tozza et al. 2017], ig-
noring variation of material properties such as the refractive index
and specular roughness.

There are two notable differences between our method and prior
polarization-based appearance methods: First, our projector-camera
approach is compact and beneficial in terms of the hardware cost and
form factor. It does not require expensive hardware, such as a light
stage, for spherical illumination, and it does not assume any outdoor
illumination captured with a light probe. Second, on the other hand,
lighting in our setup is local illumination along with a single light
vector, which causes inverse rendering to be more severely ill-posed
than spherical illumination in previous work. To mitigate the ill-
posedness, we account for both specular and diffuse polarization
in reflection, successfully capturing spatially varying polarimetric
appearance and high-frequency normals with the compact setup.

2.3 Capturing Shape from Polarization
Polarization has been leveraged to estimate high-frequency surface
normals in many SfP methods [Atkinson and Hancock 2006; Cui
et al. 2017; Guarnera et al. 2012; Kadambi et al. 2015; Miyazaki et al.
2003]. Previous approaches assume that either diffuse or specular
reflection is dominant for each pixel, where the separation between
specular and diffuse reflections has been heuristically resolved with
binary labeling. However, this assumption is impractical for real-
world materials because reflection is a mixture of both specular and
diffuse polarization. Separating specular and diffuse polarization
from reflected light remains an open research problem [Cui et al.
2017; Kadambi et al. 2015].

There are three key differences between our method and existing
SfP methods: First, our model is not bounded to the modality of
specular and diffuse polarization by defining them together as a
single pBRDF model. Second, we estimate per-material refractive
indices, which are leveraged to resolve the inherent ambiguity of
surface normals from polarization. Third, we formulate a novel
optimization problem that can solve the azimuthal ambiguity of
polarization normals1 by means of rough base normals obtained
from structured lighting. To this end, by the joint optimization
of polarimetric appearance and normals, our method outperforms
existing state-of-the-art SfP methods.

3 BACKGROUND ON POLARIZATION
Polarization describes the oscillating states of electric components
of an electromagnetic wave. This section provides the foundations
of polarization.

1When measuring surface normals from polarization in conventional SfP methods, the
estimated surface azimuth angle could be flipped with an additional angle π .
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Stokes vector. A Stokes vector s ∈R4×1 has been popularly used
to represent the polarization state of a light wave. It is a four-
dimensional coordinate vector described as s=[s0, s1, s2, s3]ᵀ, where
s0 is the intensity of light L, and s1 and s2 are the powers of the
0◦ and 45◦ linear polarization components, respectively, and s3
is the power of the right circular polarization component. The
degree of polarization (DoP) is defined as the ratio of the mag-
nitude of the polarized vector elements to the intensity of the light:
ψ =

√
s21 + s

2
2 + s

2
3/s0. A Stokes vector s = [s0, s1, s2, s3]ᵀ can also be

defined as [L,Lψ cos 2ζ cos 2ξ ,Lψ sin 2ζ cos 2ξ ,Lψ sin 2ξ ]ᵀ, where
ζ is the polarization angle and ξ is the ellipticity angle.

Mueller matrices. A transformation of a Stokes vector, e.g., a re-
flection event of polarized light, can be represented as a Mueller
matrix, a 4-by-4 matrix for which M ∈R4×4: safter=Msbefore, where
sbefore and safter are the Stokes vectors before and after the event.
We employ four standard Mueller matrix transformations [Collett
2005]: Fresnel transmission/reflection, coordinate rotation, linear
polarization, and depolarization to formulate our pBRDF model.

Vector coordinate systems. A Stokes vector of a light wave is de-
fined with respect to a vector coordinate system, where the z-axis is
aligned along the propagation direction of the light, and the orien-
tations of the x and y axes vary depending on the polarization state
of the light. Before applying any transformation to a Stokes vector,
the coordinate system of the Stokes vector should be adjusted so
that it is the same system as used for the transformation.

Refer to the supplemental material for more details on standard
Mueller matrices, the conversion of polarimetric coordinate systems,
and a table of entire notations used in the paper.

4 COMPLETE POLARIMETRIC REFLECTANCE MODEL
This section will explain the derivation of our novel pBRDF model.
Suppose we capture the polarized light of a Stokes vector so reflected
on an object surface, illuminated by the polarized light of a Stokes
vector si. Here the surface reflectance can be formulated as a Mueller
transformation matrix P ∈R4×4 that describes a polarimetric BRDF.
The general light transport of the polarized light can be defined in
a vector-matrix form:

so = (n · i) Psi, (1)

where the pBRDFmodel P can be formulated as the sum of the diffuse
reflectance Pd and the specular reflectance Ps: P=Pd +Ps. According
to the traditional microfacet theory [Torrance and Sparrow 1967],
the diffuse term originates from the approximated sum of both
subsurface scattering and multiple reflections in microfacets [Lee
et al. 2018], and the specular term originates from single-bounce
mirror reflection on microfacets subject to shadowing and masking.
Figure 2 depicts these two reflection phenomena of diffuse and
specular polarization under polarimetric illumination.

4.1 Polarization of Diffuse Reflection
In our diffuse reflectance model, the polarization state of subsurface
scattering is assumed to be completely unpolarized (Figure 2(a)).
However, when unpolarized light comes out of the material, it is

Fig. 2. Diffuse vs. specular reflectance under polarimetric illumination. (a) In
diffuse reflection, light is absorbed into the object to be unpolarized by
subsurface scattering. When diffused light comes out of the object, it is
partially-linearly polarized again, passing through the interface between
the object and air. (b) In specular reflection, light is reflected on mirror-like
microfacet surfaces, of which the facet normal is identical to the halfway
vector. Specular reflection therefore holds strong polarization.

partially polarized again due to the difference between the refractive
indices of the material and air, following the Fresnel theory [Collett
2005].
To account for this diffuse polarization effect, our novel diffuse

reflection term formulates both incident and exitant polarization
through light transport, different from existing polarimetric appear-
ance models, yielding a Mueller matrix Pd as follows:

Pd = Cn→o(ϕo )FTo (θo ;η)D(ρ)F
T
i (θi ;η)Ci→n(−ϕi ), (2)

where θi,o is the zenith angle between the normal n and the inci-
dent/exitant light and ϕi,o is the azimuth angle between the plane
of incident and the y-axis of the incident/exitant light.
Here, FTi,o is the incident/exitant Fresnel transmission matrix be-

tween the object and air with respect to the object surface, and D is a
depolarization matrix, where the (0,0) element of diffuse albedo ρ is
the only non-zero element in the matrix, accounting for subsurface
scattering with the object pigments. We also have two standard
coordinate conversion Mueller matrices: one matrix from the light
to the plane of incidence (that holds n) Ci→n (−ϕi ) and other matrix
from the plane of incidence to the camera system Cn→o (ϕo ). Refer
to the supplemental material for more details on standard Mueller
matrices, FT, D and C. Note that our reflection model is defined
with respect to the observation coordinate system.

Hence, combining diffuse reflectance Pd with shading (n · i), our
polarimetric diffuse shading model Hd can be written as a Mueller
matrix by calculating Equation (2) with each component:

Hd = ρ(n · i)


T +o T

+
i T +o T

−
i βi −T +o T

−
i αi 0

T −o T
+
i βo T −o T

−
i βiβo −T −o T

−
i αiβo 0

−T −o T
+
i αo −T −o T

−
i αoβi T −o T

−
i αiαo 0

0 0 0 0

 , (3)

where αi,o and βi,o denote sin(2ϕi,o ) and cos(2ϕi,o ) of the inci-
dent/exitant azimuth angles of the polarized light, respectively. Here
T+i,o and T−i,o denote the calculations of Fresnel transmission coef-

ficients, (T⊥i,o +T
∥

i,o )/2 and (T
⊥
i,o −T

∥

i,o )/2, respectively. T
⊥ and T ∥

are the Fresnel transmission coefficients for the perpendicular (de-
noted by ⊥) and the parallel (∥) components:

T⊥ =
(

2η1 cos θ1
η1 cos θ1+η2 cos θ2

)2
,T ∥ =

(
2η1 cos θ1

η1 cos θ2+η2 cos θ1

)2
, (4)
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where θ1 and θ2 are the incident and exitant angles, andη1 andη2 are
the refractive indices of the medium before and after the interface,
respectively. η1 and η2 are set to 1.0 and the object refractive index
η, individually, for incident Fresnel transmission coefficients and
vice versa for excitant coefficients.

In summary, our polarimetric diffuse shading model is a four-
dimensional function Hd(θi ,θo ,ϕi ,ϕo ; ρ,η,n), which can predict
polarimetric changes of diffuse reflection with the given diffuse
albedo ρ and the refractive index η. We can rewrite the model with
vector notations as Hd (yi, yo, i, o; ρ,η,n), where θi=cos−1 (n · i),
θo=cos−1 (n · o), ϕi=cos−1 (ni · yi), ϕo=cos−1 (no · yo). Here ni,o is
the projected normal vector to the incident/exitant light frames, yi
is the y-axis of the illumination coordinate system, and yo is the
y-axis of the camera coordinate system.

Discussion. The main difference between our diffuse polarization
model and the prior works [Atkinson and Hancock 2006; Kadambi
et al. 2015] is that we account for both incident and exitant polar-
ization effects by including the incident Fresnel matrix FTi (θi ;η)
before applying the depolarization matrix. This means that our dif-
fuse reflection model can predict the intensity change of diffuse
polarization according to the polarization state of the incident light.

4.2 Polarization of Specular Reflection
According to the microfacet theory [Torrance and Sparrow 1967],
specular reflection is assumed as direct mirror reflections of a single
bounce on microfacets, the orientation of which is the same as the
halfway vector h = i+o

∥i+o∥ . Therefore, the Stokes vector of specular
polarization should be calculated with respect to the halfway vec-
tor h, rather than with the surface normal n. See Figure 2(b). We
formulate the specular reflectance term that accounts for surface
roughness, geometric attenuation, and the Fresnel effect, following
the traditional microfacet theory. Here, we elaborate the descrip-
tion of the Fresnel effect in the form of a Mueller matrix including
coordinate conversion matrices, which replaces the Fresnel term in
the original formulation with Ch→oFRCi→h:

Ps =
(
D(θh ;σ )G(θi ,θo ;σ )
4 cos(θi ) cos(θo )

)
Ch→o(φo )F

R(θd ;η)Ci→h(−φi ), (5)

where θh = cos−1(n · h) is the zenith angle between the normal n
and halfway vector h, θd = cos−1 (h · i) is the zenith angle between
incident light i and halfway vector h [Rusinkiewicz 1998], σ is the
surface roughness parameter for the GGX distribution D [Walter
et al. 2007], G is Smith’s shadowing/masking function [Heitz 2014]
for geometric attention, η is the refractive index for three color
channels, φi,o is the azimuth angle between the plane of incident
(that holds the halfway vector h for specularity) and the y-axis of
the incident/exitant light, and Ci→h (−φi ) and Ch→o (φo ) are the
coordinate conversion matrices.
Here FR(θd ;η) is calculated with angle θd with the following

Fresnel reflection coefficients R⊥ and R ∥ :

R⊥ =
(
η1 cos θ1−η2 cos θ2
η1 cos θ1+η2 cos θ2

)2
,R ∥ =

(
η1 cos θ2−η2 cos θ1
η1 cos θ2+η2 cos θ1

)2
, (6)

whereη1 andη2 are 1.0 and the object refractive indexη, respectively.
Also, cosθ1 and cosθ2 are defined as cosθ1=cosθd and cosθ2 =√
1 − ((1/η) sinθ1)2, respectively, following Snell’s law.
Finally, combining specular reflection Ps with shading (n · i),

our polarimetric specular shading model Hs can be derived from
Equation (5) in the Mueller matrix form:

Hs = ks
DG

4(n·o)(n·i) (n · i) (7)

·


R+ R−γi −R−χi 0
R−γo R+γiγo + R

×χi χo cosδ −R+χiγo + R
×γi χo cosδ χoR

× sinδ
−R−χo −R+γi χo + R

×χiγo cosδ R+χi χo + R
×γiγo cosδ γoR

× sinδ
0 −χiR

× sinδ −γiR
× sinδ R× cosδ

 ,
where χi,o and γi,o denote sin(2φi,o ) and cos(2φi,o ) of the inci-
dent/exitant azimuth angles of the polarized specular light, respec-
tively, ks is the specular coefficient as a scalar, cosδ is −1 for a
dielectric surface, when the incident angle is less than the Brewster
angle; cosδ = 1, otherwise, and vice versa for sinδ . Here R+, R−,
and R× denote the calculations of the Fresnel reflection coefficients,
(R⊥ + R ∥)/2, (R⊥ − R ∥)/2, and

√
R⊥R ∥ , respectively.

In summary, our polarimetric specular shading model is a bidirec-
tional functionHs(θi ,θo ,θd ,φi ,φo ;σ ,η,n), whereφi = cos−1 (hi · yi),
φo = cos−1 (ho · yo). Here hi,o denotes the projections of h to the in-
cident/exitant polarization plane of light, respectively. We can repa-
rameterize the specular model as Hs (yi, yo, i, o;σ ,η,ks ,n), which
allows predictions of the polarimetric specular appearance changes
of the given surface roughness σ , the refractive index η, and nor-
mals n.

5 SURFACE APPEARANCE FROM POLARIZATION
Overview. As input, we capture a set of polarized images with a

combination of linear polarizers on the camera and projector and a
rough geometry nb of an object using structured lighting with the
same projector. Based on our pBRDF model, we initially decompose
a set of polarized intensities I into a polarimetric shading matrix H
per pixel, which is decomposed to diffuse and specular polarization,
Hd and Hs. In our joint optimization of the appearance and normals,
they are then used to estimate the refractive indices of red, green
and blue channels η1...3 based on nb. η1...3 allows us to update per-
pixel surfaces normals n with high-frequency details using Hd. We
then estimate both the surface roughness σ and specular coefficient
ks from the previously estimated n, which refines the normals n
with those in the next iteration with more details in the specular-
dominant region. Finally, we estimate diffuse albedo ρ using η1...3
and n with consideration of the Fresnel effect on Hd.

Joint optimization of appearance and normals 

           1...3η   n ,sk σb,H n    ρ
Input 

: Diffuse 

: Specular 

: Diffuse  
+ specular 

Fig. 3. Overview of our joint optimization of polarimetric appearance and
high-frequency normals. Color lines of boxes indicate, which polarimetric
property is used for estimating surface appearance.

5.1 Designing the Polarization-based Acquisition Setup
Ideal setup. Suppose that we have a polarized light source and

a polarized camera on the same optical axis, known as the coaxial
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Fig. 4. Polarimetric decomposition. (a) We take polarimetric images with different combinations of linear polarization angles as input. (b) A polarimetric
shading matrix H is then estimated per pixel. The positive and negative values in a wide range are visualized with different gammas (2.2 for the diagonal; 4 for
the non-diagonal). Images (c), (d) & (e) show initial specular/diffuse separation of per-pixel polarimetric matrix component H.

setup, and that we can change the angles of the linear polarizers
on each device individually. The ideal coaxial setup allows us to
simplify the original formulation of our polarimetric appearance
matrix H=Hd+Hs into a concise form. In this case, many negligi-
ble values can be approximated as zero in H. First, in the diffuse
term Hd (Equation (3)), we can regard T−o T−i as close to zero due
to the low diffuse degree of polarization. Second, in the specular
term Hs (Equation (7)), the difference between the Fresnel reflection
coefficients R−, also approaches zero, as the parallel and perpen-
dicular components of the Fresnel reflection coefficients become
close (R ∥≈R⊥) [Collett 2005]. This consequently leads to another
simplification: R+≈R×. Also, γi ,γo and ξi , ξo are close to zero and
one, respectively, because the Fresnel reflection effect occurs on
the microfacet, for which the facet normal is close to both the view
and illumination vectors. In addition, cosδ is −1 for the dielectric
surface as the incident angle to the microfacet is close to zero for
the coaxial setup, where it is apparently less than the Brewster an-
gle [Collett 2005]. In summary, the polarimetric shading matrix H
can be simplified by having all the simplifications together (R−≈0,
R+≈R×, γi≈1, γo≈1, ξi≈0, ξo≈0, cosδ≈-1, T−o T−i ≈0):

H ≈ (n · i)


ρT+o T

+
i +CR

+ ρT+o T
−
i βi −ρT+o T

−
i αi 0

ρT−o T
+
i βo CR+ 0 0

−ρT−o T
+
i αo 0 −CR+ 0

0 0 0 −CR+

 ,
(8)

where C is the coefficient of the specular term: C = ks DG
4(n·o)(n·i) .

Real setup. However, owing to the imperfectness of the non-
polarized beamsplitter, it is impossible to build a perfect coaxial
setup with two controllable linear polarizers. We therefore build a
suboptimal coaxial setup, as shown in Figure 5. We place the camera
and the projector in the shortest baseline, about 7.5 cm, where the
orientations of both devices are seemingly identical and calibrated.
The relatively longer distance between the object and the capture
system is set to approximately ∼110 cm. After validating our coaxial
assumption with a synthetic dataset and a comparison between real
data and the synthetic ground truth, we could assume that our real
setup can be approximated with the coaxial formulation of H in
Equation (8).

Initial normals. Using a projector as a light source allows us to
obtain additional information using the pair of the camera and the
projector. This projector is used for not only illumination but also

Fig. 5. Our polarimetric imaging setup. Glass-based linear polarization
filters are mounted on the camera and the DLP projector (an unpolarized
one). This projector is used as not only the light source but also for structured
light scanning.

for structured light scanning. We capture a rough geometry using
the projector with a popular structured lighting method [Moreno
and Taubin 2012]. Once the point clouds are obtained, the per-point
surface normals are estimated using [Hoppe et al. 1992] and this is
followed by projecting the point-cloud to the image space of the
camera. We propagate the sparsely projected depth and normals
to the entire pixel [Levin et al. 2007] resulting in an initial rough
normal map nb. For example, Figure 10(b) shows the initial rough
surface normals nb from the structured lighting method compared
to the ground truth.

5.2 Polarimetric Shading Decomposition
Image formation. We use the unpolarized camera and the unpo-

larized projector with two linear polarizers. Therefore, the Stokes
vector of the light si is [L, 0, 0, 0]ᵀ, where L is the scalar of the max-
imum intensity of the projector light. The captured intensity I with
the given polarization angles of the linear polarizers (ϑi ,ϑo ) can be
formulated as: I (ϑi ,ϑo )=so,0. I is normalized by the maximum radi-
ance L of the light source. These linear polarizers can be formulated
as standard linear polarization matrices, L(ϑi ) and L(ϑo ) (refer to
the supplemental material for details on the Mueller matrix). We
can extend Equation (1) as an image formation model in our setup:
so = L(ϑo )HL(ϑi )si.

Given this configuration, the per-pixel intensity I (ϑi ,ϑo ) is formed
by only the intensity of light with given polarization angles ϑi and
ϑo so that our light transport model can be simplified further for
linear polarization. First, the incident light intensity si,0 is multi-
plied by only the first column of the incident linear polarimetric
transmission matrix L. Second, the captured light intensity I = so,0
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is obtained from the product of the first row components in the
linear polarimetric transmission matrix and the first column com-
ponents in the reflection matrix H per pixel. We therefore define
a simple transmission matrix ℓ (ϑ )=1/2 [1, cos 2ϑ , sin 2ϑ , 0]ᵀ ∈R4×1.
This can be used as the replacement of L(ϑ ), yielding a simpler
image formation model:

I (ϑi ,ϑo ) = ℓ(ϑo )
ᵀHℓ(ϑi ) = ℓ(ϑo )

ᵀ(n · i)Pℓ(ϑi ). (9)

As shown in Figures 4(a), we capture a set of input images with
four different angles using two linear filters on each project and
each camera, setting the number of angular intervals as 4 of ϑi ,ϑo ∈
{0,π/6,π/3,π/2} in Equation (9).

Decomposition. Suppose we have a set of multiple images with ev-
ery combination ofm number of incident angles ϑi and n number of
exitant anglesϑo . In thematrix-vector form, the pixel-intensity stack
of the normalized polarimetric observations with every combination
of ϑi and ϑo can be expressed as I∈Rn×m . The set of polarimetric
observations can be expressed by means of incident and exitant lin-
ear polarization matrices: Φi ∈R

4×m and Φo ∈R4×n . These matrices
are made up of ℓi,o ∈R4×1 vectors for each combination of ϑi and
ϑo .

Our total observation of every combination of linear polarization
(Equation (9) for each observation) is now formulated in a matrix-
vector form as: I = Φᵀ

o HΦi, where H ∈ R4×4 is the polarimetric
shading matrix. By capturing at least nine combinations of linear
filters of the light and the camera, we can estimate the polarimetric
shading matrix H by solving an overdetermined system:

minimize
H

∥I − Φᵀ
o HΦi∥

2
2 . (10)

We solve it using the standard least-squares method. As the un-
known matrix H is surrounded by the observation matrices, we
solve Equation (10) for HΦi first, yielding an intermediate matrix of
H′ = HΦi. As a consequence, we solve another objective problem:
minimizeH ∥H′ −HΦi∥

2
2 using the least-squares method again. The

estimated H enables the formulation of a polarimetric shading equa-
tion for inverse rendering. Note that Equation (10) is a per-pixel
optimization. In practice, we solved the optimization simultaneously
for every pixel by reformulating Equation (10) into matrix form con-
catenated for every pixel. Refer to the supplemental material for
more details.

Figures 4(a) and (b) show the input image examples and decom-
posed H matrix, respectively. Note that because we use linear polar-
izers, there are no values in the fourth column and row of H. We
therefore show only 3-by-3 images with positive and negative values.
There are notable elements in H. First, H00 (Figure 4(c)) corresponds
to the (0,0) element in Equation (8), (n · i)(ρT+o T+i +CR

+). Moreover,
the second term of specular reflection (n · i)CR+ appears as the
positive and the negative values in H11 and H22, respectively, along
the diagonal in Equation (8) allowing an estimate of the specular
shading component Hs

00 from the average value: (|H11 | + |H22 |)/2.
See Figure 4(d). In fact, except for H00, there is no diffuse dependent
component along the diagonal elements in H so that we can obtain
diffuse shading component Hd

00 by substituting specular shading
component Hs

00 from H00 (Figure 4(e)). This allows us to initially

separate diffuse and specular shading components (including (n · i))
from H.

5.3 Estimating Appearance from Polarization

Spatially-varying BRDFs. Given the manually determined num-
ber of materials B, our per-material polarimetric BRDF {Pb |b ∈
{1, ...,B}} is defined on a material mask of each cluster {ωb |b ∈
{1, ...,B}}. To estimate the mask ωb , we apply k-means clustering
on the diffuse reflection image of Pd, obtained by the structured light
normal nb and the diffuse shading component Hd: Pd = Hd/(nb · i).
The top row in Figure 8 shows an estimated cluster map. Note that
different from conventional SVBRDF works [Chen et al. 2014; Nam
et al. 2016; Zhou et al. 2016], we do not include the blending weights
of basis BRDFs for computational efficiency to avoid non-negative
constrained optimization of blending weights.

Refractive index. The refractive index (RI) determines the ratio
between the transmitted and reflected energy for parallel and per-
pendicular polarization components, according to the Fresnel theory.
Existing polarization-based acquisition methods [Ghosh et al. 2010;
Riviere et al. 2017] estimate the refractive index from specular re-
flection, assuming that the surface is illuminated under spherical
lighting, which allows for devising a function that can describe
the refractive index and specular intensity. However, in our setup,
where the illumination is local and directional, the specular re-
flection information is insufficient to estimate the refractive index
robustly. Instead, we utilize diffuse polarization in particular for
robustly estimating the refractive index. To this end, we devise a
novel optimization problem that leverages both diffuse polarization
and specular shading, yielding the per-material refractive index
ηb ∈{1...B } .

Because the refractive index is a wavelength-dependent property,
we estimate the refractive index per color channel ηb1...3 by solving
a joint optimization problem [Waltz et al. 2006] that consists of two
energy terms: Ed for exitant diffuse polarization and Es for specular
shading, as follows:

minimize
ηb1. . .3

wdEd

(
ηb1...3

)
+wsEs

(
ηb1...3

)
, (11)

wherewd andws are the weights for Ed and Es respectively, set to
1 and 10−2 in our experiments.

We formulate the first term Ed by leveraging the degree of diffuse
polarization of exitant lightψ d

o , which is defined as the ratio of the
two Fresnel terms: ψ d

o = T−o /T
+
o (Equation (4)). According to the

Fresnel theory [Atkinson and Hancock 2006], ψ d
o is defined as a

function fo of the refractive index η and the surface zenith angle
θz :ψ d

o = fo (η;θz ), as shown in Figure 6(a).
Givenψ d

o and the zenith angle θz , fo can be used to estimate the
refractive index. To this end, we obtain (1) a rough estimate of zenith
angle θz from the structured light normal nb and (2) the degree of
diffuse polarization of exitant light ψ d

o from Hd using our pBRDF

model (Equation (3)):ψ d
o ←

√
Hd
10
2
+ Hd

20
2
/Hd

00 =
ρT −o
ρT +o

. By having

both θz andψ d
o , we formulate an energy function Ed to estimate the
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Fig. 6. Degree of diffuse exitant polarization ψ d
o is related to the refractive

index and the zenith angle. (a) For the given zenith angle and with the value
of ψ d

o , we can estimate the refractive index. (b) We can also estimate the
zenith angle for the given refractive index and the value of ψ d

o .

b-th material refractive index in the red (ηb1 ), green (ηb2 ) and blue
(ηb3 ) channels, respectively:

Ed

(
ηb1...3

)
=

©­«
∏

pb ∈Ωb

3∑
c=1




fo (
ηbc ,θz (pb )

)
−ψ d

o (pb )



2
2
ª®¬
|Ωb |

, (12)

where pb is a pixel belonging to material b, and Ωb is denoted as
the set of pixels belonging to the material b∈{1, ...,B}. θz (pb ) and
ψ d
o (pb ) denote the values of θz andψ d

o at the pixel pb , respectively.
This term Ed minimizes the difference between the observation and
the simulation of the degree of diffuse polarization of exitant light
as the geometric mean for statistical robustness.
We then formulate the second term Es directly to leverage the

observed Fresnel color in the specular shading component Hs
00 in

Equation (7). The refractive index affects the specularly reflected
energy at the surface as the Fresnel reflection coefficient (R+) is
determined by the refractive indexη1...3 and the incident angle θd to
the microfacet surface. To facilitate the dependency of the refractive
index on the Fresnel reflection coefficient (R+), we use the specular
intensity (n · i)CR+ from the first element of the specular shading
matrix, Hs

00 = (n · i)CR
+. Our observation is that as (n · i)C is

independent of the refractive index, i.e., color, we can utilize the ratio
of R+ across different color channels by removing the refractive-
index-independent term from Hs

00 in Equation (7): Hs
00,c1/H

s
00,c2 =

R+c1/R
+
c2 , where c1 and c2 are the color channels c1, c2∈{1, 2, 3}. H

s
00,c

and R+c are the values for each color channel c . We use the ratio of
red and blue color channels with respect to the green channel and
formulate the specular term as follows:

Es
(
ηb1...3

)
=

( ∏
pb ∈Ωb

∑
c,2





R+(ηbc ,θd (pb ))R+(ηb2 ,θd (pb ))
−

Hs
00,c(pb )

Hs
00,2(pb )





2
2

) |Ωb |
, (13)

where θd (pb ) and Hs
00,∀ (pb ) are the values of θd and Hs

00,∀ at pixel
pb , respectively. This minimizes the difference of the observed and
the reconstructed Fresnel ratio values of different channels.
Figure 7 compares four different estimates of the refractive in-

dex of the same material on the abdomen region of a porcelain
owl doll (the typical RI of porcelain: 1.50). Figures 7(a) and (b)
show the estimated refractive index η1...3 and their Fresnel color
R+ (η1...3,θd ) after minimizing the only incident diffuse polariza-
tion energy and the only exitant diffuse polarization energy, re-
spectively. In this figure, for incident polarization, we exploit the
diffuse degree of polarization of incident light ψ d

i instead of ψ d
o :

Fig. 7. Refractive index estimation. Column (a) shows the refractive index
estimation from the degree of diffuse polarization of incident light ψ d

i only.
Column (b) presents the estimation from the degree of diffuse polarization
of exitant lightψ d

o only. Column (c) is the estimated refractive index from the
specular shading component Hs

00 only. Column (d) is our jointly optimized
estimation of the refractive index from ψ d

o and Hs
00.

ψ d
i ←

√
Hd
01
2
+ Hd

02
2
/Hd

00 =
ρT −i
ρT +i

. However, we found that the in-
cident diffuse polarization is strongly affected by the subsurface
scattering effects inside the object, resulting in inaccurate estimates
of the refractive index. Therefore, the exact relationship between
the degree of incident polarization and the refractive index does not
hold. As shown in Figure 7(b), the Fresnel color of the exitant diffuse
polarization is a better match with the Fresnel color observed in
the specular image Hs

00 shown in Figure 7(c). However, the exitant
polarization still cannot provide a robust estimate that matches the
Fresnel color of Hs

00 well. Figure 7(c) presents an estimation with
only the specular term, which yields a plausible reproduction of the
Fresnel color, similar to the color of the specular shading component.
However, the scale of the refractive index cannot be robustly esti-
mated as we only exploit the ratio between the different channels.
Figure 7(d) shows our final estimation using joint optimization with
the exitant diffuse polarization and the specular shading component,
achieving plausible Fresnel color in addition to an accurate scale of
the refractive index per color channel.

Specular roughness and coefficient. To estimate both specular rough-
nessσ and coefficientks , we require the information of the refractive
index η1...3 and high-quality surface normals n. The input rough
geometry information nb is insufficient for estimating σ and ks such
that we need to obtain surface normals n from diffuse polarization,
as described in Section 5.4. Once we have η1...3 and n, we solve
the following optimization problem to determine the parameters to
make our specular reflection model close to the observation:

minimize
σb ,kbs

∑
pb ∈Ωb




(W ′ (pb ) +W (pb ))
(
Ĥs
00

(
pb ;σb ,kbs

)
− Hs

00 (pb )
)


2

2
, (14)

whereW (pb ) andW ′ (pb ) are the two different confidence values
of a pixel pb . W penalizes pixels, of which normal is close to the
halfway vector:W = 1−(n · h)λ .W ′weights pixels with strong spec-
ular only, of which normal is close to the halfway vector based on the

reliable low-frequency normal on that region:W ′ =
(
Hs
00/|H

s
00 |

)λ
.

We set λ=10 empirically. Here Ĥs
00

(
pb ;σb ,kbs

)
is the reconstructed

polarimetric shading matrix using Equation (7) at the pixel pb for
the given σb and kbs . Hs

00 (pb ) is the value of Hs
00 at the pixel pb .
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The reason for having these two weightsW andW ′ is that our
initial estimation of surface normals mainly relies on the degree of
diffuse polarization. However, the degree of polarization is severely
weak in those regions, where the zenith angle is close to zero [Atkin-
son and Hancock 2006]. As Equation (14) is a non-linear optimiza-
tion problem, we solve it using the interior-point method [Waltz
et al. 2006]. Note that the estimated roughness σ is used to further
refine the surface normals n in the next iteration using specular
information. Refer to Section 5.4 for more details on estimating
normals. Figure 8 shows the estimated roughness in the form of
pBRDF for each material.

Fig. 8. Visualization of estimated pBRDF P per material (top: weight maps
for each material) in the form of a sphere geometry. Note that different
gamma values are applied to the diagonal (γ =2.2) and non-diagonal elements
(γ =4) for visualization. Per-pixel diffuse albedos ρ are averaged for every
pixel.

Diffuse albedo. The estimation of the diffuse albedo is the last step
of our inverse rendering pipeline. We estimate the diffuse albedo
from the polarimetric diffuse shading Hd

00 and final surface normals
n (refer to Section 5.4) as follows: ρ = Hd

00/{(n · i)T
+
o T
+
i }, where

T+o T
+
i can be calculated using Equation (4) with the per-channel

refractive index η1...3 as estimated (Equation (11)) to account for
the diffuse Fresnel effect. Figure 9 compares polarimetric diffuse
shading Hd

00 and estimated diffuse albedo ρ with the intermediate
diffuse shading n · i and diffuse Fresnel coefficients T+o T+i .

Fig. 9. (a) Polarimetric diffuse shading Hd
00 per pixel. (b) Shading term n · i.

(c) Fresnel coefficients T +o T
+
i . (d) Estimated diffuse albedo ρ .

5.4 Estimating normals from polarization
Overview. Our polarization-based normal estimation is a two-step

process. Given the estimated refractive index η and rough surface

normals nb, the first step estimates normals n from the polarimetric
diffuse shading component Hd

00. After estimating both the specular
roughness σ and the coefficient ks using the intermediate normal n,
the second step updates normals n (estimated from diffuse polariza-
tion) in regions where the zenith angle is close to zero.

Diffuse normals. Existing SfP methods have two common ambi-
guities pertaining to the azimuth and zenith angles of estimated
normals n; the azimuth angles of normals could be flipped with π ,
and the zenith angles could be overly flat. Existing SfP method solve
the azimuth ambiguity problem, existing SfP methods have made
efforts to solve it in various ways. Tozza et al. [2017] use multiple
lights to capture multi-directional observations to resolve the ambi-
guity. Miyajaki et al. [2003] proposed a greedy approach, searching
azimuth candidates exhaustively from the boundary to the center.
Kadambi et al. [2015] estimate a binary selection mask to select one
of the two candidate normals using a rough base normal from a
depth sensor. However, these methods either require multiple light
sources or employ a binary choice between two normal candidates,
thereby resulting in notable artifacts. In contrast, we resolve the
azimuth ambiguity with a single optimization of the surface normals
by means of a rough base normal, instead of explicitly estimating
the binary mask.

For the zenith ambiguity, previous SfP methods cannot determine
the material property as the refractive index and therefore they
assume a certain refractive index (such as 1.5) manually. Without
knowing the accurate refractive index of the object, they encounter
the zenith ambiguity. In contrast, our novel joint optimization of
appearance and normals allows us to solve the zenith ambiguity
problem with an accurately estimated refractive index.

To estimate high-frequency normals n from the polarimetric dif-
fuse shading matrix Hd and rough geometric normals nb from struc-
tured lighting, we formulate a joint optimization problem that con-
sists of three terms:

minimize
N

αd
{
∥W (ON − Cz )∥

2
2 + ∥WAN∥22

}
+βd ∥GN − Nb∥

2
2 + γd ∥∇N∥22 ,

(15)

where N and Nb are the normals n and nb concatenated for ev-
ery pixel in a matrix form. W is a matrix of the confidence func-
tionW for handling unconfident observation of diffuse polariza-
tion used in Equation (14), O is a matrix of view vectors o for ev-
ery pixel, Cz is a matrix of the cosine values of the zenith angles,
cos (θz ) for every pixel, A is a matrix for collinearity of azimuth cues
A=[cosϕo ,− sinϕo , 0] for every pixel, G is a matrix for Gaussian
blurring with standard deviation (as 10 in our experiment), and αd ,
βd and γd are corresponding weights, set as 10, 1 and 3, respectively.
Note that we pack per-pixel normals n as N in a matrix form to
formulate the optimization problem.
In Equation (15), the first term forces the zenith angle of sur-

face normals n to be similar to the zenith angle from polarization
θz , which can be calculated from the refractive index η and the
degree of exitant polarizationψo , similar to the case of the refrac-
tive index estimation method (Section 5.3) as shown in Figure 6(b):
θz = f −1(ψo ;η). The second term makes the normal close to either
the two different azimuth angles from polarization ϕo or (ϕo + π )
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Fig. 10. Normal Estimation. Image (a) shows reference normals scanned by a 3D laser scanner (NextEngine). Structured-light normals (b) provide reliable
low-frequency information of surface normals, while polarization normals (c) retain high-frequency detail but suffer from azimuthal ambiguity and noise.
Image (d) shows our intermediate normal estimation result with diffuse polarization only, still missing details in the region where the zenith angle close to
zero. Image (e) presents our final result with enhanced normals in the region with additional consideration of specular reflection.

with the co-linearity constraint, following [Tozza et al. 2017]. Here
the azimuth angle ϕo can be estimated from diffuse exitant polar-
ization:

tan−1
(

Hd
20

Hd
10

)
= −tan−1

(
sin(2ϕo )
cos(2ϕo )

)
= −2ϕo . (16)

The third term forces the low-frequency components of the recon-
structed normal n to be similar to rough geometric normals nb from
structured lighting. The last term is the local smoothness prior for
the reconstructed normals n. As every term is imposed in the L2
norm, we can efficiently optimize Equation (15) using the gradient
decent method (refer to the supplemental material for details).

Specular normals. Different from existing SfP methods [Kadambi
et al. 2015; Miyazaki et al. 2003; Tozza et al. 2017], our method does
not require the forced choice of the modality between diffuse and
specular reflection on each pixel with binary labelling. Despite that
our polarimetric decomposition of mixed specular and diffuse polar-
ization can handle the modality problem, we still require a variant
approach to estimate surface normals from specular reflection in
the regions where the zenith angle becomes close to zero.

In the second step, we update surface normals n with additional
information about the specular roughness σ and coefficient ks (Sec-
tion 5.3) by formulating an optimization problem as follows:

minimize
N

αs ∥W (ΨN − Ch)∥
2
2 + βs ∥W∇N∥22

+γs ∥(1 −W) (N − N′)∥22 ,
(17)

whereΨ is a matrix of halfway vectors for every pixel, Ch is a matrix
of cosine values of the halfway angles, cos (θh ), concatenated for
every pixel, θh is the halfway angle between the normal n and
halfway vector h, and N′ is a matrix of the previously estimated
normals n′ using diffuse polarization in the first step. We also use
the weighting matrix W introduced in Equation (15) to identify low
confidence regions, and the weights αs , βs and γs are set as 10, 1
and 1, respectively.

Here, similar to photometric stereo with specular reflection [Fyffe
et al. 2016], the first term forces the halfway angle between the

reconstructed normal n and the halfway vector h to be close to the
halfway angle θh that can be estimated from specular observations
in Hs

00. To do so, we derive a function S (θh ;σ ) that can describe
the halfway-angle dependency in Hs

00 using the (0,0) element of the
polarimetric shading matrix (Equation (7)) as follows:

S (θh ;σ ) =
D (θh ;σ )
4 cos (θh )

≈ (n · i)
D (θh ;σ )

4 (n · i) (n · o)
←

Hs
00

ksG (i, o;σ )R+ (i, o;η)
.

(18)

Using the known values of η, ks and σ , we first detach the influence
of specular albedo ks , the geometric termG (i, o;σ ), and the Fresnel
termR+ (θd ;η) from the polarimetric specular shadingHs

00, resulting
in the NDF term (n · i)D (θh ;σ ) divided by 4 (n · i) (n · o). Function S
can be simplified as Equation (18) with approximation based on the
coaxial setup ((n · i) ≈ (n · o) ≈ cos (θh )).

Fig. 11. Function S with respect to θh
for selected specular roughness σ .

To this end, we can ob-
serve the characteristics of
the function S as shown
in Figure 11: First, since S
does not decrease contin-
uously, there can be two
different solutions of θh ,
which produce the same
value of S , while the first
solution is close to zero and
the other is close to π/2. However, as our goal is to utilize specular
information in regions where the surface zenith angle is close to
zero, we can take the solution with a smaller θh value to resolve
the ambiguity. Second, S is smoothly changing with respect to θh .
Hence, we estimate θh using a lookup table approach S (θh ;σ ) with
linear interpolation to solve the following optimization problem
minimizeθh



Ŝ (θh ;σ ) − S

, where Ŝ is the reconstructed value of
the function S . Finally, we optimize Equation (17) using gradient
descent with an iterative process of optimization and normalization
with the unit norm constraint, similarly to Equation (15).
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Fig. 12. Validation of our pBRDF model. (a) We captured a white sphere object and reconstructed the polarimetric shading matrix H of the object. We find the
best-fit parameters and reconstruct H with two models: (b) the traditional C-T model [Cook and Torrance 1982] and (c) our pBRDF model. (e) Our pBRDF
model can predict the decomposed polarimetric photographs better than the C-T model does both with and without coaxial assumption. In addition, we verify
our coaxial assumption by comparing (c) H under the near-coaxial setup and (d) H under the ideal coaxial setup. They both present a good agreement in
predicting polarimetric shading. (f) shows absolute differences of the estimated H under the two different setups.

Figures 10(a) and (b) show the inputs, rough base normals and
polarization normals with ambiguity. Our diffuse-only optimization
yields high-quality normals except for the region where the zenith
angle becomes close to zero, as shown in Figure 10(c). Figure 10(d)
shows that our complete optimization with additional specular cues
can recover surface normal details over the missing regions.

6 RESULTS

6.1 Experimental Setup
We built an experimental setup with an ordinary RGB machine-
vision camera (FLIRGrasshopper GS3-U3-120S6C-C, 12MP) equipped
with a 35mm lens and an unpolarized DLP projector (AAXA P450
Pro, 450 lumen), as shown in Figure 5, where the maximum in-
tensity is calibrated using a stainless steel ball. The white balance
factors are obtained by capturing a standard Spectralon tile with
a known reflectance. The colors of the camera are calibrated as a
3-by-3 matrix by capturing the standard ColorChecker. The geomet-
ric relationship between the camera and the projector is calibrated
using Zhang’s method [2000], yielding four vectors, yi, yo, i, and
o, which are related to the extrinsic parameters of the camera and
the projector. We installed two linear polarization filters in front
of the camera and the projector. They are mounted firmly with 3D-
printed supporting structures. The polarization angles, ϑi and ϑo ,
are controlled manually with four different measurements for each
angle from 0 to π/2 with a step size of π/6. We took polarimetric
photographs with multiple exposures by varying the shutter time to
convert raw signals into HDR radiance [Debevec and Malik 1997]
to capture specular reflection without saturation.

6.2 Validation of the Polarimetric Reflectance Model
For validation of our pBRDF model, we captured a white sphere
object and estimated the polarimetric shading matrix H of the object
using Equation (10), as shown in Figure 12(a). We then compare this

with the reconstructed matrix H, with best-fit parameters using our
pBRDF model shown in Figure 12(c). We also reconstruct H using
a traditional C-T BRDF model [Cook and Torrance 1982] shown
in Figure 12(b). During the process of the reconstructing H, we
add Gaussian noise to account for noise in the captured images.
Figures 12(a) and 12(c) validate that our model can characterize
polarimetric reflection on the sphere object better than the non-
polarimetric model in Figure 12(b). For a quantitative evaluation, we
reconstruct polarimetric photographs (a) using the C-T model (b)
and our pBRDF model (c). The positive and negative elements of the
H matrix are combined and considered as per-pixel single signed
scalars. For both HDR photographs and H matrices, we computed
PSNR values with the peak signal value normalized to one. As
shown in Figure 12(e), our model accuracy is 24.87 dB of PSNR,
while the C-T model accuracy is 22.70 dB. Since our model accounts
for polarimetric appearance changes, the prediction accuracy of our
model is higher than that of the traditional C-T model accordingly.

6.3 Validation of the Coaxial Assumption
We evaluate our coaxial assumption by reconstructing a polarimet-
ric shading matrix H under the synthetic coaxial setup shown in
Figure 12(d), and comparing it to the reconstruction under our real
near-coaxial setup in Figure 12(c). Figure 12(f) visualizes differences
between these two H matrices. Numeric evaluation in terms of two
metrics (average intensity difference & PSNR) shows the validity of
the assumption: (0.0290 & 41.99dB) and (0.0062 & 52.46dB) for the
diagonal elements and the non-diagonal elements, respectively.

6.4 Appearance and Normal Estimation
Synthetic data. We validate our algorithm on synthetic data, as

shown in Figure 13. For creating synthetic input data of surface nor-
mals n, we employ the Stanford dragon object. Material parameters
are set as follows: ks = 3.00,η1...3 = {1.50, 1.70, 1.90},σ = 0.20 to
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Fig. 13. Synthetic evaluation. (a) We simulate polarimetric images of a dragon object using Equations (3) and (7) for input of our method. Extrinsic parameters
of our hardware setup were employed. Also, we added Gaussian noise to the images. (b) – (f) Our estimation of polarimetric appearance is very close to the
ground truth with high accuracy. (g) Our method can faithfully reconstruct the original polarimetric images with the estimated pBRDF.

Fig. 14. Our polarimetric inverse rendering recovers (a)–(d) the surface appearance, and (e) surface normals from a single view and a single projector setup.
(f) Thanks to our pBRDF model, we can provide polarization-aware rendering where the camera and the light source are both equipped with linear polarizers,
with angles ϑi = 0 and ϑo = 0. (g) Our rendering results show good agreement with ground truth photographs.
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have both specular and diffuse reflection. Figure 13(a) shows the
input data for our method. We create rough surface normals nb
by convolving n with a Gaussian kernel with standard deviation
10. Input polarimetric images are then generated using these ap-
pearance parameters and the polarimetric image formation model
(Equation (9)). Note that real extrinsic parameters from a prototype
are used in this simulation. Figure 13(b) shows that we significantly
improve details of surface normals, compared to input normals. How-
ever, we can still observe some deviation from the ground truth near
regions where normals contain high frequency details. Figure 13(c)
demonstrates that diffuse albedo can be faithfully estimated except
for regions where surface normals contain errors. Figures 13(d)–(f)
show estimated material properties of the refractive index, spec-
ular roughness and specular coefficient, which are very close to
the ground truth values, as follows: (Est. & GT): ks=(3.14 & 3.00),
η1...3=({1.51, 1.72, 1.98} & {1.50, 1.70, 2.00}),σ = (0.21 & 0.20).With
these estimated properties, we can faithfully reconstruct polarimet-
ric images, such as cross-polarization, as shown in Figure 13.

Real data. We captured real-world objects to obtain polarimetric
reflectance and surface normals (Figure 14). Our method success-
fully reconstructs detailed surface normals while estimating the
appearance properties by means of polarization. These properties
are then used for polarimetric rendering using our pBRDF model
(Equations (3) and (7)). Figures 14(f) and (g) show our polarimetric
inverse rendering and reference photographs captured with the
linear polarizer in front of the camera and light with polarization
angles of ϑi = 0 and ϑo = 0. These results validate that our model
can predict polarimetric reflection with high accuracy.

Refractive index. We evaluate the accuracy of the refractive index
estimated by our method. We captured a white sphere object painted
with white acrylic matching liquid, the refractive index of which is
known as the ground truth [Kasarova et al. 2007]. Figure 15 validates
that we can estimate per-channel RI of the paint liquid with high
accuracy.

Fig. 15. Refractive index validation of a sphere painted with white acrylic
matching liquid. The estimated refractive indices of the red/green/blue
channels are 1.47/1.51/1.54 close to the ground truth [Kasarova et al. 2007].

Surface normals. Miyazaki et al. [2003] assume a single refractive
index over entire surfaces and integrate polarization normals from
the boundary to handle the azimuth ambiguity. Kadambi et al. [2015]
resolved the azimuth and zenith ambiguity problems of polarization
normals using a Boolean mask and a distortion-correction stage
using rough base normals. Contrary to both existing methods, we
resolve the angle ambiguity problem by estimating the refractive
index and solving a single optimization (Equation (15)) that takes

Fig. 16. Evaluation of surface normals. The top row shows surface normals
of (a) Miyazaki et al., (b) Kadambi et al., (c) our method and (d) the reference
3D scanner. The bottom row presents error maps of the normals for each
method in terms of angle difference, compared to the ground-truth normals.

Fig. 17. Qualitative evaluation of surface normals. (b) Ground-truth normals
of a plastic ball object (a) obtained from a laser scanner. (c) Normals from
Kadambi et al. [2015] without a depth integration stage. (d) Our estimated
normals shows fewer artifacts, compared to (c).

normal cues from diffuse polarization as well as rough base nor-
mals. For normal evaluation, we captured the 3D geometry of the
owl object using a laser 3D scanner (NextEngine), which is then
mapped to the screen space via correspondence mapping to obtain
a reference normal map (Figure 16).
Compared to the reference normals, we calculate the accuracy

of our estimated normals and those from Miyazaki et al. [2003],
and Kadambi et al. [2015]. Our method outperforms the others
as shown in Figure 16. The averaged normal differences with the
reference normals are 10.05, 11.95, and 22.70 in degree for our
method, [Miyazaki et al. 2003], and [Kadambi et al. 2015]. Figure 17
shows additional evaluation on a plastic orange toy, qualitatively
demonstrating that our method results in fewer artifacts compared
to Kadambi et al. [2015].

Inverse rendering. Miyazaki et al. [2003] proposed the use of po-
larization normals by integrating normals from boundary. However,
they use the non-polarimetric Torrance-Sparrow BRDFmodel [1967]
ignoring polarization for appearance estimation. Figures 18(a) and
(c) validate that our method outperforms Miyazaki et al. [2003] that
use the simple integration of normals. In addition, we implemented
another inverse-rendering method that takes the rough structured
light normal instead of the polarization normal where the appear-
ance parameters are estimated based on non-linear fitting with the
C-T model. Figures 1 and 18(b) validate that our inverse rendering
can produce very realistic appearance. Refer to the supplemental
video for rendering in novel view and novel light.
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Fig. 18. Inverse rendering results for the digda scene shown in Figure 14.
(a) [Miyazaki et al. 2003], (b) [Miyazaki et al. 2003] without polarization,
and (c) ours. The first row shows estimated normals of each method. Note
that we use the structured light normals for (b). The second row shows the
estimated diffuse albedo. The third row presents rendered images of each
method under the environmental lighting of St. Peter.

Fig. 19. Inverse-rendering results compared to Aittala et al. [2015] and
rendering under novel illumination. (a) & (e) Estimated diffuse and specular
albedo from Aittala et al. (b) & (f) Estimated diffuse and specular albedo
from our inverse-rendering method. (c) & (d) and (g) & (h) Photographs and
our rendering results under the original and the novel illumination.

We also captured a flat object with stationary patterns and com-
pare our estimation of diffuse and specular albedo with those from
Aittala et al. [2015]. Figure 19 validates that our method effectively
estimates diffuse albedo using polarization, different from Aittala et
al [2015]. However, since we estimate per-material parameters of
specular appearance, our results present sharp edges in results.

In addition, we evaluate performance of inverse rendering under a
novel illumination.We placed a light source in a different direction at
a slanted degree with respect to the flat object. Figures 19(c) & (d) and
(g) & (h) show photographs and rendering results under the original
illumination and the novel illumination. PSNRs of the original and
the novel illumination are 26.12 dB and 22.25 dB, respectively.

7 DISCUSSION AND FUTURE WORK
Multiple reflection among microfacets. According to the micro-

facet theory [Torrance and Sparrow 1967], diffuse reflection is be-
lieved to originate from two phenomena: subsurface scattering and
multiple reflections among microfacets. The polarization behav-
iors of these two cases are different due to the interface traversal
characteristics. As the proportion between these two factors varies
significantly depending on the materials, discriminating these fac-
tors in diffuse reflection is still an open problem. However, as noted
by Atkinson and Hancock [2006], the impact of multiple reflection

among facets is negligible for smooth surfaces in general. Similar to
existing SfP methods [Atkinson and Hancock 2006; Kadambi et al.
2015], we assume that diffuse reflection is dominated by subsurface
scattering, where the light is absorbed into the object, scattered
by molecules of object materials, after which it exits the object.
It would be an interesting future work to investigate a new po-
larimetric model that can account for multiple reflection among
microfacets.

Circular polarization. We demonstrate the simultaneous acqui-
sition of appearance and surface normals by analyzing linearly
polarized components. Because our experimental setup requires the
angle combinations of the incident and exitant polarization filters
in front of the camera and the projector, the number of filters that
can be attached to the system is limited to two. In addition, as the
circular polarization consists of only the specular component in our
reflectance model, we opt to use linear polarization only to estimate
appearance parameters and normals by analyzing both diffuse and
specular reflection. However, we still believe that analyzing the cir-
cular polarization may reveal hidden components of light transport,
which can be explored in future work.

Spatially-varying BRDF. We chose the common SVBRDF acquisi-
tion approach capturing the refractive index, specular roughness
and specular coefficient per material, rather than per pixel, for the
following reasons: First, our inverse-rendering method assumes that
the linear polarizer is perfect, which may not function identically
to the linear polarization equation [Ghosh et al. 2010]. Second, we
assume an ideal coaxial setup, although it is not perfect in reality,
in order to estimate appearance and normal parameters using our
inverse-rendering method. Lastly, the view and the light vector in
our setup are fixed, sparsely capturing the specular highlights on
the object. We believe that a more sophisticated hardware setup will
resolve these issues, thus enabling per-pixel appearance and normal
acquisition.

Metallic surfaces. Following Ghosh et al. [2010], we assume that
the captured subjects consist of dielectric material only in order
to avoid the mathematical complexity of the refractive index as a
complex number. It would be interesting future work to extend our
model to metallic surfaces.

Metallic surfaces. As mentioned by Ghosh et al. [2008], single
scattering tends to maintain the polarization state of the incident
light. This breaks the assumption of our pBRDF model that the
absorbed light into an object is completely depolarized. It would
be interesting future work to develop a pBRDF model that can
take single scattering into account. Furthermore, we found that
single/shallow scattering may be related to incident polarization as
shown in Figure 7(a).

Using a projector. Different from traditional photometric stereo
methods [Nam and Kim 2014], we employ a single unpolarized pro-
jector as a light source and equip it with a linear polarization filter
for two main reasons. First, the projector enables us to measure
rough geometry via structured lighting, which is used for estimat-
ing appearance from polarization. Second, rough geometry can be
used for solving the traditional azimuthal ambiguity problem in
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Fig. 20. Impact of initial rough normals. (a) We simulate a bunny object
as input of our method. (b) Rough normals are computed by applying a
Gaussian kernel, and (c) further degradation is conducted with noise. (d)
Our inverse-rendering method handles noise robustly in the initial normals
with subtle degradation.

SfP so that we can estimate high-quality normals from polarization.
Recently, Baek et al. [2016] proposed a birefractive stereo method
that uses polarization-dependent material to estimate scene depth.
It would be an interesting avenue to employ birefractive stereo to
remove the dependency on the projector by replacing the rough
geometry from a projector with that from birefractive stereo.

Off-center pixels. We assume that the linear polarizer performs
consistently regardless of the direction of the incident light. Korger
et al. [2013] validate that conventional linear polarizers perform
stably up to an incident angle of 45◦. Given the long-side field-of-
view of our system (21.36◦), the linear polarization effects on each
pixel occur consistently regardless of perspective projection.

Impact of initial normals. Our method takes rough normals from
structured light as input to overcome the azimuthal ambiguity of
polarization normals. However, our near-coaxial setup introduces
noise on initial normals due to the short baseline. We designed our
framework to mitigate the impact of this by utilizing multiple pixels
with clustering and introducing priors for surface normals such
as the fourth term in Equation (15). To validate our method, we
conducted an experiment by simulating a bunny object with known
appearance and normals as shown in Figure 20. Rough normals are
computed by applying a Gaussian blur kernel of standard deviation
30. We also added Gaussian noise with variance of 0.01 on the rough
normals, thereby making corrupted rough normals. Figure 20(d)
shows that our method can handle minor noise.

Number of materials. We investigate the impact of the number of
materials on our inverse-renderingmethod for a flat object. Figure 21
shows rendered imageswith different numbers ofmaterials from one
to three. As the object originally consists of two different materials,
one cluster is not enough to faithfully reproduce the appearance

Fig. 21. We render a flat leather object with different numbers of clusters
under the original illumination (top row) and a novel illumination (bottom
row). When the number of clusters is higher than the number of original
materials, two in this example, our method faithfully reproduces appearance
under both illumination conditions.

of the object. Using two materials leads to plausible reconstruction
of appearance. The use of three materials does not improve the
results further. Visual similarity of the PSNR between the rendered
images and the photograph is 25.22, 26.12, and 26.13 dB when we
use one, two and three materials, respectively, under the original
illumination. PSNR values drop for the novel illumination as 21.96,
22.25, and 22.20 dB for each.

Tradeoff between diffuse and specular reflection. Our compact
setup of a projector and a camera introduces a tradeoff between
specular and diffuse reflection. In specular dominant regions, the
diffuse polarization component is relatively weak and consequently
the surface normals from polarization often show suboptimal accu-
racy. In rough surface areas, the specular component is faint and
hence it is difficult to estimate specular-dependent parameters (such
as specular coefficient and roughness) with high accuracy. To miti-
gate this limitation, our method relies on the spatial coherence of
material properties based on the clustering information. However,
our method is not free from this limitation, and further investigation
is necessary in future work.

8 CONCLUSION
We have presented a novel, complete pBRDF model that can de-
fine the mixed polarization of both diffuse and specular reflection.
We also propose a novel inverse-rendering method based on our
pBRDF model to estimate spatially varying appearance and normals
simultaneously through joint optimization of the polarimetric ap-
pearance and geometric properties. We validate the accuracy of our
pBRDF model and the results of inverse rendering on both synthetic
and real data. However, extending our model toward polarimetric
multiple scattering in microfacets and metallic surfaces reflections
remains as future work.

Our setup requires only a pair of a camera and a projector and thus
the system form factor could be optimized compactly. We anticipate
that its applicability could be widened with modern polarization
cameras.
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