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PREFACE
This supplemental document serves several purposes for different readers, with the exception of Sections 1.1
and 1.2, which are recommended for all readers. First, Sections 2.1 to 2.3, 2.6, 3.1, 4.2, 4.1 to 4.4 provide some
additional motivation and detail to the background described in Sections 4 and 5 of the main paper for readers
who are not familiar with either spherical harmonics or polarization. Second, the remainder of this document
contains formal definitions and detailed steps for proofs in a more axiomatic and rigorous manner. This remainder
is intended for more dedicated readers who want to verify the mathematical properties of polarized spherical
harmonics presented in the main paper. Since each of Sections 2, 3, and 4 contains subsections intended for
different readers, we also clarify the purpose of each subsection at the beginning of each of these sections.

Since our work deals with extensions of quantities and equations that have been previously treated in spherical
harmonics and polarization, it is helpful to see Table 1, which compares the formulae proposed in this work with
the existing formulae to which each corresponds.
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1 PRELIMINARIES

1.1 Geometric and Numeric Quantities
In this paper, we investigate various categories of quantities such as vectors, Stokes vectors, transforms, and
functions on the unit sphere to these quantities. Before discussing individual concepts of them, we first distin-
guish them into two categories, geometric quantities and numeric quantities, inspired by a computer graphics
textbook [Gortler 2012].
Geometric quantities can be easily understood as physical quantities, which we can see in the real world,

and numeric quantities can be considered as just arrays of numbers. For example, we call vectors (or geometric
vectors to clearly avoid confusion of terminology), denoted by ®𝑎, ®𝑣, �̂�, · · · ∈ ®R3, as geometric quantities, and
numeric vectors, denoted by a, c, x ∈ R𝑛 , as numeric quantities. While vectors discussed in this paper are always
three-dimensional quantities, numeric vectors include four-dimensional Stokes component vectors, which is
discussed in Section 4.2 in the main paper, and spherical harmonics coefficient vectors with arbitrary dimension,
which is discussed in Section 4.1 in the main paper. We will call the numerical representation of vectors as
coordinate vectors, which are special cases of numeric vectors.

Regardless of whether geometric or numeric, we call a set with well-defined addition and scalar multiplication
a linear space1, in the sense of linear algebra. Both the set of (geometric) vectors and the set of numeric vectors
are linear spaces.

For sets 𝑋 and 𝑌 , F (𝑋,𝑌 ) = {𝑓 : 𝑋 → 𝑌 } 2 denotes the set of all functions from 𝑋 into 𝑌 . If 𝑋 and 𝑌 are linear
spaces, L (𝑋,𝑌 ) = {𝑓 ∈ F (𝑋,𝑌 ) | 𝑓 (𝑎𝑥 + 𝑏𝑦) = 𝑎𝑓 (𝑥) + 𝑏𝑓 (𝑦)} indicates the set of linear maps from 𝑋 into
𝑌 , regardless whether geometric or numeric. We call linear maps between numeric vectors matrices and those
between geometric vectors transforms. Moreover, a frame indicates an orthonormal3 linear map from coordinate
vectors to geometric vectors, and the set of frames is denoted by ®F3 B

{
®F ∈ L

(
®R3,R3

)
| ®F is orthonormal

}
.

Then, we observe that a vector is equal to the matrix product of a frame and a coordinate vector as described in
Figure 1(a). Note that a coordinate vector itself does not have any physical meaning in the real world, but it can
be converted into a geometric vector by combining it with a frame.
Similar to the multiplication of frames and coordinate vectors, we have several kinds of multiplications as

follows:

matrix (∈ L
(
R3,R3)) × coordinate vector (∈ R3) =coordinate vector (∈ R3)

frame (∈ L
(
R3, ®R3

)
) × coordinate vector (∈ R3) =vector (∈ ®R3)

transform (∈ L
(
®R3, ®R3

)
) × vector (∈ ®R3)) =vector (∈ ®R3)

matrix (∈ L
(
R3,R3)) × matrix (∈ L

(
R3,R3)) =matrix (∈ L

(
R3,R3)) (1)

frame (∈ L
(
R3, ®R3

)
) × matrix (∈ L

(
R3,R3)) =frame (∈ L

(
R3, ®R3

)
)

transform (∈ L
(
®R3, ®R3

)
) × frame (∈ L

(
R3, ®R3

)
) =frame (∈ L

(
R3, ®R3

)
)

transform (∈ L
(
®R3, ®R3

)
) × transform (∈ L

(
®R3, ®R3

)
) =transform (∈ L

(
®R3, ®R3

)
).

1This is more frequently called vector space in other literature, but we do not use it since the word ’vector’ might be misunderstood as a
geometric quantity.
2To consider it as an inner product space in later sections, F should contain additional conditions such as L2 integrability for mathematical
rigor. For the sake of simplicity, however, we have omitted such conditions as they are always satisfied in practical cases. We refer to Groemer
[1996] for complete mathematical rigor of the theory of spherical harmonics
3It may not be orthonormal in general, but we only consider orthonormal frames in this work for simplicity.
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Coordinate vector

Stokes component vector

NumericGeometric Frame

,

,

(a) Vector

(b) Stokes vector

Light
direction

Linear map

Fig. 1. We distinguish geometric and numeric quantities. (a) A (geometric) vector is equal to the product of an orthonormal
frame, which is a linear map from numeric vectors to geometric vectors, and a coordinate vector, which is a kind of numeric
vector. (b) Combining a frame ®F and a numeric vector s, named a Stokes component vector, we get a geometric quantity
Stokes vector, which indicates a polarized intensity of a ray. Here, it is essentially different from the product of a frame and a
numeric vector, we write the relationship of these quantities with our novel notation↔

𝑠 = [s]®F.

Note that we also denote L (R𝑚,R𝑛) C R𝑚×𝑛 . These multiplications are well defined in the sense of the action
of linear maps on linear spaces and the composition of linear maps. Note that the multiplication of some pairs of
quantities, which is not included above, is usually not allowed. For example to distinguish numeric matrices and
geometric transforms, we can imagine a rotation. We denote SO (3) ⊂ R3×3 and

−→
𝑆𝑂 (3) ⊂ L

(
®R3, ®R3

)
as the sets

of (numeric) rotation matrices and (geometric) rotation transforms, respectively. When a frame ®F =
[
𝑥 𝑦 𝑧

]
is

given, the rotation transforms around the axis 𝑥 , 𝑦, and 𝑧 by angle 𝜃 can be written as follows:

®𝑅{𝑥,�̂�,𝑧} = ®FR{𝑥,𝑦,𝑧}®F−1, where (2)

R𝑥 =


1 0 0
0 cos𝜃 − sin𝜃
0 sin𝜃 cos𝜃

 , R𝑦 =


cos𝜃 0 sin𝜃

0 1 0
− sin𝜃 0 cos𝜃

 , R𝑧 =


cos𝜃 − sin𝜃 0
sin𝜃 cos𝜃 0

0 0 1

 . (3)

Note that while subscripts 𝑥 , 𝑦, and 𝑧 in the left-hand side of Equation 2 indicate the axis vectors of ®F which has
been defined in this context, subscripts 𝑥 , 𝑦, and 𝑧 in the right-hand side just symbols which means the first,
second, and third of a frame which do not have to be given in advanced. Also note that conversion between a
rotation transform ®𝑅 ∈ −→

𝑆𝑂 (3) and R ∈ SO (3) with respect to a frame ®F ∈ ®F3 can be done by ®𝑅 = ®FR®F−1 and
R = ®F−1 ®𝑅®F. For compactness, we often write consecutive rotation transforms about some axes 𝑢1, 𝑢2, · · · ∈ Ŝ2

and rotation matrices about 𝑢1, 𝑢2, · · · ∈ {𝑥,𝑦, 𝑧} as following ways, respectively:

®𝑅�̂�1 (𝜃1) ®𝑅�̂�2 (𝜃2) · · · C ®𝑅�̂�1�̂�2 · · · (𝜃1, 𝜃2, · · · ) , R𝑢1 (𝜃1) R𝑢2 (𝜃2) · · · C R𝑢1𝑢2 · · · (𝜃1, 𝜃2 · · · ) (4)

which also can represent Euler angles.
For numeric quantities, we will write NumPy style indexing notation such as:

x =


x [1]
· · ·
x [𝑛]

 , and A =


A [1, 1]

. . .

A [𝑚,𝑛]

 . (5)
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(a) “global” and “local” frames, and frame “field”

�̂�𝑧 =

global frame �⃗�𝐅𝑔𝑔 local frame �⃗�𝐅 at �𝜔𝜔 frame field �⃗�𝐅 �𝜔𝜔

(b) 𝜃𝜃𝜃𝜃 frame field �⃗�𝐅𝜃𝜃𝜃𝜃 �𝜔𝜔 (c) ZYZ Euler angles

�̂�𝑧 =

∥
𝜕𝜕 �𝜔𝜔sph
𝜕𝜕𝜃𝜃

∥
𝜕𝜕�𝜔𝜔sph
𝜕𝜕𝜃𝜃

�̂�𝑧 =

𝜓𝜓

𝑅𝑅𝑧𝑧𝑧𝑧𝑧𝑧 𝜃𝜃,𝜃𝜃,𝜓𝜓 �̂�𝑧𝑔𝑔 = �𝜔𝜔
𝑅𝑅𝑧𝑧𝑧𝑧𝑧𝑧 𝜃𝜃,𝜃𝜃,𝜓𝜓 �⃗�𝐅𝑔𝑔 = �⃗�𝐅𝜃𝜃𝜃𝜃 �𝜔𝜔 𝐑𝐑𝑧𝑧 𝜓𝜓

Fig. 2. Some definitions and useful identities about frames. (a) In this paper, we distinguish a global frame, a local frame at �̂� ,
and a frame field. (b) We usually use the 𝜃𝜙 frame field, which is defined in Equation (9). (c) Spherical coordinates and a local
frame can be evaluated with ZYZ Euler angles as Equation (12).

A [𝑖, :] andA [:, 𝑖] denote 𝑖-th row and column vectors of amatrixA. Referring to 𝑖-th (or 𝑖, 𝑗-th) entries of geometric
quantities are illegal. Since a frame is both related to numeric and geometric vectors, referring its 𝑖-th row is
illegal while its 𝑖-th column is well defined. For example, we have ®F [:, 3] = 𝑧 for a frame ®F =

[
𝑥 𝑦 𝑧

]
∈ ®F3.

Notations of sets of each type of quantity and notation convention for them are summarized in Table 1.

Mat
[
𝐴𝑖 𝑗𝑘𝑙 | 𝑗 = 1, · · · , 𝑛, 𝑙 = 1, · · · , 𝑛

]
=


𝐴𝑖1𝑘1 · · · 𝐴𝑖1𝑘𝑛
...

. . .
...

𝐴𝑖𝑛𝑘1 · · · 𝐴𝑖𝑛𝑘𝑛

 . (6)

If the range of two indices is the same, then we sometimes write it as 𝑗, 𝑙 = 1, · · · , 𝑛 simply, and we sometimes
even omit the range if it is clear in context. Moreover, we can also take the range of indices that is not an interval,
such as:

Mat
[
𝐴𝑖 𝑗 | 𝑖, 𝑗 = +𝑚,−𝑚

]
=

[
𝐴+𝑚,+𝑚 𝐴+𝑚,−𝑚
𝐴−𝑚,+𝑚 𝐴−𝑚,−𝑚

]
. (7)

1.2 Unit Sphere, Frames, and Rotations

As a subset of the space of 3D geometric vectors ®R3, the unit sphere (or just sphere) Ŝ2 =

{
�̂� ∈ ®R3 | ∥�̂� ∥ = 1

}
4

indicates the set of all vectors with unit norms. It also can be considered as the set of all directions in ®R3 in the
context of computer graphics. It usually parameterized by spherical coordinates of a zenith angle 𝜃 and a azimuth
angle 𝜙 as follows:

�̂�sph (𝜃, 𝜙) = ®F𝑔

sin𝜃 cos𝜙
sin𝜃 sin𝜙

cos𝜃

 , (8)

where a global frame ®F𝑔 =
[
𝑥𝑔 𝑦𝑔 𝑧𝑔

]
is given.

In this paper, we will distinguish the terms global, local frames, and frame field as Figure 2(a). We call a global
frame as a frame independent of a particular direction �̂� ∈ Ŝ2, and the global frame, which is often used to assign
spherical coordinates on Ŝ2. A local frame at �̂� indicates a frame with local 𝑧 axis as �̂� , i.e., ®F [:, 3] = �̂� , which is

4While denoting by S2 or 𝑆2 is more common in other text, but we write with theˆsymbol to clarify it is a set of geometric vectors, not
numeric ones.
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used to measure Stokes vectors along �̂� , and frame field (or moving frame) as a function from Ŝ2 to ®F3. We also
define ®F3

�̂�
B

{
®F ∈ ®F3 | ®F [:, 3] = �̂�

}
⊂ ®F3.

There are infinitely many choices to assign a frame field on the sphere Ŝ2, we use a typical example which we
call the 𝜃𝜙 frame field and denote by ®F𝜃𝜙 (�̂�). Using spherical coordinates, it can be defined as follows:

®F𝜃𝜙 (𝜃, 𝜙) =
[
𝜕�̂�sph
𝜕𝜃

(𝜃, 𝜙) normalized 𝜕�̂�sph
𝜕𝜙

(𝜃, 𝜙) �̂�sph (𝜃, 𝜙)
]
, (9)

which is visualized in Figure 2 (b). We observe that 𝜃𝜙 frame field ®F𝜃𝜙 has two singularities at �̂�sph (0, 𝜙) = 𝑧𝑔 and
�̂�sph (𝜋, 𝜙) = −𝑧𝑔, where the function ®F𝜃𝜙 cannot be continuously defined. Not only the 𝜃𝜙 frame field, but any
frame field on the sphere always has a singularity due to the hairy ball theorem, which is common in differential
geometry.

1.3 Useful Identities

Identities using rotations. Note that inner products on R3 and ®R3 are preserved under rotation. In other
words,

∀x, y ∈ R3, ∀R ∈ SO (3) , x𝑇y = (Rx)𝑇 (Ry) , ∀®𝑥, ®𝑦 ∈ ®R3, ∀®𝑅 ∈ −→
𝑆𝑂 (3) , ®𝑥 · ®𝑦 =

(
®𝑅®𝑥
)
·
(
®𝑅®𝑦
)
. (10)

It can be directly proven by the fact that rotations are orthogonal matrix so that RR𝑇 = R𝑇R = I.
It is often useful that a global frame ®F𝑔 can also be considered as a local frame at the zenith (𝑧𝑔), and using ZYZ

Euler angle rotation spherical coordinates and the 𝜃𝜙 frame field can be rewritten as:

�̂�sph (𝜃, 𝜙) = ®𝑅𝑧𝑔 �̂�𝑔𝑧𝑔 (𝜙, 𝜃,𝜓 ) 𝑧𝑔, (11) ®F𝜃𝜙 (𝜃, 𝜙) = ®𝑅𝑧𝑔 �̂�𝑔𝑧𝑔 (𝜙, 𝜃, 0) ®F𝑔, (12)

while 𝑅𝑧𝑔 �̂�𝑔𝑧𝑔 (𝜙, 𝜃,𝜓 ) ®F𝑔 represents an arbitrary local frame at �̂�sph (𝜃, 𝜙).
Another choice of a frame field is the perspective frame field ®Fpers shown in Figure 5(c) in the main paper,

characterized by the virtual perspective camera. Note that there are several choices of such camera-based frame
field conventions. We follow the convention of Mitsuba 3 renderer [Jakob et al. 2022], which utilizes the up-axis
of camera 𝑢 to define ®Fpers as

®Fpers (�̂� ;𝑢) =
[
𝑥 𝑦 �̂�

]
=
[
normalize (𝑢 × �̂�) �̂� × 𝑥 �̂�

]
. (13)

While the 𝜃𝜙 and the perspective frame fields are highly related, as ®Fpers
(
�̂� ; 𝑧𝑔

)
= ®F𝜃𝜙 (�̂�) R𝑧

(
𝜋
2
)
, we use

the both since they have their own convenience. Formulas of special functions, including SWSH and Wigner
D-functions, are usually written related to 𝜃𝜙 frame field, while it is natural to use perspective frame fields, whose
local 𝑦 axes are close to the camera up vector, for perspective view.
Integral formulae. To derive some identities for spherical harmonics and our polarized spherical harmonics, we
sometimes need to integrate some functions over the space of rotation transforms

−→
𝑆𝑂 (3). The differential measure

d ®𝑅 for ®𝑅 ∈ −→
𝑆𝑂 (3) is evaluated as follows using ZYZ Euler angles with respect to a frame ®F =

[
𝑥 𝑦 𝑧

]
∈ ®F3 is

given: ∫
−→
𝑆𝑂 (3)

𝑓

(
®𝑅
)

d ®𝑅 =

∫ 2𝜋

0

∫ 𝜋

0

∫ 2𝜋

0
𝑓

(
®𝑅𝑧�̂�𝑧 (𝛼, 𝛽,𝛾)

)
sin 𝛽d𝛼d𝛽d𝛾 . (14)

Note that this measure is equivalent to a constant multiple of the subspace measure by identifying
−→
𝑆𝑂 (3) to a

subset of R9, and it is invariant under choice of the frame ®F.
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Several integration techniques for the sphere Ŝ2 and rotation transforms
−→
𝑆𝑂 (3) are used to prove the important

properties of conventional and our polarized SH as:∫
Ŝ2
𝑓 (�̂�) d�̂� =

1
2𝜋

∫
−→
𝑆𝑂 (3)

𝑓

(
®𝑅𝑧𝑔

)
d ®𝑅, (15)∫

Ŝ2
𝑓 (�̂�) d�̂� =

∫
Ŝ2
𝑓

(
®𝑅�̂�

)
d�̂� for any ®𝑅 ∈ −→

𝑆𝑂 (3) . (16)

Readers who are not about to verify the proof of this paper and just want to use the results can skip this part.

1.4 Linear Algebra on Function Spaces
We call an algebraic object equipped with addition and scalar multiplication as linear space while other literature
more frequently calls it vector space. To avoid confusion, the term vector is usually used to discuss numeric vectors
and geometric vectors in this paper.

This paper investigates several function spaces such as spherical harmonics, spin-weighted spherical harmonics,
and naively applied spherical harmonics to Stokes vectors fields. To distinguish properties inherited from general
properties of orthonormal basis and properties of a certain individual basis, we recall the general theory of
linear algebra on function spaces in this section. Then, we will describe the properties of spherical harmonics
as examples of general theory. Later, we introduce spin-weighted spherical harmonics in Section 6 in the main
paper, also based on the language defined in this section.
First of all, We will discuss function spaces, including the set of spherical functions (or scalar fields on the

sphere) F
(
Ŝ2,C

)
and the set of Stokes vector fields on the sphere in this paper. They are important in computer

graphics since a spherical function can represent radiance as a function of directions, such as an environment
map and a 2D slice of a BSDF with a fixed incoming or outgoing direction, and the set of Stokes vector fields can
represent polarized versions of those quantities.

These function spaces are inner product spaces so they can be described by the general theory of linear algebra.
Even though those function spaces have infinite dimensionality, fundamental properties of linear spaces are well
extended to function spaces, as described in this section.

Spherical harmonics are known as bases of function spaces, so we first define bases and coefficient representation
with respect to them.

Definition 1.1: Bases and coefficient vectors

For a countable index set 𝐼 and an inner product space H (usually a function space) over scalar K (=R or
C), an indexed collection B B {𝑏𝑖 | 𝑖 ∈ 𝐼 } ⊂ H is called a basis 5 of H if and only if for any 𝑓 ∈ H there
uniquely exists an indexed collection of scalars {𝑎𝑖 | 𝑖 ∈ 𝐼 } such that:

𝑓 =
∑︁
𝑖∈𝐼

f𝑖𝑏𝑖 . (17)

Here, 𝑎𝑖 is called the coefficient of 𝑓 with respect to 𝑏𝑖 or the 𝑖-th coefficient of 𝑓 with respect to B. When
order on 𝐼 is given in context, f B Mat [f𝑖 | 𝑖 ∈ 𝐼 ] is called the coefficient vector of 𝑓 with respect to the
basis B.

While bases are usually defined without admitting such index sets as above, having them in the definition of
bases makes writing statements about spherical harmonics and further bases, including our polarized spherical
5Rigorously, it should be called a Hilbert basis since Equation (17) includes not only finite summations but also countably infinite ones, but
we simply call basis for simplicity.
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harmonics, much more convenient. Note that converting a vector 𝑓 into its coefficient vector is linear, so the
coefficient vector can be considered to be equivalent to the original vector 𝑓 . For the sake of simplicity, we
consistently denote 𝐼 , H , K, and B with the conditions stated in Definition 1.1.
In Section 1.4 italic characters such as 𝑓 and 𝑏𝑖 usually denote elements of a vector space, which also can be

functions, Roman characters such as f𝑖 denote coefficients with respect to some basis, and bold roman characters
such as f do coefficient vectors. While 𝑓 may be a geometric or numeric quantity depending on its spaceH , f𝑖 ,
and f can be considered as numeric quantities since they are indexed collections of scalars.

Proposition 1.2: Coefficient for a basis

In Definition 1.1, suppose that ⟨·, ·⟩H denotes the inner product on H and the basis {𝑏𝑖 | 𝑖 ∈ 𝐼 } is or-
thonormal, i.e.,

〈
𝑏𝑖 , 𝑏 𝑗

〉
H = 𝛿𝑖 𝑗 . Then the coefficient in Equation (17) is evaluated as f𝑖 = ⟨𝑏𝑖 , 𝑓 ⟩H , i.e.,

∀𝑓 ∈ H , 𝑓 =
∑︁
𝑖∈𝐼

⟨𝑏𝑖 , 𝑓 ⟩H 𝑏𝑖 . (18)

Definition 1.3: projection on subsets of bases

Suppose that B′ = {𝑏𝑖 | 𝑖 ∈ 𝐽 } be a subset of a basis B of a linear space H , which is characterized by
𝐽 ⊂ 𝐼 . A projection of 𝑓 ∈ H on B′ is defined as:

𝑓 =
∑︁
𝑖∈ 𝐽

f𝑖𝑏𝑖 ,

where f𝑖 is the coefficient of 𝑓 with respect to 𝑏𝑖 . This is also called the projection of 𝑓 on the basis of B
up to 𝐽 .

Note that the projection of 𝑓 up to 𝐽 sometimes indicates the coefficients {f𝑖 | 𝑖 ∈ 𝐽 } rather than
∑

𝑖∈ 𝐽 f𝑖𝑏𝑖 , and
it will be distinguished according to the context.
Note that the space of linear map L (𝑋,𝑌 ) is still well defined even if 𝑋 is an infinite-dimensional function

space. However, in this case, we usually call such linear maps as linear operators conventionally to emphasize
that 𝑋 may be a function space.

Proposition 1.4: Coefficient matrices of linear operators

Suppose that {𝑏𝑖 | 𝑖 ∈ 𝐼 } ⊂ H is an orthonormal basis, there is a linear operator 𝑇 : H → H . When
denoting the coefficients of 𝑓 ∈ H and 𝑇 [𝑓 ] by {f𝑖 | 𝑖 ∈ 𝐼 } and

{
f ′𝑖 | 𝑖 ∈ 𝐼

}
, respectively, f ′𝑖 is evaluated

as:
f ′𝑖 =

∑︁
𝑗∈𝐼

〈
𝑏𝑖 ,𝑇

[
𝑏 𝑗
]〉

H f𝑗 . (19)

Here,
〈
𝑏𝑖 ,𝑇

[
𝐵 𝑗

]〉
is called as the coefficient of 𝑇 with respect to

(
𝑏𝑖 , 𝑏 𝑗

)
or (𝑖 , 𝑗 )-th coefficient of the linear op-

erator𝑇 with respect to the basisB. When order on 𝐼 is given in context, T B Mat
[〈
𝑏𝑖 ,𝑇

[
𝐵 𝑗

]〉
H | 𝑖, 𝑗 ∈ 𝐼

]
is called the coefficient matrix of 𝑇 with respect to B.
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Proof: By Proposition 1.2,
f𝑖 = ⟨𝑏𝑖 , 𝑓 ⟩H , and f ′𝑖 = ⟨𝑏𝑖 ,𝑇 [𝑓 ]⟩H .

From the later equation, substituting the formal equation and the definition of basis (Equation (1.1)) yields:

f ′𝑖 = ⟨𝑏𝑖 ,𝑇 [𝑓 ]⟩H =

〈
𝑏𝑖 ,𝑇

[∑︁
𝑗∈𝐼

f𝑗𝑏 𝑗

]〉
H

=
∑︁
𝑗∈𝐼

〈
𝑏𝑖 ,𝑇

[
𝑏 𝑗
]〉

H f𝑗 .

Here, the rightmost implication comes from the linearity of 𝑇 and the inner product. □

Note that Equation (19) can be rewritten as the matrix-vector product of the coefficient matrix of 𝑇 and the
coefficient vector of 𝑓 . For coefficients of linear operators, the following properties are useful.

Proposition 1.5: Identities for linear operator coefficients

Suppose that B = {𝑏𝑖 | 𝑖 ∈ 𝐼 } ⊂ H is an orthonormal basis on H and there are linear operators 𝑇,𝑇1,𝑇2 :
H → H . Denote their coefficient matrices with respect to B by T, T1, and T2. The following properties
hold.
(1) For the identity operator 𝐼 : H → H with 𝐼 [𝑓 ] = 𝑓 , the coefficient matrix w.r.t. B is the identity

matrix, i.e.,
〈
𝑏𝑖 , 𝐼

[
𝑏 𝑗
]〉

H = 𝛿𝑖 𝑗 .
(2) The coefficient matrix of 𝑇1 ◦𝑇2 w.r.t. B is the matrix product of T1 and T2, i.e.:∑︁

𝑘∈𝐼
⟨𝑏𝑖 ,𝑇1 [𝑏𝑘 ]⟩H

〈
𝑏𝑘 ,𝑇2

[
𝑏 𝑗
]〉

H =
〈
𝑏𝑖 ,𝑇1 ◦𝑇2

[
𝑏 𝑗
]〉

H .

(3) If 𝑇 −1 exists, then the coefficient matrix of 𝑇 −1 w.r.t. B is the inverse matrix of T, i.e.:∑︁
𝑘∈𝐼

⟨𝑏𝑖 ,𝑇 [𝑏𝑘 ]⟩H
〈
𝑏𝑘 ,𝑇

−1 [𝑏 𝑗 ]〉H =
∑︁
𝑘∈𝐼

〈
𝑏𝑖 ,𝑇

−1 [𝑏𝑘 ]
〉
H
〈
𝑏𝑘 ,𝑇

[
𝑏 𝑗
]〉

H = 𝛿𝑖 𝑗

(4) If 𝑇 is a symmetric operator, i.e., ⟨𝑓 ,𝑇 [𝑔]⟩H = ⟨𝑇 [𝑓 ] , 𝑔⟩H for any 𝑓 , 𝑔 ∈ H , then its coefficient
matrix T is a Hermitian matrix (T𝑇 = T∗), i.e.,

〈
𝑏𝑖 ,𝑇

[
𝑏 𝑗
]〉

H =
〈
𝑏 𝑗 ,𝑇 [𝑏𝑖 ]

〉∗
H .

(5) If 𝑇 is a unitary operator, i.e., ⟨𝑓 ,𝑇 [𝑔]⟩H =
〈
𝑇 −1 [𝑓 ] , 𝑔

〉
H for any 𝑓 , 𝑔 ∈ H , then its coefficient

matrix T is a unitary matrix (T−1 =
(
T𝑇

)∗), i.e., 〈𝑏𝑖 ,𝑇 −1 [𝑏 𝑗 ]〉H =
〈
𝑏 𝑗 ,𝑇 [𝑏𝑖 ]

〉∗
H .

What we deal with as an important desirable property of spherical harmonics is rotation invariance. For a
generalized description, we first formulate transform invariance for given transforms and discuss the rotation
invariance of spherical harmonics in the later section. First, the invariance of a subset of a space is naturally
defined.

Definition 1.6: Transform invariance of a subset

A set 𝐴 ⊂ H is called to be invariant under a linear operator 𝑇 : H → H if 𝑇 (𝐴) = 𝐴.

Here, we also call the linear operator 𝑇 as a transform conventionally when we are interested in invariance.
Now, a basis can be called to be invariant if it can be separated into a partition of finite sets so that these finite

subsets of the basis span invariant subspaces.
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Definition 1.7: Transform invariance

A basis {𝑏𝑖 | 𝑖 ∈ 𝐼 } ⊂ H is called to be invariant under a linear operator (transform) 𝑇 : H → H if
there exists a partition of the index set 𝐼 into finite subsets, i.e., 𝐼 =

⋃∞
𝑘=0 𝐽𝑘 with 𝐽𝑖 ∩ 𝐽 𝑗 = ∅, such that

span {𝑏𝑖 | 𝑖 ∈ 𝐽𝑘 } is invariant under 𝑇 for any 𝑘 .

Proposition 1.8: Equivalent conditions for transform invariance

Suppose that there is an orthonormal basis B = {𝑏𝑖 | 𝑖 ∈ 𝐼 } of an inner product space H and a linear
operator (transform) 𝑇 : H → H . Then, the following statements are equivalent to each other.

(i) The basis is invariant under 𝑇 , by Definition 1.7.
(ii) Let B𝑘 B {𝑏𝑖 | 𝑖 ∈ 𝐽𝑘 }. For any 𝑓 ∈ H and 𝑘 ≥ 0 the projection of 𝑇 [𝑓 ] on B𝑘 is equal to 𝑇 [𝑓 ′]

where 𝑓 ′ is the projection of 𝑓 on B𝑘 .
(iii) Let B≤𝑘 B

{
𝑏𝑖 | 𝑖 ∈ 𝐽 𝑗 for some 𝑗 ≤ 𝑘

}
. For any 𝑓 ∈ H and 𝑘 ≤ 0 the projection of 𝑇 [𝑓 ] on B≤𝑘

is equal to 𝑇 [𝑓 ′] where 𝑓 ′ is the projection of 𝑓 on B≤𝑘 .
(iv)

∀𝑘 ≠ 𝑘 ′ ≥ 0, ∀ (𝑖, 𝑗) ∈ 𝐽𝑘 × 𝐽𝑘 ′ ,
〈
𝑏𝑖 ,𝑇

[
𝐵 𝑗

]〉
H = 0. (20)

Proof: For simplicity, we will briefly show a few implications among (i) and (iv) rather than full proof.
(i) =⇒ (iv): For 𝑖 ∈ 𝐽𝑘 , there exist some 𝑎𝑖 𝑗 for 𝑗 ∈ 𝐽𝑘 such that 𝑇 [𝑏𝑖 ] =

∑
𝑗∈ 𝐽𝑘 𝑎𝑖 𝑗𝑏 𝑗 since 𝑇 [𝑏𝑖 ] ∈

span {𝑏𝑖 | 𝑖 ∈ 𝐽𝑘 } by invariance in Definition 1.7. Since B is an orthonormal basis ofH , we can rewrite:
𝑇 [𝑏𝑖 ] =

∑
𝑖∈𝐼

〈
𝑏 𝑗 ,𝑇 [𝑏𝑖 ]

〉
H 𝑏 𝑗 . Note that basis yields the unique linear coefficients so that we finally get

𝑎𝑖 𝑗 =
〈
𝑏 𝑗 ,𝑇 [𝑏𝑖 ]

〉
H for 𝑗 ∈ 𝐽𝑘 and

〈
𝑏 𝑗 ,𝑇 [𝑏𝑖 ]

〉
H = 0 for 𝑗 ∉ 𝐽𝑘 . The latter one implies P4.

(iv) =⇒ (iii): Note that 𝑓 =
∑

𝑖∈𝐼 ⟨𝑏𝑖 , 𝑓 ⟩H 𝑏𝑖 by Equation (18). By linearity of 𝑇 , we get 𝑇 [𝑓 ] =∑
𝑖∈𝐼 ⟨𝑏𝑖 , 𝑓 ⟩H 𝑇 [𝑏𝑖 ]. Expanding 𝑇 [𝑏𝑖 ] using Equation (18) yields:

𝑇 [𝑓 ] =
∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐼

⟨𝑏𝑖 , 𝑓 ⟩H
〈
𝑏 𝑗 ,𝑇 [𝑏𝑖 ]

〉
H 𝑏 𝑗 . (21)

Since it is a linear combination of basis 𝑏 𝑗 ,
∑

𝑖∈𝐼 ⟨𝑏𝑖 , 𝑓 ⟩H
〈
𝑏 𝑗 ,𝑇 [𝑏𝑖 ]

〉
H is the coefficient of 𝑇 [𝑓 ] w.r.t. 𝑏 𝑗 .

Changing letters for summation indices and using (iv), we finally get the projection of 𝑇 [𝑓 ] on B≤𝑘 is:∑︁
𝑗≤𝑘,𝑖′∈ 𝐽𝑗

∑︁
𝑖∈𝐼

⟨𝑏𝑖 , 𝑓 ⟩H ⟨𝑏𝑖′ ,𝑇 [𝑏𝑖 ]⟩H 𝑏𝑖′ =
∑︁

𝑗≤𝑘,𝑖′∈ 𝐽𝑗

∑︁
𝑖∈ 𝐽𝑗

⟨𝑏𝑖 , 𝑓 ⟩H ⟨𝑏𝑖′ ,𝑇 [𝑏𝑖 ]⟩H 𝑏𝑖′ . (22)

On the other hand:
𝑓 ′ =

∑︁
𝑗≤𝑘,𝑖∈ 𝐽𝑗

⟨𝑏𝑖 , 𝑓 ⟩H 𝑏𝑖 , (23)

𝑇 [𝑓 ′] =
∑︁

𝑗≤𝑘,𝑖∈ 𝐽𝑗

⟨𝑏𝑖 , 𝑓 ⟩H 𝑇 [𝑏𝑖 ] =
∑︁

𝑗≤𝑘,𝑖∈ 𝐽𝑗

∑︁
𝑖′∈𝐼

⟨𝑏𝑖 , 𝑓 ⟩H ⟨𝑏𝑖′ ,𝑇 [𝑏𝑖 ]⟩H 𝑏𝑖′ (24)

=
∑︁

𝑗≤𝑘,𝑖∈ 𝐽𝑗

∑︁
𝑖′∈ 𝐽𝑗

⟨𝑏𝑖 , 𝑓 ⟩H ⟨𝑏𝑖′ ,𝑇 [𝑏𝑖 ]⟩H 𝑏𝑖′ .

Here, the last implication comes from (iv). Now we observe that Equations (22) and (24) are equal.
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(iii) =⇒ (ii): It is straightforward since a projection is a linear operation and a projection on B𝑘 is identical
to the subtraction of the projection on B≤𝑘−1 from that on B≤𝑘 □

We observe here the matrix representation of
〈
𝑏𝑖 ,𝑇

[
𝑏 𝑗
]〉

satisfying Equation (20) becomes a block diagonal
matrix. Conditions (i) and (iv) can be determined only with the basis and the transform themselves, while (ii) and
(iii) show why this invariance is important when one applies the transform for a given vector. In other words,
for an invariant basis and a transform, projecting on a subset of the basis and applying the transform commute
without any loss of information. Moreover, this commutativity allows us to reduce the transform applied on a
projected vector to a finite computation even if the vector space H has an infinite dimensionality.

Proposition 1.9: Finite matrix for invariant transform

There is an orthonormal basis B = {𝑏𝑖 | 𝑖 ∈ 𝐼 } of an inner product space H and a linear operator
𝑇 : H → H . Suppose that B is invariant under 𝑇 with a partition of finite indices 𝐼 =

⋃∞
𝑘=0 𝐽𝑘 . For

any 𝑓 ∈ H , let f≤𝑘 B {⟨𝑏𝑖 , 𝑓 ⟩ | 𝑏𝑖 ∈ B≤𝑘 } denote the (finite) coefficient vector of 𝑓 projected onto
B≤𝑘 B

{
𝑏𝑖 | 𝑗 ≤ 𝑘, 𝑖 ∈ 𝐽 𝑗

}
. Then the 𝑇 [𝑓 ] projection on B≤𝑘 is evaluated as the following finite matrix-

vector product.
T≤𝑘 f≤𝑘 , where T≤𝑘 B Mat

[〈
𝑏𝑖 ,𝑇

[
𝑏 𝑗
]〉

| 𝑏𝑖 , 𝑏 𝑗 ∈ B≤𝑘
]
. (25)

Proposition 1.9 is a necessary but not sufficient condition of invariance described in Definition 1.7 and
Proposition 1.8, but it is related to what actually a rendering pipeline computes. Thus, Figures 10 and 11 in our
main paper shows experimental validation of Proposition 1.9.

1.4.1 Linear spaces over R vs. C. In this paper, we sometimes consider a linear space with the scalar as R and
sometimes do so with the scalar as C. Then some relations discussed here will be useful.

Proposition 1.10: Linear spaces over R vs. C

If B is a basis for a linear space 𝑉 over C then the set B′ B {𝑒, 𝑖𝑒 | 𝑒 ∈ B} is a basis for 𝑉 as a linear
space over R. Concretely, if an arbitrary vector 𝑣 ∈ 𝑉 is represented as a linear combination over complex
coefficients by Equation (17) as:

𝑣 =
∑︁
𝑖

𝑐𝑖𝑒𝑖 , (26)

then it can be rewritten using the new basis B′ and real coefficients as follows:

𝑣 =
∑︁
𝑖

𝑎𝑖𝑒𝑖 + 𝑏𝑖 (𝑖𝑒𝑖 ) , where 𝑎𝑖 B ℜ𝑐𝑖 and 𝑏𝑖 B ℑ𝑐𝑖 . (27)

Moreover,𝑉 overC is equipped with an inner product ⟨·, ·⟩𝑉 |C, an inner product on𝑉 overR is canonically
induced as ⟨·, ·⟩𝑉 |R B ℜ ⟨·, ·⟩𝑉 |C. B is orthonormal (w.r.t. ⟨·, ·⟩𝑉 |C) then the new basis B′ is orthonormal
with respect to ⟨·, ·⟩𝑉 |R.

Here,ℜ and ℑ denote taking real and imaginary parts of given complex numbers, respectively. We often write
each inner product as ⟨·, ·⟩C and ⟨·, ·⟩R, respectively, for simplicity when it is clear in context. The following
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relations between coefficients and bases are useful.
𝑐𝑖 = ⟨𝐵𝑖 , 𝑣⟩C , (28)
𝑎𝑖 = ℜ ⟨𝐵𝑖 , 𝑣⟩C = ⟨𝐵𝑖 , 𝑣⟩R , (29)
𝑏𝑖 = ℜ ⟨𝑖𝐵𝑖 , 𝑣⟩C = ⟨𝑖𝐵𝑖 , 𝑣⟩R = ℑ ⟨𝐵𝑖 , 𝑣⟩C . (30)

Please be careful that while 𝐵𝑖 and 𝑖𝐵𝑖 are not orthogonal in𝑉 over C (i.e., ⟨𝐵𝑖 , 𝑖𝐵𝑖⟩C = 𝑖 ≠ 0), these are orthogonal
in 𝑉 over R (i.e., ⟨𝐵𝑖 , 𝑖𝐵𝑖⟩R = 0).
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2 BACKGROUND: SPHERICAL HARMONICS

2.1 Spherical Harmonics
Spherical harmonics is described as a special case of Definition 1.1, as:

Proposition 2.1: Spherical harmonics

Spherical harmonics are spherical functions 𝑌𝑙𝑚 ∈ F
(
Ŝ2,C

)
which can be evaluated in spherical coordi-

nates (𝜃, 𝜙) as follows:
𝑌𝑙𝑚 (𝜃, 𝜙) = 𝐴𝑙𝑚𝑃

𝑚
𝑙
(cos𝜃 ) 𝑒𝑖𝑚𝜙 , (31a)

𝐴𝑙𝑚 =

√︄
2𝑙 + 1

4𝜋
(𝑙 −𝑚)!
(𝑙 +𝑚)! , 𝑃𝑙 (𝑥) =

1
2𝑙𝑙 !

d𝑙

d𝑥𝑙
(
𝑥2 − 1

)𝑙
, (31b)

𝑃𝑚
𝑙
(𝑥) = (−1)𝑚

(
1 − 𝑥2)𝑚/2 d𝑚

d𝑥𝑚
𝑃𝑙 (𝑥) , 𝑃−𝑚

𝑙
(𝑥) = (−1)𝑚 (𝑙 −𝑚)!

(𝑙 +𝑚)!𝑃
𝑚
𝑙
(𝑥) , for𝑚 ≥ 0.

With an index set 𝐼SH =
{
(𝑙,𝑚) ∈ Z2 | |𝑚 | ≤ 𝑙

}
, {𝑌𝑙𝑚 | (𝑙,𝑚) ∈ 𝐼SH} is an orthonormal basis of F

(
Ŝ2,C

)
.

Here, 𝑃𝑙 is called the Legendre function of order 𝑙 and 𝑃𝑚
𝑙

is called the associated Legendre function of order 𝑙 and
degree𝑚. 6 The first few spherical harmonics functions can easily be evaluated using the recurrence relations
above as follows.

𝑌00 (𝜃, 𝜙) =
√︂

1
4𝜋
, 𝑌1,−1 (𝜃, 𝜙) =

√︂
3

8𝜋
sin𝜃𝑒−𝑖𝜙 , 𝑌10 (𝜃, 𝜙) =

√︂
3

4𝜋
cos𝜃,

𝑌11 (𝜃, 𝜙) = −
√︂

3
8𝜋

sin𝜃𝑒𝑖𝜙 , 𝑌2,−2 (𝜃, 𝜙) =
√︂

15
32𝜋

sin2 𝜃𝑒−2𝑖𝜙 , 𝑌2,−1 (𝜃, 𝜙) =
√︂

15
8𝜋

sin𝜃 cos𝜃𝑒−𝑖𝜙 ,
(32)

𝑌20 (𝜃, 𝜙) =
√︂

5
16𝜋

(
3 cos2 𝜃 − 1

)
, 𝑌21 (𝜃, 𝜙) = −

√︂
15
8𝜋

sin𝜃 cos𝜃𝑒𝑖𝜙 , 𝑌22 (𝜃, 𝜙) =
√︂

15
32𝜋

sin2 𝜃𝑒2𝑖𝜙

Be careful that other literature and programming libraries sometimes use different conventions in Equation (31),
so that they might have slightly different formulae such as multiplying (−1)𝑚 or

√
4𝜋 .

Orthonormality defined in Proposition 1.2 assumes the set of spherical functions F
(
Ŝ2,C

)
as an inner product

space. An inner product of two spherical functions 𝑓 and 𝑔 ∈ F
(
Ŝ2,C

)
is an integral of the product of the values

of the given two functions in each direction:

⟨𝑌𝑙𝑚, 𝑓 ⟩F(Ŝ2,C) =
∫
Ŝ2
𝑓 ∗ (�̂�) 𝑔 (�̂�) d𝜔, (33)

6Unfortunately, there is a difference in terminologies order and degree depending on each research field. Mathematics and physics such
as [Canzani 2013; Hall 2013] usually call 𝑙 and𝑚 by degree and order respectively. We follow computer graphics convention as [Ramamoorthi
and Hanrahan 2001a; Sloan et al. 2002; Xin et al. 2021].
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where d�̂� = sin𝜃d𝜃d𝜙 is the solid angle measure on the sphere Ŝ2. Note the presence of the complex conjugation,
whereas it can be ignored for real-valued functions. Note that inner products on other function spaces can be
defined in a similar way in Section 5.

Applying Equation (17) in Definition 1.1 and Proposition 1.2 implies that any spherical function 𝑓 ∈ F
(
Ŝ2,C

)
is equal to an infinite number of linear combination of spherical harmonics as:

𝑓 =

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

f𝑙𝑚𝑌𝑙𝑚, (34)

and the coefficient f𝑙𝑚 is computed as

f𝑙𝑚 = ⟨𝑌𝑙𝑚, 𝑓 ⟩F(Ŝ2,C) . (35)

An infinite dimensional numeric vector
[
f00, f1,−1, f10, f11, · · ·

]𝑇 , which is called the coefficient vector of 𝑓 , represents
continuously defined 𝑓 without loss of information. However, we can take the projection of 𝑓 on spherical
harmonics up to 𝑙 = 𝑙max by Definition 1.3 so that store it into a finite numeric vector

[
f00 · · · f𝑙max,𝑙max

]𝑇 of
(𝑙max + 1)2 = 𝑂

(
𝑙2max

)
entries. It can also be understood as a smoothed data of 𝑓 up to the 𝑙max-th frequency band.

We observe that spherical harmonics satisfy the following identities, which will be used later.

Proposition 2.2: Spherical harmonics identities

𝑌 ∗
𝑙𝑚

= (−1)𝑚 𝑌𝑙,−𝑚 (36)

𝑌𝑙𝑚 (�̂�) = (−1)𝑙+𝑚 𝑌𝑙𝑚 (−�̂�) (37)

2.1.1 Zonal harmonics. There is an important subset of spherical harmonics, which is useful for spherical
functions with some symmetry. When a global frame ®F𝑔 is fixed, a spherical function 𝑓 ∈ F

(
Ŝ2,K

)
(K = R or C)

is called to be azimuthally (axially) symmetric if 𝑓
(
®𝑅𝑧𝑔 (𝛼) �̂�

)
= 𝑓 (�̂�) for any 𝛼 ∈ R and �̂� ∈ Ŝ2. Note that such

a function can be simply written as 𝑓 (𝜃 ), a function of the single zenith angle 𝜃 . Note that the two formulations
of an azimuthally symmetric function about 𝜃 ∈ [0, 𝜋] and �̂� ∈ Ŝ2, respectively, are interchangeable using the
following relation.

𝑓 (𝜃 )︸︷︷︸
domain [0,𝜋 ]

= 𝑓
(
cos−1 𝑧𝑔 · �̂�

)
, (38a) 𝑓 (�̂�)︸︷︷︸

domain Ŝ2

= 𝑓
(
�̂�sph (𝜃, 𝜙)

)
, with any choice of 𝜙 ∈ R. (38b)

Spherical harmonics 𝑌𝑙0 with zero degrees (𝑚 = 0) is called Zonal harmonics, and the set of Zonal harmonics is
a basis of the space of azimuthally symmetric spherical functions. In other words, 𝑌𝑙0 has azimuthal symmetry,
and conversely any function 𝑓 ∈ F

(
Ŝ2,C

)
can be represented as 𝑓 =

∑∞
𝑙=0 f𝑙0𝑌𝑙0. Note that in contrast to SH 𝑌𝑙𝑚

for𝑚 ≠ 0, Zonal harmonics basis 𝑌𝑙0 always has real values so that f𝑙0 is also real for any real-valued function
𝑓 ∈ F

(
Ŝ2,R

)
.

2.2 Linear Operators in Spherical Harmonics
First, let’s investigate the desirable properties of linear operators on spherical functions.
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Definition 2.3: Linear operators and kernels

Suppose there is a function 𝐾 ∈ F
(
Ŝ2 × Ŝ2,K

)
, where K = R or C. The linear operator with the kernel 𝐾 ,

denoted by 𝐾F ∈ L
(
F

(
Ŝ2,K

)
, F

(
Ŝ2,K

))
, is defined as follows:

∀𝑓 ∈ F
(
Ŝ2,K

)
, 𝐾F [𝑓 ] (�̂�𝑖 ) =

∫
Ŝ2
𝐾 (�̂�𝑖 , �̂�𝑜 ) 𝑓 (�̂�𝑖 ) d�̂�𝑖 . (39)

If a linear operator 𝐾F was given first, a function 𝐾 satisfying the above equation is called the operator
kernel (or simply kernel) of the operator 𝐾F .

Here, we slightly abuse the notation of the symbol F . While on the first page F (𝑋,𝑌 ) is defined as the set of
functions from 𝑋 to 𝑌 for given sets 𝑋 and 𝑌 , in Definition 2.3 𝐾F denotes a functional version of the given 𝐾 .
Note that we will define such functional versions of a given quantity in different ways depending on the type of
the given quantity. While such different ways will share the notation of the subscript F in this paper, they will
be clearly distinguished in context.

In Section 2.2, we usually call the operator kernels simply kernels, but in later sections, we often refer to them
as operator kernel to distinguish them from convolution kernels which will be introduced in Section 2.6.

As a special case of Proposition 19, spherical harmonics provide frequency-domain formulations of spherical
functions and linear operators on these spherical functions.
In the context of computer graphics, while a spherical function can be radiance as a function of directions,

including an environment map, a linear operator on spherical functions can be a light interaction effect.
One of the simplest cases of it is surface reflection determined by a bidirectional reflectance distribution

function (BRDF). Assuming we have a BRDF 𝜌 : Ŝ2 × Ŝ2 → R, its surface reflection can be considered as a
linear operator 𝜌⊥F ∈ L

(
F

(
Ŝ2,C

)
, F

(
Ŝ2,C

))
which maps incident radiance to outgoing radiance through the

rendering equation as follows:

𝜌⊥F
[
𝐿in] (�̂�𝑜 ) = 𝐿out =

∫
Ŝ2
𝜌 (�̂�𝑖 , �̂�𝑜 ) |�̂� · �̂�𝑖 | 𝐿in (�̂�𝑖 ) d�̂�𝑖 , (40)

where the superscript ⊥ denotes cosine-weighted.7 Not only reflection due to a BRDF, other light interaction
effects, including self-shadowing and self-transfer, can also be described as linear operators in similar ways by
replacing 𝜌 (�̂�𝑖 , �̂�𝑜 ) |�̂� · �̂�𝑖 | to other functions.

Once we have a linear operator 𝜌⊥F , we can convert both the operator itself and the evaluation of the operator
on a spherical function into frequency domain formulation using spherical harmonics. First, the coefficient of 𝜌⊥F
with respect to

(
𝑌𝑙𝑜𝑚𝑜

, 𝑌𝑙𝑖𝑚𝑖

)
or the (𝑙𝑜 ,𝑚𝑜 ) − (𝑙𝑖 ,𝑚𝑖 )-th coefficient of 𝜌⊥F with respect to SH is defined as:

𝜌𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖
B

〈
𝑌𝑙𝑜𝑚𝑜

, 𝜌⊥F
[
𝑌𝑙𝑖𝑚𝑖

]〉
F . (41)

Considering each pair of indices (𝑙,𝑚) ∈ 𝐼SH to be linearly enumerated, Equation (41) converts the linear operator
𝜌⊥F into a (either finite or infinite) numeric matrix with the elements 𝜌𝑙𝑜𝑚𝑜𝑙𝑖𝑚𝑖

in the (𝑙𝑜 ,𝑚𝑜 )-th row and the
(𝑙𝑖 ,𝑚𝑖 )-th column, called the coefficient matrix of 𝜌⊥F .
In the case of the operator 𝜌⊥F , it has a kernel. Then, the coefficient can also evaluated from the kernel as

follows.
𝜌𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖

=

∫
Ŝ2×Ŝ2

𝑌 ∗
𝑙𝑜𝑚𝑜

(�̂�𝑜 ) 𝜌⊥ (�̂�𝑖 , �̂�𝑜 ) 𝑌𝑙𝑖𝑚𝑖
(�̂�𝑖 ) d�̂�𝑖d�̂�𝑜 . (42)

7Note that in our main paper, we assume that the notation 𝜌 denotes a cosine-weighted BRDF for the sake of simplicity
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Then the rendering equation in Equation (40) is reformulated as the following by Equation (19):

Lout
𝑙𝑜𝑚𝑜

=
∑︁

(𝑙𝑖 ,𝑚𝑖 ) ∈𝐼SH

𝜌𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖
Lin
𝑙𝑖𝑚𝑖

, (43)

where L{in,out}
𝑙𝑚

B
〈
𝑌𝑙𝑚, 𝐿

{in,out}〉 denotes the (𝑙,𝑚)-th SH coefficient of incident and outgoing radiance, respec-
tively.
Note that the above equation can be considered as a matrix multiplication with the integer pairs (𝑙𝑜 ,𝑚𝑜 )

as rows and the integer pairs (𝑙𝑖 ,𝑚𝑖 ) as columns. Figure 4 illustrates a coefficient matrix of a linear operator
(Equation (41)) and how its action on a spherical function (Equation (43)) can be converted into a matrix-vector
product in the SH coefficient domain. Note that the special case of the given linear operator in Figure 4, including
its sparsity, will be explained in the next subsection.
Taking finite coefficients up to orders 𝑙 ≤ 𝑙max, the SH coefficient matrix of a linear operator consists of

(𝑙max + 1)4 = 𝑂 (𝑙max) in general, since it consists of (𝑙max + 1)2 rows and columns.
Encoding linear operators into coefficient matrices as described in this subsection follows directly from the

general theory described in Section 1.4, so it can be applied in a similar way to other types of basis in a similar
way. However, the strengths of SH appear when investigating sparsity and analytic formulations for coefficient
matrices of special kinds of linear operators. In the next subsections, except for Section 2.4, we will investigate
coefficient matrices of the functional version of rotation transforms (Section 2.3), operators with azimuthal
symmetry (isotropic BRDF, Section 2.5) and rotation equivariance (Section 2.6), and the functional version of
the reflection operation which flips a direction vector to its antipodal direction (Section 2.7). Note that the main
theoretical purpose of this paper is to extend the desirable properties found in these subsections to the domain of
a novel basis introduced in Section 5 taking Mueller calculus (Section 3) into account.
Application in precomputation-based rendering. When the SH coefficient vector of 𝐿in and the SH
coefficient matrix of 𝜌⊥F have been precomputed, environment map lighting can be computed efficiently as a
matrix-vector product in runtime [Ramamoorthi andHanrahan 2001a]. In the precomputed radiance transfer (PRT)
methods, the coefficient matrix, which is also called the radiance transfer matrix, can contain further light transport
effects, such as self-shadowing and inter-reflection, by replacing 𝜌 (�̂�𝑖 , �̂�𝑜 ) in precomputation time [Sloan et al.
2002]. In particular, self-shadowing can be achieved by replacing 𝜌 (�̂�𝑖 , �̂�𝑜 ) with 𝜌 (�̂�𝑖 , �̂�𝑜 )𝑉 (�̂�𝑖 , �̂�𝑜 ), where𝑉 is
the binary visibility function.

2.3 Rotation of Spherical Harmonics
One of the most important properties of spherical harmonics, which is not satisfied by another basis, such as
spherical wavelets and spherical Gaussian, is rotation invariance. We first formulate how a rotation transform
can act on functions, not only individual vectors, and then investigate the rotation of spherical harmonics.

First of all, given a rotation transform ®𝑅 ∈ −→
𝑆𝑂 (3), which is a function from ®R3 onto ®R3 (restricted to a function

from Ŝ2 to Ŝ2), we naturally define a rotation of functions, denoted by ®𝑅F , as follows:

®𝑅F : F
(
Ŝ2,C

)
→ F

(
Ŝ2,C

)
, ®𝑅F [𝑓 ] (�̂�) = 𝑓

(
®𝑅−1�̂�

)
, (44)

where this rotation on functions is also described in Figure 3 (a), and ®𝑅F can also be considered as functions on
real-valued functions, i.e., ®𝑅F : F

(
Ŝ2,R

)
→ F

(
Ŝ2,R

)
.

We observe that Equation (44) is linear about 𝑓 , so ®𝑅F is a linear operator on the space of spherical functions
F

(
Ŝ2,C

)
. Then, we can formulate the rotation invariance of spherical harmonics in the same manner as

Definition 1.7. Using (iv) in Proposition 1.8, we can formulate the invariance property as follows:
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(a) Rotation of scalar fields (b) Rotation of Stokes vector fields

Fig. 3. Given a rotation transform ®𝑅 ∈ −→
𝑆𝑂 (3), (a) a rotation of a spherical function 𝑓 : Ŝ2 → R by ®𝑅 can be naturally defined

by considering functions as textured spherical objects, which yields Equation (44). (b) In later Section 4.5, (b) We can similarly
define a rotation of a Stokes vector field

↔
𝑓 : Ŝ2 → S�̂� by considering it as a spherical object attached with two-sided arrows

on their surface points, which is represented by Equation (97). To distinguish from the original rotation transform ®𝑅, which is
defined as a function from single vectors to single vectors, we denote the induced rotation from functions to functions by ®𝑅F .
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Wigner D-function Rotating coefficients using

Fig. 4. Visualization of the Wigner D-function of given such ®𝑅 and rotating
the SH coefficients. Note that the elements of the Wigner D-function are
complex numbers. Thus, we visualize the matrix element by its magnitude.
The matrix values are 0 when 𝑙 ≠ 𝑙 ′ (block-diagonal behavior) due to
the Kronecker delta term, which yields the rotation invariance. The SH
coefficients are rotated by simply multiplying the corresponding Wigner
D-function as a coefficient matrix to the original SH coefficients without
loss of information.

Rotate
(continuous)

SH projection SH projection

Fig. 3, Eq. (41)

Fig. 5, Eq. (44)

Rotate
(discrete)

Fig. 5. The illustrative description of rotation
invariance in spherical harmonics The upper
path in the figure (rotate → SH projection)
should be identical to the bottom path in this
figure (SH projection → rotate). For rotating
the discrete SH coefficients.

Proposition 2.4: Rotation invariance of spherical harmonics

Spherical harmonics {𝑌𝑙𝑚 | (𝑙,𝑚) ∈ 𝐼SH}, a basis of F
(
Ŝ2,C

)
, is invariant under a linear operator ®𝑅F for

any rotation ®𝑅 ∈ −→
𝑆𝑂 (3) with a partition of index set

{
𝐼SH,𝑙 = {(𝑙 ′,𝑚) ∈ 𝐼SH | 𝑙 ′ = 𝑙}

}
. In other words, the

coefficient of the linear operator ®𝑅F with respect to spherical harmonics can be written as:〈
𝑌𝑙𝑚, ®𝑅F [𝑌𝑙 ′𝑚′ ]

〉
F(Ŝ2,C)

= 0, whenever 𝑙 ≠ 𝑙 ′ . (45)
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Proof: We will not cover a symbolic integration-based proof here, but there is a simple way to understand
this invariance in a few steps. First, each SH function is an eigenfunction of the Laplace-Beltrami operator
on Ŝ2 corresponding to an eigenvalue −𝑙 (𝑙 + 1), which does not depend on 𝑚. Then the subspace of
spherical functions spanned by {𝑌𝑙𝑚 | 𝑚 ∈ Z with |𝑚 | ≤ 𝑙} for fixed 𝑙 is a degenerated eigenspace. Since
the Laplace-Beltrami operator commutes with any rotation, the eigenspace is invariant under rotation. □

For the actual computation of rotation in the SH coefficient space, we need to know the non-zeros inner
product value in the left-hand side of Equation (45) in the case of 𝑙 = 𝑙 ′. This is an important special function
called a Wigner D-function8, which is also common in mathematics and physics. It is defined as follows:

Definition 2.5: Wigner D-function

For indices 𝑙,𝑚,𝑚′ ∈ Z with |𝑚 | ≤ 𝑙 and |𝑚′ | ≤ 𝑙 , Wigner D-function 𝐷𝑙
𝑚𝑚′ :

−→
𝑆𝑂 (3) → C is defined as

follows:
𝐷𝑙
𝑚𝑚′

(
®𝑅
)
=

〈
𝑌𝑙𝑚, ®𝑅F [𝑌𝑙𝑚′ ]

〉
F(Ŝ2,C)

. (46)

Combining Equations (45) and (46) with the Kronecker delta notation, the coefficient of a rotation transform
with respect to SH can be generally rewritten as follows:〈

𝑌𝑙𝑚, ®𝑅F [𝑌𝑙 ′𝑚′ ]
〉
F(Ŝ2,C)

= 𝛿𝑙𝑙 ′𝐷
𝑙
𝑚𝑚′

(
®𝑅
)
. (47)

The coefficient matrix of Equation (47) for a particular rotation transform is shown in Figure 4. The rotation
invariance of SH also appears as the block diagonal constraint on the coefficient matrix, as shown in the figure.
This property also implies that we can commute the SH projection of a function and a rotation without loss
of information. If one wants to obtain the SH coefficients of a function 𝑔 = ®𝑅F [𝑓 ], the discrete computation
between Wigner D-functions and the SH coefficients of 𝑓 gives the exact same result. This process is also
illustrated in Figure 5. Note that for finite coefficients up to 𝑙 ≤ 𝑙max, the block diagonal sparsity produces at most
(𝑙max + 1) (2𝑙max + 1) (2𝑙max + 3) /3 = 𝑂

(
𝑙3max

)
nonzero elements.

2.3.1 Properties of Wigner D-functions. Following the definition, exact formulae for the first few Wigner
D-functions are obtained as following equations using ZYZ Euler angle parameterization 𝐷𝑙

𝑚𝑚′ (𝛼, 𝛽,𝛾) B
𝐷𝑙
𝑚𝑚′

(
®𝑅𝑧𝑔 �̂�𝑔𝑧𝑔 (𝛼, 𝛽,𝛾)

)
.

𝐷0
00 (𝛼, 𝛽,𝛾) = 1,

𝐷1
𝑚𝑚′ (𝛼, 𝛽,𝛾) =

𝑚 𝑚′ = 1 𝑚′ = 0 𝑚′ = −1

1 1+cos 𝛽
2 𝑒−𝑖 (𝛼+𝛾 ) − 1√

2
sin 𝛽𝑒𝑖𝛼 1−cos 𝛽

2 𝑒−𝑖 (𝛼−𝛾 )

0 1√
2

sin 𝛽𝑒−𝑖𝛾 cos 𝛽 − 1√
2

sin 𝛽𝑒𝑖𝛾

−1 1−cos 𝛽
2 𝑒𝑖 (𝛼−𝛾 ) 1√

2
sin 𝛽𝑒𝑖𝛼 1+cos 𝛽

2 𝑒𝑖 (𝛼+𝛾 )

(48)

8Alternatively, it is known as Wigner D-matrix in other literature. Terminology matrix comes from viewing𝑚 and𝑚′ in 𝐷𝑙
𝑚𝑚′ as row and

column indices of a matrix.
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As seen in examples of Wigner D-functions in the above, 𝛼 and 𝛾 dependencies of them can be separated as
the following equation.

𝐷𝑙
𝑚𝑚′ (𝛼, 𝛽,𝛾) = 𝑒−𝑖𝑚𝛼𝑑𝑙𝑚𝑚′ (𝛽) 𝑒−𝑖𝑚

′𝛾 . (49)
It can be directly derived from the integral (inner product) in Equation (46) by separating 𝜃 and 𝜙 dependencies of
SH using Equation (31a). Note that the remaining 𝛽 dependency, denoted by 𝑑𝑙

𝑚𝑚′ (𝛽), is called a Wigner (small)
d-function, but we do not need such complicated recurrence relations for it.
Additionally, note the following identities for Wigner D-functions.

Proposition 2.6: Wigner D-function indentities

(1) 𝐷𝑙
𝑚𝑚′

(
®𝐼
)
= 𝛿𝑚𝑚′ , where ®𝐼 ∈ −→

𝑆𝑂 (3) denotes the identity rotation.

(2)
∑𝑙

𝑚2=−𝑙 𝐷
𝑙
𝑚1𝑚2

(
®𝑅1

)
𝐷𝑚2𝑚3

(
®𝑅2

)
= 𝐷𝑙

𝑚1𝑚3

(
®𝑅1 ®𝑅2

)
(3)

∑𝑙
𝑚2=−𝑙 𝐷

𝑙
𝑚1𝑚2

(
®𝑅
)
𝐷𝑚2𝑚3

(
®𝑅−1

)
= 𝛿𝑚1𝑚3

(4) 𝐷𝑙
𝑚𝑚′

(
®𝑅−1

)
= 𝐷𝑙

𝑚′𝑚

(
®𝑅
)∗

(5) 𝐷𝑙
−𝑚,−𝑚′

(
®𝑅
)
= (−1)𝑚+𝑚′

𝐷𝑙
𝑚𝑚′

(
®𝑅
)∗

(6) 𝐷𝑙
𝑚0

(
®𝑅𝑧𝑔𝑦𝑔𝑧𝑔 (𝜙, 𝜃,𝜓 )

)
=

√︃
4𝜋

2𝑙+1𝑌
∗
𝑙𝑚

(𝜃, 𝜙) = (−1)𝑚
√︃

4𝜋
2𝑙+1𝑌𝑙,−𝑚 (𝜃, 𝜙)

(7)
{
𝐷𝑙
𝑚𝑚′ | |𝑚 | , |𝑚′ | ≤ 𝑙

}
is an orthogonal basis on F

(−→
𝑆𝑂 (3) ,C

)
, especially:〈

𝐷
𝑙1
𝑚1𝑚

′
1
, 𝐷

𝑙2
𝑚2𝑚

′
2

〉
F
(−→
𝑆𝑂 (3),C

) = ∫
−→
𝑆𝑂 (3)

𝐷
𝑙1
𝑚1𝑚

′
1

(
®𝑅
)∗
𝐷
𝑙2
𝑚2𝑚

′
2

(
®𝑅
)

d ®𝑅 =
8𝜋2

2𝑙1 + 1
𝛿𝑙1𝑙2𝛿𝑚1𝑚2𝛿𝑚′

1𝑚
′
2

(50)

Proof: (1)—(4): Straightforward from Proposition 1.5 (1)—(3) and (5), respectively.
(5):

𝐷𝑙
−𝑚,−𝑚′

(
®𝑅
)

=
↑

Def. 2.5

〈
𝑌𝑙,−𝑚, ®𝑅F

[
𝑌𝑙,−𝑚′

]〉
=
↑

Eq. (36)

〈
(−1)𝑚 𝑌 ∗

𝑙𝑚
, ®𝑅F

[
(−1)𝑚′

𝑌 ∗
𝑙𝑚′

]〉
= (−1)𝑚+𝑚′

〈
𝑌 ∗
𝑙𝑚
, ®𝑅F

[
𝑌 ∗
𝑙𝑚′

]〉
.

Here, we observe
〈
𝑌 ∗
𝑙𝑚
, ®𝑅F

[
𝑌 ∗
𝑙𝑚′

]〉
=

〈
𝑌 ∗
𝑙𝑚
,

(
®𝑅F [𝑌𝑙𝑚′ ]

)∗〉
=

〈
𝑌𝑙𝑚, ®𝑅F [𝑌𝑙𝑚′ ]

〉∗
. Now, we finally get the

given equation.
(6) and (7): We refer to a book [Edmonds 1996]. Note that Equations (2.5.17) on p.23 and (2.5.29) on p.24 in
the textbook provide an equivalent definition of SH to ours in Proposition 2.1. Equation (4.1.10) on p.55 in
the book also provides the equivalent definition of Wigner D-functions to ours in Definition 2.5. Then, we
can find that our propositions (6) and (7) are shown in Equations (4.1.25) on p.59 and (4.6.1) on p.62 in the
book, respectively. □

2.4 Complex and Real Spherical Harmonics

Spherical harmonics defined in Equation (31a) are complex functions spaning complex-valued functions F
(
Ŝ2,C

)
with complex coefficients. However, radiometric intensity in the real world only consists of real numbers, so real
spherical harmonics, defined as follows, sometimes makes computational efficiency.
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Definition 2.7: Real spherical harmonics

𝑌𝑅
𝑙𝑚

=


√

2ℜ𝑌𝐶
𝑙𝑚

= 1√
2

(
𝑌𝐶
𝑙𝑚

+ (−1)𝑚 𝑌𝐶
𝑙,−𝑚

)
𝑚 > 0

𝑌𝐶
𝑙𝑚

𝑚 = 0
√

2ℑ𝑌𝐶
𝑙 |𝑚 | =

𝑖√
2

(
(−1)𝑚 𝑌𝐶

𝑙𝑚
− 𝑌𝐶

𝑙,−𝑚

)
𝑚 < 0

. (51)

Here, 𝑌𝐶
𝑙𝑚

is just equal to 𝑌𝑙𝑚 defined in Equation (31a), and we will sometimes call it complex spherical
harmonics when we need to distinguish them from real ones. Note that the real spherical harmonics are also an
orthonormal basis for spherical functions and have rotation invariance, but they always produce real-valued
functions whenever real coefficients are given. Due to the efficiency of representing real-valued functions, most
of the existing computer graphics works have used real spherical harmonics, and we also use it for some parts
of polarization. However, we should know both real and complex spherical harmonics since spin-2 spherical
harmonics, which will be introduced in a later section, are related to the complex ones.

The relation between complex and real spherical harmonics can be rewritten shortly by introducing a symbol
𝑀𝐶→𝑅

𝑚1𝑚2 defined as:

Mat
[
𝑀𝐶→𝑅

𝑚1𝑚2 | 𝑚1,𝑚2 = + |𝑚 | ,− |𝑚 |
]
=

1
√

2

[
1 (−1)𝑚
−𝑖 (−1)𝑚 𝑖

]
, for |𝑚 | ≠ 0, (52)

,𝑀𝐶→𝑅
00 = 1, and𝑀𝐶→𝑅

𝑚1𝑚2 = 0 if |𝑚1 | ≠ |𝑚2 |. Similarly, a symbol𝑀𝑅→𝐶
𝑚1𝑚2 is defined as follows:

Mat
[
𝑀𝑅→𝐶

𝑚1𝑚2 | 𝑚1,𝑚2 = + |𝑚 | ,− |𝑚 |
]
=

1
√

2

[
1 𝑖

(−1)𝑚 − (−1)𝑚 𝑖

]
, for |𝑚 | ≠ 0. (53)

Note that Equations (52) and (53) are unitary matrices which are the inverse of each other, and it can be written
as:

𝑀𝑅→𝐶
𝑚𝑚′ =

(
𝑀𝐶→𝑅

𝑚′𝑚

)∗
,

∑︁
𝑚′∈{±𝑚}

𝑀𝑅→𝐶
𝑚𝑚′ 𝑀

𝐶→𝑅
𝑚′𝑚′′ = 𝛿𝑚𝑚′′ . (54)

Here, we are using the summation symbol with
∑

𝑚′∈{±𝑚} rather than much common
∑

𝑚′=±𝑚 to clarify∑
𝑚′∈{±0} 𝑓 (𝑚′) = 𝑓 (0) rather than 𝑓 (0) + 𝑓 (0). Now Equation (51) can be rewritten as follows:

𝑌𝑅
𝑙𝑚

=
∑︁

𝑚′∈{±𝑚}
𝑀𝐶→𝑅

𝑚𝑚′ 𝑌
𝐶
𝑙𝑚′ , 𝑌𝐶

𝑙𝑚
=

∑︁
𝑚′∈{±𝑚}

𝑀𝑅→𝐶
𝑚𝑚′ 𝑌

𝑅
𝑙𝑚′ . (55)

On the other hand, converting coefficients of a spherical function with respect to complex real SH requires an
extra complex conjugation. Suppose that 𝑓 ∈ F

(
Ŝ2,C

)
is a spherical function, and f𝐶

𝑙𝑚
and f𝑅

𝑙𝑚
are coefficients of

𝑓 with respect to 𝑌𝐶
𝑙𝑚

and 𝑌𝑅
𝑙𝑚
, respectively. The following relation is obtained by the definition of SH coefficients

and Equation (55):

f𝑅
𝑙𝑚

=
∑︁

𝑚′∈{±𝑚}

(
𝑀𝐶→𝑅

𝑚𝑚′

)∗
f𝐶
𝑙𝑚′ , f𝐶

𝑙𝑚
=

∑︁
𝑚′∈{±𝑚}

(
𝑀𝑅→𝐶

𝑚𝑚′

)∗
f𝑅
𝑙𝑚′ . (56)

Complex and real SH coefficients for linear operators. Similarly, we can also obtain the relation between
the coefficients of a linear operator with respect to complex and real SH. Denoting a linear operator on spherical
functions by 𝑇 : L

(
F

(
Ŝ2,C

)
, F

(
Ŝ2,C

))
, its (𝑙𝑜 ,𝑚𝑜 ) − (𝑙𝑖 ,𝑚𝑖 )-th complex and real SH coefficients by T𝐶

𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖
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and T𝑅
𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖

, respectively, the following holds.

T𝑅
𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖

=

〈
𝑌𝑅
𝑙𝑜𝑚𝑜

,𝑇

[
𝑌𝑅
𝑙𝑖𝑚𝑖

]〉
=

〈 ∑︁
𝑚∈{±𝑚𝑜 }

𝑀𝐶→𝑅
𝑚𝑜𝑚

𝑌𝐶
𝑙𝑜𝑚
,𝑇


∑︁

𝑚′∈{±𝑚𝑖 }
𝑀𝐶→𝑅

𝑚𝑖𝑚
′𝑌

𝐶
𝑙𝑖𝑚

′


〉

=
∑︁

𝑚∈{±𝑚𝑜 }

∑︁
𝑚′∈{±𝑚𝑖 }

(
𝑀𝐶→𝑅

𝑚𝑜𝑚

)∗
𝑀𝐶→𝑅

𝑚𝑖𝑚
′ T𝐶

𝑙𝑜𝑚,𝑙𝑖𝑚
′ .

(57)

Conversely, the following also holds.

T𝐶
𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖

=
∑︁

𝑚∈{±𝑚𝑜 }

∑︁
𝑚′∈{±𝑚𝑖 }

(
𝑀𝑅→𝐶

𝑚𝑜𝑚

)∗
𝑀𝑅→𝐶

𝑚𝑖𝑚
′ T𝑅

𝑙𝑜𝑚,𝑙𝑖𝑚
′ . (58)

Real Wigner-D functions. Similar to Equation (9) in the main paper and Definition 2.5 in this document, we
can also define rotation transform for real spherical harmonics, which we call real Wigner-D functions, as follows:

𝐷
𝑙,𝑅
𝑚𝑚′

(
®𝑅
)
=

〈
𝑌𝑅
𝑙𝑚
, ®𝑅F

[
𝑌𝑅
𝑙𝑚′

]〉
. (59)

Relation between real and complex Wigner-D functions is just a special case of Equations (57) and (58) is found
by the relation between real and complex SH.

𝐷
𝑙,𝑅
𝑚𝑚′

(
®𝑅
)
=

∑︁
𝑚𝑐 ∈{±𝑚}

∑︁
𝑚′

𝑐 ∈{±𝑚′ }

(
𝑀𝐶→𝑅

𝑚𝑚𝑐

)∗
𝑀𝐶→𝑅

𝑚′𝑚′
𝑐
𝐷
𝑙,𝐶

𝑚𝑐𝑚
′
𝑐

(
®𝑅
)
,

𝐷
𝑙,𝐶
𝑚𝑚′

(
®𝑅
)
=

∑︁
𝑚𝑟 ∈{±𝑚}

∑︁
𝑚′

𝑟 ∈{±𝑚′ }

(
𝑀𝑅→𝐶

𝑚𝑚𝑟

)∗
𝑀𝑅→𝐶

𝑚′𝑚′
𝑟
𝐷
𝑙,𝑅

𝑚𝑟𝑚
′
𝑟

(
®𝑅
)
.

(60)

Using this result, the relation between real Wigner-D functions and real SH (real SH version of Proposition 2.6
(6)) comes from the relation between complex ones:

𝐷
𝑙,𝑅
𝑚0

(
®𝑅𝑧𝑔𝑦𝑔𝑧𝑧 (𝛼, 𝛽,𝛾)

)
=

∑︁
𝑚𝑐 ∈{±𝑚}

(
𝑀𝐶→𝑅

𝑚𝑚𝑐

)∗
𝐷
𝑙,𝐶
𝑚𝑐0

(
®𝑅𝑧𝑔𝑦𝑔𝑧𝑧 (𝛼, 𝛽,𝛾)

)
=

√︂
4𝜋

2𝑙 + 1

∑︁
𝑚𝑐 ∈{±𝑚}

(
𝑀𝐶→𝑅

𝑚𝑚𝑐

)∗
𝑌
𝐶,∗
𝑙𝑚𝑐

(𝛽, 𝛼)

=

√︂
4𝜋

2𝑙 + 1
𝑌
𝑅,∗
𝑙𝑚

(𝛽, 𝛼) =
√︂

4𝜋
2𝑙 + 1

𝑌𝑅
𝑙𝑚

(𝛽, 𝛼) .
(61)

2.5 Azimuthally Symmetric Operators (Isotropic BRDFs)
While a general linear operator can be represented by its SH coefficients, it requires too many numbers, (𝑙max + 1)4

for the maximum order 𝑙max, of coefficients. Several symmetry conditions for such an operator yield linear
constraints on its SH coefficients, so we obtain much fewer degrees of freedom for the coefficients.

One of the common constraints of linear operators on spherical functions is azimuthal symmetry. It is defined
as follows.
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Definition 2.8: Azimuthally symmetric operators

Suppose that a global frame ®F𝑔 =
[
𝑥𝑔 𝑦𝑔 𝑧𝑔

]
is fixed. Then a linear operator

𝐾 : L
(
F

(
Ŝ2,C

)
, F

(
Ŝ2,C

))
on scalar fields is called to be azimuthally symmetric if it commutes with

any rotation along 𝑧𝑔, i.e.:

®𝑅𝑧𝑔 (𝛼)F [𝐾 [𝑓 ]] = 𝐾
[
®𝑅𝑧𝑔 (𝛼)F [𝑓 ]

]
, ∀𝛼 ∈ R, ∀𝑓 ∈ F

(
Ŝ2,C

)
. (62)

When the given linear operator indicates surface interaction due to a BRDF in the rendering context, then
this constraint is equivalent to the isotropy of BRDF. Suppose that the operator 𝐾 has a kernel 𝑘 : Ŝ2 × Ŝ2 → C,
(again, cosine-weighted BRDF in a rendering context), then the azimuthal symmetry defined in Definition 2.8 is
equivalent to the following condition:

𝑘 (�̂�𝑖 , �̂�𝑜 ) = 𝑘
(
®𝑅𝑧𝑔 (𝛼) �̂�𝑖 , ®𝑅𝑧𝑔 (𝛼) �̂�𝑜

)
, ∀𝛼 ∈ R, ∀�̂�𝑖 , �̂�𝑜 ∈ Ŝ2. (63)

In the spherical coordinates, using the relation ®𝑅𝑧𝑔�̂�sph (𝜃, 𝜙) = �̂�sph (𝜃, 𝜙 + 𝛼) and substituting 𝛼 = −𝜙𝑖 the above
equation can be rewritten in more familiar form in computer graphics as

𝑘 (𝜃𝑖 , 𝜙𝑖 , 𝜃𝑜 , 𝜙𝑜 ) = 𝑘 (𝜃𝑖 , 0, 𝜃𝑜 , 𝜙𝑜 − 𝜙𝑖 ) . (64)

Now, we investigate how the symmetry condition makes a linear constraint on SH coefficients.

Proposition 2.9: Coefficients of azimuthally symmetric operators (isotropic BRDFs)

Suppose that 𝐾 : L
(
F

(
Ŝ2,C

)
, F

(
Ŝ2,C

))
is an azimuthally symmetric operator and K𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖

B〈
𝑌𝑙𝑜𝑚𝑜

, 𝐾
[
𝑌𝑙𝑖𝑚𝑖

]〉
denotes the (𝑙𝑜 ,𝑚𝑜 ) − (𝑙𝑖 ,𝑚𝑖 )-th coefficient of 𝐾 with respect to complex SH. Then the

coefficient vanishes whenever𝑚𝑖 ≠𝑚𝑜 , so that it can be denoted by a coefficient K𝑙𝑜𝑙𝑖𝑚 with three indices
such that:

K𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖
= 𝛿𝑚𝑜𝑚𝑖

K𝑙𝑜𝑙𝑖𝑚 . (65)

Proof: Start from Equation (62). First, the equation holds for any function 𝑓 so that it can be rewritten
as an equality of two operators. Then, taking (𝑙𝑜 ,𝑚𝑜 ) − (𝑙𝑖 ,𝑚𝑖 )-th SH coefficients for both hand sides of
them followed by applying Proposition 1.5 (2) yields:∑︁

(𝑙,𝑚) ∈𝐼SH

〈
𝑌𝑙𝑜𝑚𝑜

, ®𝑅𝑧𝑔 (𝜃 )F [𝑌𝑙𝑚]
〉 〈
𝑌𝑙𝑚, 𝐾

[
𝑌𝑙𝑖𝑚𝑖

]〉
=

∑︁
(𝑙,𝑚) ∈𝐼SH

〈
𝑌𝑙𝑜𝑚𝑜

, 𝐾 [𝑌𝑙𝑚]
〉 〈
𝑌𝑙𝑚, 𝑅𝑧𝑔 (𝜃 )F

[
𝑌𝑙𝑖𝑚𝑖

]〉
,

⇒
∑︁

(𝑙,𝑚) ∈𝐼SH

𝛿𝑙𝑜𝑙𝐷
𝑙𝑜
𝑚𝑜𝑚

(
®𝑅𝑧𝑔 (𝜃 )

)
K𝑙𝑚𝑙𝑖𝑚𝑖

=
∑︁

(𝑙,𝑚) ∈𝐼SH

K𝑙𝑜𝑚𝑜𝑙𝑚𝛿𝑙𝑙𝑖𝐷
𝑙𝑖
𝑚𝑚𝑖

(
®𝑅𝑧𝑔 (𝜃 )

)
.

(66)
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From definition of Wigner D-functions in Equation (46) we easily get 𝐷𝑙
𝑚𝑚′

(
®𝑅𝑔 (𝜃 )

)
= 𝛿𝑚𝑚′𝑒−𝑖𝑚𝜃 . Using

it makes the above equation as follows:∑︁
(𝑙,𝑚) ∈𝐼SH

𝛿𝑙𝑜𝑙𝛿𝑚𝑜𝑚𝑒
−𝑖𝑚𝑜𝜃K𝑙𝑚𝑙𝑖𝑚𝑖

=
∑︁

(𝑙,𝑚) ∈𝐼SH

𝛿𝑙𝑙𝑖𝛿𝑚𝑚𝑖
𝑒−𝑖𝑚𝑖𝜃K𝑙𝑜𝑚𝑜𝑙𝑚,

⇒ 𝑒−𝑖𝑚𝑜𝜃K𝑙𝑜𝑚𝑜𝑙𝑖𝑚𝑖
= 𝑒−𝑖𝑚𝑖𝜃K𝑙𝑜𝑚𝑜𝑙𝑖𝑚𝑖

,

⇒
(
𝑒−𝑖𝑚𝑖𝜃 − 𝑒−𝑖𝑚𝑜𝜃

)
K𝑙𝑜𝑚𝑜𝑙𝑖𝑚𝑖

= 0.

(67)

Here, we observe that K𝑙𝑜𝑚𝑜𝑙𝑖𝑚𝑖
should be zero for𝑚𝑖 ≠𝑚𝑜 to make the above equation hold for all 𝜃 . □

Note that this property is used in Ramamoorthi and Hanrahan [2001b]. From the sparsity in Equation (65), the fi-
nite SH coefficientmatrix of an azimuthally symmetric operator up to 𝑙𝑖 , 𝑙𝑜 ≤ 𝑙max has (𝑙max + 1)

(
2𝑙2max + 4𝑙max + 3

)
/3

= 𝑂
(
𝑙3max

)
nonzero elements.

Real-SH coefficients satisfy slightly different constraints, but their constraints also have the same degree of
freedom as complex ones.

Proposition 2.10: Real-SH coefficients of azimuthally symmetric operators

Suppose that 𝐾 : L
(
F

(
Ŝ2,C

)
, F

(
Ŝ2,C

))
is an azimuthally symmetric operator and K𝑅

𝑙𝑜𝑚𝑜𝑙𝑖𝑚𝑖
B〈

𝑌𝑅
𝑙𝑜𝑚𝑜

, 𝐾

[
𝑌𝑅
𝑙𝑖𝑚𝑖

]〉
denotes the (𝑙𝑜 ,𝑚𝑜 ) − (𝑙𝑖 ,𝑚𝑖 )-th coefficient of 𝐾 with respect to real SH. Then, the

coefficient satisfies the following constraints for𝑚 ≠ 0.

K𝑅
𝑙𝑜𝑚𝑜𝑙𝑖𝑚𝑖

= 0 whenever |𝑚𝑜 | ≠ |𝑚𝑖 | , (68)

K𝑅
𝑙𝑜𝑚,𝑙𝑖𝑚

= K𝑅
𝑙𝑜 ,−𝑚,𝑙𝑖 ,−𝑚, and K𝑅

𝑙𝑜𝑚,𝑙𝑖 ,−𝑚 = −K𝑅
𝑙𝑜 ,−𝑚,𝑙𝑖𝑚

. (69)

Proof: Since K𝑅
𝑙𝑜𝑚,𝑙𝑖𝑚

′ is a linear combination of K𝐶
𝑙𝑜 ,±𝑚,𝑙𝑖 ,±𝑚′ (four combinations of ± signs), where K𝐶

𝑚𝑚′ is
the (𝑙𝑜 ,𝑚)−(𝑙𝑖 ,𝑚′)-th coefficient of𝐾 with respect to complex SH,we get Equation (68) fromProposition 2.9.
Then we only have to check constraints on K𝑙𝑜 ,±𝑚,𝑙𝑖 ,±𝑚 (four combinations). Note that K𝑅

𝑙𝑜0,𝑙𝑖0
= K𝐶

𝑙𝑜0,𝑙𝑖0
,

we should only care about cases of𝑚 ≠ 0. Without loss of generality, suppose that𝑚 > 0. Rewriting
Equation (57) in a matrix product with the constraint in Proposition 2.9, we get:[

K𝑅
𝑙𝑜 ,+𝑚,𝑙𝑖 ,+𝑚 K𝑅

𝑙𝑜 ,+𝑚,𝑙𝑖 ,−𝑚
K𝑅
𝑙𝑜 ,−𝑚,𝑙𝑖 ,+𝑚 K𝑅

𝑙𝑜 ,+𝑚,𝑙𝑖 ,−𝑚

]
=

[
𝑀𝐶→𝑅

+𝑚,+𝑚 𝑀𝐶→𝑅
+𝑚,−𝑚

𝑀𝐶→𝑅
−𝑚,+𝑚 𝑀𝐶→𝑅

−𝑚,−𝑚

]∗ [K𝐶
𝑙𝑜 ,+𝑚,𝑙𝑖 ,+𝑚 0

0 K𝐶
𝑙𝑜 ,−𝑚,𝑙𝑖 ,−𝑚

] [
𝑀𝑅→𝐶

+𝑚,+𝑚 𝑀𝑅→𝐶
+𝑚,−𝑚

𝑀𝑅→𝐶
−𝑚,+𝑚 𝑀𝑅→𝐶

−𝑚,−𝑚

]∗
=

1
2

[
1 (−1)𝑚
𝑖 − (−1)𝑚 𝑖

] [
K𝐶
𝑙𝑜 ,+𝑚,𝑙𝑖 ,+𝑚 0

0 K𝐶
𝑙𝑜 ,−𝑚,𝑙𝑖 ,−𝑚

] [
1 −𝑖

(−1)𝑚 (−1)𝑚 𝑖

]
=

1
2


K𝐶
𝑙𝑜 ,+𝑚,𝑙𝑖 ,+𝑚 + K𝐶

𝑙𝑜 ,−𝑚,𝑙𝑖 ,−𝑚 −𝑖
(
K𝐶
𝑙𝑜 ,+𝑚,𝑙𝑖 ,+𝑚 − K𝐶

𝑙𝑜 ,−𝑚,𝑙𝑖 ,−𝑚

)
𝑖

(
K𝐶
𝑙𝑜 ,+𝑚,𝑙𝑖 ,+𝑚 − K𝐶

𝑙𝑜 ,−𝑚,𝑙𝑖 ,−𝑚

)
K𝐶
𝑙𝑜 ,+𝑚,𝑙𝑖 ,+𝑚 + K𝐶

𝑙𝑜 ,−𝑚,𝑙𝑖 ,−𝑚

 .
The right-hand side implies Equation (69). □
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2.6 Spherical Convolution
2.6.1 Senses to define convolution. Before investigating spherical convolution, let’s review about convolution
on planar (Euclidean) domains, R𝑛 . First, the convolution of two functions 𝑘 and 𝑓 ∈ F (R𝑛,K) (K = R or
C) is defined by 𝑘 ∗ 𝑓 (x) =

∫
R𝑛
𝑘 (x − x′) 𝑓 (x′) dx′. While it is a binary operation of functions in F (R𝑛,C)

into the same function space F (R𝑛,C) yet, this property no more holds for spherical domains. To extend the
definition of convolution to spherical domains, consider a linear operator 𝐾 ∈ L (F (R𝑛,C) , F (R𝑛,C)) defined
by 𝐾 [𝑓 ] = 𝑘 ∗ 𝑓 . Then we observe an important property that 𝐾 is a translation equivariant linear operator, i.e.,
it commutes an arbitrary translation. Conversely, if a translation equivariant linear operator 𝐾 is given first, then
there exists some function 𝑘 ∈ F (R𝑛,C) such that 𝐾 [𝑓 ] = 𝑘 ∗ 𝑓 under the assumption of the existence of an
operator kernel of 𝐾 .

2.6.2 Spherical convolution. Spherical convolution is defined as a binary operation of an azimuthally symmetric
spherical function 𝑘 : [0, 𝜋] → R and a spherical function 𝑓 ∈ F

(
Ŝ2,R

)
that does not need to have any symmetry.

Note that azimuthal symmetry of spherical functions, not operators, is discussed in Section 2.1.1.

Definition 2.11: Spherical convolution

𝑘 and 𝑓 ∈ F
(
Ŝ2,K

)
(K = R or C) are spherical functions. Suppose that 𝑘 has azimuthal symmetry. Then

spherical convolution of 𝑘 and 𝑓 is defined as follows:

𝑘 ∗ 𝑓 (�̂�) =
∫
Ŝ2
𝑘
(
cos−1 �̂� · �̂� ′) 𝑓 (�̂� ′) d�̂� ′ . (70)

In this operation, 𝑘 is called the convolution kernel.

Due to the azimuthal symmetry of 𝑘 , Equation (70) can be rewritten in several forms using the following
property:

𝑘
(
cos−1 �̂� · �̂� ′) = 𝑘 (

®𝑅�̂�→𝑧𝑔�̂�
′
)
= 𝑘

(
®𝑅�̂� ′→𝑧𝑔�̂�

)
, (71)

Proof: Recall that the inner product is preserved under rotation, as written in Equation (10). Then we get

𝑘
(
cos−1 �̂� · �̂� ′) =

↑
Eq. (10)

𝑘

(
cos−1

(
®𝑅�̂�→𝑧𝑔�̂�

)
·
(
®𝑅�̂�→𝑧𝑔�̂�

′
))

= 𝑘

(
cos−1 𝑧𝑔 ·

(
®𝑅�̂�→𝑧𝑔�̂�

′
))

=
↑

Eq. (38a)

𝑘

(
®𝑅�̂�→𝑧𝑔�̂�

′
)
.

Then the remaining term can also be obtained in the same way. □

where in the first term, 𝑘 is written as a function of a single real value of zenith angle, and in the second and
third terms, ®𝑅

𝑎→𝑏
denotes any rotation in

−→
𝑆𝑂 (3) such that ®𝑅

𝑎→𝑏
𝑎 = 𝑏. Note that the second and third terms

are well-defined independent of choices of such rotations due to the symmetry of 𝑘 . Note that we can rewrite
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Equation (70) in two other forms as follows:

𝑘 ∗ 𝑓 =

∫
Ŝ2
𝑓 (�̂� ′) ®𝑅𝑧𝑔→�̂� ′,F [𝑘] d�̂� ′, (72)

𝑘 ∗ 𝑓 (�̂�) =
〈
®𝑅𝑧𝑔→�̂�,F [𝑘∗] , 𝑓

〉
F
. (73)

While Equation (72) views the convolution as a linear combination of rotated kernel, Equation (73) views a single
point at the operation result as an inner product of the kernel 𝑘 and the operand function 𝑓 . When approximating
such integral operations on a discrete point set of the domain Ŝ2, we can consider each function 𝑘 and 𝑓 as
numeric vectors whose indices indicate each point on Ŝ2, and the convolution operation can be considered as
a matrix related to 𝑘 . Then Equation (72) can be considered as a linear combination of column vectors of the
matrix of 𝑘 , while Equation (73) does as the inner product of a row vector the matrix of 𝑘 and the vector of
𝑓 . We call these views column view of convolution and row view of convolution, respectively. While in scalar
spherical convolution, the format of the kernel 𝑘 in the two views seem straightforwardly equivalent, excepting
just complex conjugation, in polarized spherical convolution, which will be introduced in a later section, the
kernel will be defined slightly differently depending on each view. In that section, we will focus on the column
view in Equation (72), which is related to the view of convolution as a linear operator, which will be introduced
now.
Rather than viewing the convolution as a binary operation on spherical functions, it can be considered as a

special case of linear operation on spherical functions with fixing the kernel. The following key property of
spherical convolution as a linear operator explains why spherical convolution is defined in the above way.

Proposition 2.12: Spherical convolution and rotation equivariance

Suppose that a linear operator 𝐾F ∈ L
(
F

(
Ŝ2,K

)
, F

(
Ŝ2,K

))
on spherical functions is rotation equivari-

ant, i.e.,𝐾F
[
®𝑅F [𝑓 ]

]
= ®𝑅F [𝐾F [𝑓 ]] for any 𝑓 ∈ F

(
Ŝ2,K

)
, and has an operator kernel𝐾 ∈ F

(
Ŝ2 × Ŝ2,K

)
.

Then the linear operator 𝐾F is characterized by a spherical convolution with a function 𝑘 : [0, 𝜋] → K,
i.e., 𝑇 [𝑓 ] = 𝑘 ∗ 𝑓 . Here, the kernel is obtained as:

𝑘 (𝜃 ) B 𝐾 (�̂�, �̂� ′) for any �̂�, �̂� ′ ∈ Ŝ2 with �̂� · �̂� ′ = cos𝜃 . (74)
Moreover,

𝑘 = 𝐾F
[
𝛿
(
�̂�, 𝑧𝑔

) ]
. (75)

Conversely, convolution 𝑘 ∗ 𝑓 is rotation equivariant for 𝑓 .

Proof: For any function 𝑓 ,

𝐾F [𝑓 ] (�̂�0) =
∫
Ŝ2
𝐾 (�̂�𝑖 , �̂�𝑜 ) 𝑓 (�̂�𝑖 ) d�̂�𝑖 =

∫
Ŝ2
𝑘 (𝜃 ) 𝑓 (�̂�𝑖 ) d�̂�𝑖 , (76)

where cos𝜃 = �̂�𝑖 · �̂�𝑜 . Then it is equivalent to Definition 2.11.
For Equation (75),

𝐾F
[
𝛿
(
�̂�, 𝑧𝑔

) ]
(�̂�𝑜 ) =

∫
Ŝ2
𝐾 (�̂�𝑖 , �̂�𝑜 ) 𝛿

(
�̂�𝑖 , 𝑧𝑔

)
d�̂�𝑖 = 𝐾

(
𝑧𝑔, �̂�𝑜

)
= 𝑘 (𝜃𝑜 ) , (77)

where �̂�𝑜 = �̂�sph (𝜃𝑜 , 𝜙𝑖 ). □
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Here, it is worth noting not to confuse the operator kernel and the convolution kernel. The rotation equivariant
linear operator 𝐾F is characterized by the operator kernel 𝐾 , and at the same time by the convolution kernel 𝑘 ,
where 𝐾 (�̂�, �̂� ′) = 𝑘

(
cos−1 �̂� · �̂� ′) holds. When handling with rotation equivariant operators, some formulae

require distinction of the two types of kernels.

2.6.3 Convolution in spherical harmonics. As Fourier transform (both continuous and discrete versions) reduces
convolution into the simpler pointwise product in the Euclidean domain, spherical harmonics can reduce the
integral formula of spherical convolution in Equation (70) into the following formula for coefficient vectors,
which is almost an element-wise product.

Proposition 2.13: Spherical convolution theorem: convolution in SH coefficients

Denote SH coefficients of an azimuthally symmetric spherical function 𝑘 ∈ F
(
Ŝ2,K

)
by k𝑙0 and SH

coefficients of a spherical function 𝑓 ∈ F
(
Ŝ2,K

)
by f𝑙𝑚 B ⟨𝑌𝑙𝑚, 𝑓 ⟩F . Then, the SH coefficient of the

convolution 𝑘 ∗ 𝑓 can be evaluated as follows:

⟨𝑌𝑙𝑚, 𝑘 ∗ 𝑓 ⟩F =

√︂
4𝜋

2𝑙 + 1
k𝑙0f𝑙𝑚 . (78)

Proof:We refer to [Driscoll and Healy 1994]. □

Considering convolution with a fixed kernel as a linear operator, the above fact can be rewritten in terms of a
coefficient matrix.

Proposition 2.14: Spherical convolution theorem: linear operator form

A rotation equivariant linear operator𝐾F ∈ L
(
F

(
Ŝ2,K

)
, F

(
Ŝ2,K

))
is characterized by the convolution

kernel 𝑘 ∈ F
(
Ŝ2,K

)
. Denote the SH coefficients of 𝑘 by k𝑙0 B ⟨𝑌𝑙0, 𝑘⟩F . Then the SH coefficients of 𝐾F ,

denoted by K𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖
B

〈
𝑌𝑙𝑜𝑚𝑜

, 𝐾F
[
𝑌𝑙𝑖𝑚𝑖

]〉
F , are evaluated as follows.

K𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖
= 𝛿𝑙𝑜𝑙𝑖𝛿𝑚𝑜𝑚𝑖

√︂
4𝜋

2𝑙 + 1
k𝑙0 . (79)

Imagine that the element-wise product of two vectors with a fixed left operand is equivalent to the matrix-vector
product with a diagonal matrix.
In Section 5.8 later, we will derive our polarized spherical convolution theorem using the new basis as a

generalization of Proposition 2.14.

2.7 Reflection operator in SH

In the context of rendering, we sometimes need a reflection operator which flips �̂� ∈ Ŝ2 with respect to a given
axis.
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We call a transform 𝑇 : Ŝ2 → Ŝ2 as the reflection operator along 𝑧, if

𝑇

(
®F [𝜔1, 𝜔2, 𝜔3]𝑇

)
= 𝑇

(
®F [𝜔1, 𝜔2,−𝜔3]𝑇

)
, (80)

for any �̂� = ®F [𝜔1, 𝜔2, 𝜔3]𝑇 ∈ Ŝ2 ⊂ ®R3 and ®F ∈ ®F3 such that ®F [:, 3] = 𝑧. Note that it is well-defined independent
of choice of the frame ®F. Note that it is self inversion and it acts on F

(
Ŝ2,C

)
as a linear operator as follows:

𝑇F [𝑓 ] (�̂�) = 𝑓 (𝑇 (�̂�)) = 𝑓
(
𝑇 −1 (�̂�)

)
, ∀𝑓 ∈ F

(
Ŝ2,C

)
. (81)

Then, its SH coefficients can be obtained as follows:

⟨𝑌𝑙𝑚,𝑇F [𝑌𝑙 ′𝑚′ ]⟩ =
∫
S2
𝑌 ∗
𝑙𝑚

(𝜃, 𝜙) 𝑌𝑙 ′𝑚′ (𝜋 − 𝜃, 𝜙) d𝜔 = 𝛿𝑙𝑙 ′𝛿𝑚𝑚′ (−1)𝑙+𝑚 . (82)
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3 BACKGROUND: POLARIZATION AND MUELLER CALCULUS
Here, we introduce the theoretical background of polarization in Mueller calculus. Section 3.1 gives brief in-
troduction for novice readers who are not familiar with Mueller calculus formulation. Section 3.2 provides a
reformulation of it in a more rigorous manner to construct a solid theory of our polarized SH in later sections.
Section 3.2 is aimed at dedicated readers who are familiar with rigorous mathematics. While Mueller calculus and
its formal definition using equivalence classes already exist, this section contains our novel usage of terminology
which distinguishes Stokes vectors and Stokes component vectors and notations [·]®F and [·]®F.

3.1 Introduction to Mueller Calculus
To take polarization into account, several intensity-related quantities, including radiance and BSDF, should
be reformulated. The polarized intensity of rays is usually described by Jones calculus, which includes phase
information of electromagnetic waves, or Mueller calculus, which includes unpolarized intensity due to incoherent
light. Following recent works in computer graphics [Baek et al. 2018, 2020; Hwang et al. 2022] we focus on
Mueller calculus.
Suppose that there is a polarized ray and a local frame ®F = [𝑥,𝑦, 𝑧], where 𝑧 is equal to the propagation

direction of the ray. Then the polarized intensity of the ray is characterized by the four Stokes parameters
s = [𝑠0, 𝑠1, 𝑠2, 𝑠3]𝑇 . Here, each component 𝑠0 to 𝑠3 indicates total intensity, linear polarization in horizontal/vertical
direction, linear polarization of diagonal/anti-diagonal direction, and circular polarization, respectively. We refer
interested readers to Collett [2005] for a more physical foundation of polarization and Mueller calculus.
While Stokes parameters have linearity so that Stokes parameters obtained under multiple incoherent light

sources are equal to the addition of Stokes parameters obtained under each individual source, they have an
important property that makes them different from scalars and even vectors.
When taking another local frame ®F′ = ®𝑅𝑧 (𝜗) ®F, obtained by rotating ®F by 𝜗 along its 𝑧 axis, the Stokes

parameters with respect to the new frame ®F′ is evaluated as

s′ = C®F→®F′s =


1 0 0 0
0 cos 2𝜗 sin 2𝜗 0
0 − sin 2𝜗 cos 2𝜗 0
0 0 0 1

 s. (83)

We can observe here that 𝑠0 and 𝑠3 behave as scalars, which are measured independent of local frames. On the
other hand, 𝑠1 and 𝑠2 are neither scalars nor coordinates of an ordinary vector, which must have 𝜗 rather than
2𝜗 in Equation (83). This twice rotation property of 𝑠1 and 𝑠2 under coordinate conversion will be dealt with as
spin-2 functions in Section 5.1. Figure 6(a) visualizes it where the two-sided arrow in the left indicates the actual
oscillation direction of polarized ray and the right plot shows 𝑠1 and 𝑠2 values of it under a local frame. Figure 6(b)
also visualizes coordinate conversion of a fixed ray.

Stokes components

[ ]s =
F

s 


[ ]sR s ′ ′= =
F

s 


S

(b) Coordinate conversion (c) Stokes vector rotation

Frame

\mathbf{s}=\left[ \overset{\leftrightarrow}{s} 
\right]^{\vec{\mathbf{F}}}

(a) Stokes vectors in geometric and numeric quantities

Fig. 6. (a) We distinguish a Stokes vector↔
𝑠 as geometric quantities and its Stokes component vector s as numeric quantities.

(b) Under coordinates conversion, the Stokes component vectors rotate twice while the Stokes vector↔
𝑠 does not change. (c)

We also define the rotation of the Stokes vector itself.
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3.2 Formal Definitions of Mueller Calculus
Following Mojzík et al. [2016], the Stokes space and Stokes vectors can be formally defined using equivalence
classes. Here, we distinguish spin-2 Stokes vectors, which consists of 𝑠1 and 𝑠2 linear polarization components and
full Stokes vectors (or simply Stokes vectors) to build our polarized SH theory, which requires separating linear
operators (Mueller matrix or transforms) into spin-0 and spin-2 parts.

Definition 3.1: Spin-2 Stokes spaces

For any �̂� ∈ Ŝ2, the Spin-2 Stokes space with respect to �̂� , denoted by S2
�̂�
is defined as follows.

S2
�̂� B

{[(
s, ®F

)]
∼
| s ∈ R2, ®F ∈ ®F3

�̂�

}
(84)

Here, [·]∼ denotes an an equivalence class with respect to a relation ∼ on a pair of a numeric vector in R2

and a frame in ®F3
�̂�
defined as:(
s, ®F

)
∼
(
t, ®G

)
if and only if t = R2 (−2𝜗) s, ∀s, t ∈ R2, ®F, ®G ∈ ®F3

�̂�
, (85)

where 𝜗 is uniquely determined to satisfy ®G = ®FR𝑧 (𝜗) up to +2𝑛𝜋 .

Note that our main paper writes as ®G = ®𝑅𝑧 (𝜗) ®F, where 𝑧 = ®F, to avoid introducing notations for numeric
rotations. These are equivalent due to a relationship discussed in Section 1.1. Now we introduce Stokes vectors,
which are geometric quantities, and Stokes components, which are numeric ones, and notations to convert them
to each other.

Definition 3.2: Spin-2 Stokes vectors and spin-2 Stokes component vectors

Using notations Definition 3.1, we denote [s]®F B
[(
s, ®F

)]
∼
∈ S2

�̂�
, which called a spin-2 Stokes vector of a

ray along �̂� . s is called the spin-2 Stokes component vector of [s]®F with respect to ®F. Conversely, for any
↔
𝑠 ∈ S2

�̂�
,
[↔
𝑠
] ®F is defined as some s′ ∈ R2 which satisfies ↔

𝑠 = [s′]®F. Note that it is well-defined, independent
of the choice of a frame9.

Now, full Stokes vectors can be defined similarly or just by taking the direct sum of scalars and spin-2 Stokes
vectors.

9Our [ · ]®F and [ · ]®F notations are slightly inspired from a convention in Riemannian geometry, where coordinates 𝑣𝑖 which depends on an
observer can be converted to an invariant quantity 𝑣𝑖e𝑖 by attaching the subscripted quantity e𝑖 , which indicates a basis for the local tangent
space.
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Definition 3.3: (Full) Stokes spaces

For any �̂� ∈ Ŝ2, the full Stokes space (or Stokes space, simply) with respect to �̂� , denoted by S4
�̂�
(or S�̂� ) is

defined by two ways, equivalently.
(1) S4

�̂�
B R ⊕ S2

�̂�
⊕ R

(2) S4
�̂�
B

{[(
s, ®F

)]
∼
| s ∈ R4, ®F ∈ ®F3

�̂�

}
, where

(
s, ®F

)
∼
(
t, ®G

)
if and only if t = C®F→®Gs.

Here, C®F→®G is defined using 𝜗 such that ®G = ®FR𝑧 (𝜗) as follows.

C®F→®G B


1 0 0 0
0 cos 2𝜗 sin 2𝜗 0
0 − sin 2𝜗 cos 2𝜗 0
0 0 0 1

 . (86)

Here, we sometimes denote the matrix in the right-hand side of Equation (86) as R1:2 (−2𝜗), which indicates
embed R2 into a 4 × 4 matrix (with index based on zero) at indices 1 and 2.

We also define the (entire) spin-2 Stokes space as S2 B ⊔
�̂�∈Ŝ2S2

�̂�
and the (entire) Stokes space as S4 B ⊔

�̂�∈Ŝ2S4
�̂�
,

where ⊔ indicates disjoint union10. (Full) Stokes vectors, (full) Stokes components, and [·]®F and [·]®F notations
from Definition 3.2 can be redefined for full Stokes spaces similarly. Note that for ↔

𝑠2 B
[
[𝑠1, 𝑠2]𝑇

]
®F ∈ S2

�̂�
and

↔
𝑠4 B

[
[𝑠0, 𝑠1, 𝑠2, 𝑠3]𝑇

]
®F ∈ S4

�̂�
, we use notations for theirs relationship as ↔

𝑠4 = 𝑠0 ⊕ ↔
𝑠2 ⊕ 𝑠3 or

↔
𝑠4 =

(
𝑠0,

↔
𝑠2, 𝑠3

)
.

We define operations on (spin-2) Stokes vectors, which are well-defined independent of the choice of a frame
®F ∈ ®F3

�̂�
below.

Definition 3.4: Stokes vector operations

For ↔
𝑠 and

↔
𝑡 ∈ S{2,4}

�̂�
,

(1) Linear combination: for any 𝑎, 𝑏 ∈ R, 𝑎↔𝑠 + 𝑎↔𝑡 B
[
𝑎
[↔
𝑠
] ®F + 𝑎 [↔𝑡 ] ®F]

®F
for any ®F ∈ ®F3

�̂�
.

(2) Inner product:
〈↔
𝑠,

↔
𝑡
〉
S{2,4}
�̂�

B
[↔
𝑠
] ®F · [↔𝑡 ] ®F (or denoted as simply ⟨·, ·⟩S , or explicitly ⟨·, ·⟩S|R, etc.)

(3) Rotation: for any ®𝑅 ∈ −→
𝑆𝑂 (3), ®𝑅S ∈ L (S,S) is defined as ®𝑅S

↔
𝑠 =

[ [↔
𝑠
] ®F]

®𝑅®F
.

When ↔
𝑠 and

↔
𝑡 ∈ S2

�̂�
, the following is additionally defined.

(1) Complex scalar multiplication: for any 𝑧 ∈ C, 𝑧↔𝑠 B
[
R2

(
𝑧C

( [↔
𝑠
] ®F))]

®F

(2) Inner product over scalar C:
〈↔
𝑠,

↔
𝑡
〉
S2
�̂�
|C B C

( [↔
𝑠
] ®F)∗
C

( [↔
𝑡
] ®F) ∈ C (or denoted simply ⟨·, ·⟩S|C).

Here, C : R2 → C and R2 : C→ R2 denote the canonical conversions between R2 and C. In addition, note that
we sometimes denotes [𝑧]®F B

[
[ℜ𝑧,ℑ𝑧]𝑇

]
®F
∈ S2

®F[:,3]
for a complex number 𝑧 ∈ C.

We observe that S4
�̂�
is an inner product space over R, while S2

�̂�
can be handled as an inner product space over

both R or C. Two inner products satisfy the relationship described in Proposition 1.10.

10For readers who are not familiar to disjoint union, it can be just considered as union.
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(a) Valid (b) Valid (w/ frame convert) (c) Invalid

Fig. 7. Addition between two Stokes vectors↔
𝑠1 and

↔
𝑠2. (a) If two Stokes component vectors have the same frame, we can

perform addition directly. (b) If two Stokes component vectors have different frames but on the same Stokes space, addition
can be performed with frame conversion. (c) If two Stokes vectors belong to different Stokes spaces (different ray directions),
addition cannot be defined.

Not only just a vector space, linear operators (transforms) also have to be formulated in Mueller calculus.

Definition 3.5: Mueller transform space

The (full) Mueller space with respect to �̂�𝑖 and �̂�𝑜 ∈ Ŝ2, denoted byM4
�̂�𝑖→�̂�𝑜

(orM�̂�𝑖→�̂�𝑜
simply), and spin

2-to-2 Mueller space with respect to �̂�𝑖 and �̂�𝑜 , denoted by M2
�̂�𝑖→�̂�𝑜

are defined as follows, equivalently.

(1) M {2,4}
�̂�𝑖→�̂�𝑜

B L
(
S{2,4}
�̂�𝑖

,S{2,4}
�̂�

)
, respectively.

(2) M {2,4}
�̂�𝑖→�̂�𝑜

B
{[(

M, ®F𝑖 , ®F𝑜
)]

∼
| M ∈ R{2×2,4×4}, ®F𝑖 ∈ ®F3

�̂�
, ®F𝑜 ∈ ®F3

�̂�𝑜

}
, where

(
M, ®F𝑖 , ®F𝑜

)
∼

(
N, ®G𝑖 , ®G𝑜

)
if and only if

N = R2 (−2𝜗𝑜 )MR2 (2𝜗𝑖 ) , for M2
�̂�𝑖→�̂�𝑜

,

N = C®F𝑜→®G𝑜
MC−1

®F𝑖→®F𝑖
, for M4

�̂�𝑖→�̂�𝑜
,

(87)

where ®G𝑖 = F𝑖R𝑧 (𝜗𝑖 ), ®G𝑜 = F𝑜R𝑧 (𝜗𝑜 ), and C from Equation (86).

Similar to Stokes spaces, we can define the (entire) Mueller space asM {2,4} B ⊔
�̂�𝑖 ,�̂�𝑜 ∈Ŝ2M {2,4}

�̂�𝑖→�̂�𝑜
in both senses

of spin-2 and full. As a full Stokes vector contains a spin-2 Stokes vector as its subpart, a full Mueller transform
↔
𝑀 ∈ M4 contains a spin 2-to-2 Mueller transform as its subpart, which is denoted by

↔
𝑀 [1:2, 1:2] ∈ M2. Note

that separately taking a single index 1 or 2 for
↔
𝑀 is illegal since it yields a frame-dependent quantity. We also

define Mueller matrices, numeric quantities measured from Mueller transforms.

Definition 3.6: Mueller transforms and Mueller matrices

Using notations Definition 3.5, we denote [M]®F𝑖→®F𝑜 B
[(
M, ®F𝑖 , ®F𝑜

)]
∼
∈ M {2,4}

�̂�𝑖→�̂�𝑜
, which called a Mueller

transform from a ray along �̂�𝑖 to one along �̂�𝑜 .M is called theMueller matrix of [M]®F𝑖→®F𝑜 with respect to ®F𝑖

and ®F𝑜 . Conversely, for any
↔
𝑀 ∈ M {2,4}

�̂�𝑖→�̂�𝑜
,
[ ↔
𝑀

] ®F𝑖→®F𝑜
is defined as someM′ ∈ R{2×2,4×4} which satisfies

↔
𝑀 = [M′]®F𝑖→®F𝑜 . Note that it is well-defined, independent of the choice of frames.
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Since a Mueller space is a space of linear maps, linear combination and product between twoMueller transforms
in the same space is naturally defined. For a rotation ®𝑅 ∈ −→

𝑆𝑂 (3), ®𝑅M : L (M,M) is defined as:

®𝑅M
[ ↔
𝑀

]
= ®𝑅S

↔
𝑀 ®𝑅−1

S , (88)

where the right-hand side consists of the product of Mueller transforms by considering ®𝑅S as a Mueller transform.
Also note that the coordinate conversion matrix for Stokes vectors can be rewritten as:

C®F→®G =

[↔
𝐼

] ®F→®G
, (89)

where
↔
𝐼 indicates the identity Mueller transform.
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4 ANALYSIS ON STOKES VECTOR FIELDS
Sections 4.1 to 4.4 will provide descriptions for analysis on Stokes vector fields to help understand why naively
applying conventional scalar SH to rendering with polarized lights fails. It will support the fact that scalar
SH suffers from a singularity problem for Stokes vector fields, and the singularity problem violates rotation
invariance.
In addition, Sections 4.3 and 4.4 provide some formal techniques that will be used for the proofs in Section 5.

4.1 Preliminaries: Continuity of Scalar and Tangent Vector Fields
For better intuition, we first introduce scalar and tangent vector fields, which are simpler types than Stokes vector
fields. Observing the difference between Stokes vector fields and the simpler types of fields may help understand
the challenges of Stokes vector fields.
Scalar fields. Continuity of a (scalar-valued) spherical function, or scalar field, 𝑓 : Ŝ2 → R or C is well defined
when considering Ŝ2 as a smooth surface embedded in ®R3. However, it is often more convenient to test the
continuity of the spherical function written in spherical coordinates, 𝑓 (𝜃, 𝜙). The 𝑓 : Ŝ2 → C is continuous if and
only if its spherical coordinates parameterization 𝑓 (𝜃, 𝜙)11 is continuous on [0, 𝜋] × [0, 2𝜋] and the following
conditions hold.

𝑓 (0, 𝜙1) = 𝑓 (0, 𝜙2) , 𝑓 (𝜋, 𝜙1) = 𝑓 (𝜋, 𝜙2) , 𝑓 (𝜃, 0) = 𝑓 (𝜃, 2𝜋) , ∀𝜙1, 𝜙2 ∈ [0, 2𝜋] and ∀𝜃 ∈ [0, 𝜋] . (90)

Analogously, the continuity of spherical stokes-valued functions can be tested in the [0, 𝜋] × [0, 2𝜋] parameteri-
zation domain in the later section, but it has different constraints from the above.
Tangent vector fields. Before dealing with Stokes-value spherical functions such as Stokes vectors as a function
of propagation directions, we will first explain tangent vector fields on the sphere to show the analogy and
difference between them.

A tangent vector field on the sphere ®𝑓 : Ŝ2 → ∪
�̂�∈Ŝ2𝑇�̂� Ŝ

2 is a function defined on the sphere Ŝ2 of which each
value at �̂� ∈ Ŝ2 takes value from ®𝑓 (�̂�) ∈ 𝑇�̂� Ŝ2, where 𝑇�̂� Ŝ2 denotes the tangent plane of Ŝ2 at �̂� defined by
𝑇�̂� Ŝ

2 B
{
𝑣 ∈ ®R3 | �̂� · 𝑣 = 0

}
.

As examples to help intuition of tangent vector fields, one can imagine a tangent vector field on the sphere as
a wind velocity map on the earth or the gradient vector field of an omnidirectional image obtained by a fish-eye
lens.
Representation under a coordinates system. Since a tangent vector field on the sphere takes a value from a
different tangent plane at each point �̂� , representing the tangent vector field is more complicated than scalar
fields. One common way is to use frame fields. A frame field on Ŝ2, ®F (�̂�), is defined as a function maps (almost
everywhere) each point �̂� ∈ Ŝ2 to a frame ®F (�̂�) ∈ ®F3

�̂�
, which has �̂� as the third axis, i.e., ®F (�̂�) [:, 3] = �̂� . Note

that frame fields are usually required to be continuous except at a zero-measure singularity (usually two points).
Then a tangent vector field ®𝑓 : S2 → ∪�̂�∈S2𝑇�̂�S

2 can be represented as:

®𝑓 (�̂�) = 𝑎 (�̂�) ®F (�̂�) [:, 1] + 𝑏 (�̂�) ®F (�̂�) [:, 2] ,

for some scalar-valued spherical functions 𝑎 and 𝑏. A usual way to select the 𝜃𝜙 frame field is introduced in
Equation (9), which is aligned to the spherical coordinates. Recall the formulae in more detail; it can be written

11For rigorous mathematics we need another symbol rather than 𝑓 , which is defined on the sphere, but we use the symbol for better intuition.
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as follows:

®F𝜃𝜙 (𝜃, 𝜙) B
[
𝜃, 𝜙, �̂�

]
,

where 𝜃 B normalize
(
𝜕�̂�sph

𝜕𝜃

)
= ®F𝑔 [cos𝜃 cos𝜙, cos𝜃 sin𝜙,− sin𝜃 ]𝑇 ,

𝜙 B normalize
(
𝜕�̂�sph

𝜕𝜙

)
= ®F𝑔 [− sin𝜙, cos𝜙, 0]𝑇 .

(91)

Here ®F𝑔 indicates the global (world) frame, and �̂�sph indicates the spherical coordinate system specified by the
global frame ®F𝑔 as defined by Equation (8).
Continuity of tangent vector fields. Unlike scalar fields, coordinate systems and frame fields raise disconti-
nuity, which does not contain the original structure of the sphere S2, only testing the continuity of 𝑎 (�̂�) and
𝑏 (�̂�) is not enough to test the continuity of the vector field ®𝑓 . The continuity of ®𝑓 is rewritten in terms of 𝑎 and
𝑏 as follows:

𝑎 and 𝑏 are continuous on Ŝ2 − 𝑆®F,

∀�̂�𝑠 ∈ 𝑆®F, lim
�̂�→�̂�𝑠

𝑎 (�̂�) ®F (�̂�) [:, 1] + 𝑏 (�̂�) ®F (�̂�) [:, 2] converges.

where 𝑆®F ⊂ Ŝ2 denotes the set of singularities of the frame ®F. Note that every frame field has singularities
due to the Hairy ball theorem. For symbolic or numerical evaluation, the above must be reformulated into a
coordinate system, usually a spherical one. We observe that the simplest case to describe this constraint occurs
when singularities of the frame field are a subset of discontinuity of the coordinate system, for instance, 𝜃 = 0 or
𝜋 and 𝜙 = 0 or 2𝜋 for the spherical coordinates. In this context, we investigate continuity conditions of several
types of spherical functions in terms of spherical coordinates and 𝜃𝜙 frame field.
While ®F𝜃𝜙 (�̂�) at �̂� = ±𝑧𝑔 is considered to be not defined, it is more useful to consider that ®F𝜃𝜙 (0 or 𝜋, 𝜙) is

defined depending on 𝜙 by directly substituting 𝜃 to Equation (91) as follows:

®F𝜃𝜙 (0, 𝜙) = ®F𝑔

cos𝜙 − sin𝜙 0
sin𝜙 cos𝜙 0

0 0 1

 = ®F𝑔R𝑧𝑦 (𝜙, 0) , ®F𝜃𝜙 (𝜋, 𝜙) = ®F𝑔

− cos𝜙 − sin𝜙 0
− sin𝜙 cos𝜙 0

0 0 −1

 = ®F𝑔R𝑧𝑦 (𝜙, 𝜋) .

(92)
Denoting f B [𝑎, 𝑏]𝑇 under ®F𝜃𝜙 , the tangent vector field ®𝑓 is continuous if and only if f (𝜃, 𝜙) is continuous on

[0, 𝜋] × [0, 2𝜋] and:

f (0, 𝜙2) = R2 (−𝜙2 + 𝜙1) f (0, 𝜙1) , f (𝜋, 𝜙2) = R2 (+𝜙2 − 𝜙1) f (𝜋, 𝜙1) , f (𝜃, 0) = f (𝜃, 2𝜋) ,
for any 𝜙1, 𝜙2 ∈ [0, 2𝜋] and 𝜃 ∈ [0, 𝜋] , (93)

which has different conditions from scalar fields.

4.2 Continuity of Stokes Vector Fields

Stokes vector fields on the sphere. Now, we can consider applying the advantages of spherical harmonics on
spherical functions to polarized intensity. Then, we should first look into the spherical functions of Stokes vectors
(or Stokes vector fields on the sphere). Different from the case of scalar radiance, but similar to tangent vector
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(a) Source-to-material convention (b) Material-to-source convention

𝜃𝜃 = 0

𝜃𝜃 = 𝜋𝜋
𝜙𝜙 = 0 𝜙𝜙 = 2𝜋𝜋

𝜃𝜃 = 𝜋𝜋

𝜃𝜃 = 0
𝜙𝜙 = 0 𝜙𝜙 = 2𝜋𝜋

�𝜔𝜔

�𝜔𝜔
�𝜔𝜔

�𝜔𝜔

Fig. 8. We can unwrap an image on a sphere into an equirectangular image in two ways depending on a spherical point in
the domain: (a) a ray propagation direction or (b) a light vector that points to a light source from a material (or observer). In
our main paper, Main. Figure 6 follows the convention in (a) since it describes the general properties of spherical functions.
The others Main Figures. 5, 4, 11, 16, and 18 follows the convention in (b) for better intuition since they describe environment
map images. Note that 𝜃 and 𝜙 in our equations always indicate spherical coordinates of ray propagation directions so that
the top row of the equirectangular image in (b) indicates 𝜃 = 𝜋 while the one in (a) indicates 𝜃 = 0.

fields, a Stokes vector field
↔
𝑓 ∈ F

(
Ŝ2,S�̂�

)
12 has also the challenge that it evaluates given directions �̂� ∈ Ŝ2 into

values from different Stokes spaces
↔
𝑓 (�̂�) ∈ S�̂� .

Representation under a coordinates system. Similar to tangent vector fields, we can represent a Stokes
field into four components of scalar fields, but this cannot be done directly by applying local frames as linear
operators on vectors. We must use the Stokes component conversion defined in Definition 3.2. Then, we can
rewrite the Stokes vector field

↔
𝑓 as follows:

[ ↔
𝑓 (�̂�)

] ®F𝜃𝜙 (�̂� )
=
[
𝑓0 (𝜃, 𝜙) 𝑓1 (𝜃, 𝜙) 𝑓2 (𝜃, 𝜙) 𝑓3 (𝜃, 𝜙)

]𝑇
. (94)

The continuity of
↔
𝑓 can be represented in terms of each component 𝑓0, · · · , 𝑓3, and it yields different constraints

at the singularities ±𝑧𝑔 from both scalar and tangent vector fields. By denoting f B [𝑓1, 𝑓2]𝑇 ,

f (0, 𝜙2) = R2 (−2 (𝜙2 − 𝜙1)) f (0, 𝜙1) , f (𝜋, 𝜙2) = R2 (2 (𝜙2 − 𝜙1)) f (𝜋, 𝜙1) , f (𝜃, 0) = f (𝜃, 2𝜋) ,
for any 𝜙1, 𝜙2 ∈ [0, 2𝜋] and 𝜃 ∈ [0, 𝜋] , (95)

while 𝑓0 and 𝑓3 components are conventional scalar fields. Note that the first two constraints of 𝑓1 and 𝑓2 appear
twice the components’ rotation. From such different conditions, representing a Stokes vector field using a
continuous scalar or tangent vector field yields a discontinuous Stokes vector field, which implies each type of
field should have different types of continuous basis functions.

4.3 Stokes Vector Fields Operations
To discuss bases for Stokes vector fields, we should define several operations on Stokes vector fields. It can be
done by generalizing scalar field operations in Section 2, based on Stokes vectors operations in Section 3. We
define the inner product and rotations of Stokes vector fields as follows.

12Rigorously, it should be written as
{↔
𝑓 : Ŝ2 → ∪

�̂�∈Ŝ2 S�̂� | ∀�̂� ∈ Ŝ2,
↔
𝑓 (�̂� ) ∈ S�̂�

}
. But we write as the main text for the sake of simplicity

and better intuition.
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Definition 4.1: Inner product of Stokes vector fields

For Stokes vector fields
↔
𝑓 , ↔
𝑔 : Ŝ2 → S�̂� , the inner product of them is defined as follows.〈 ↔

𝑓 ,
↔
𝑔

〉
F(Ŝ2,S�̂�)

B

∫
Ŝ2

〈 ↔
𝑓 (�̂�) , ↔𝑔 (�̂�)

〉
S

d�̂� . (96)

Definition 4.2: Rotation of Stokes vector fields

For ®𝑅 ∈ −→
𝑆𝑂 (3), it can acts as ®𝑅F ∈ L

(
F

(
Ŝ2,S�̂�

)
, F

(
Ŝ2,S�̂�

))
, a linear operator on Stokes vector fields

as follows.
®𝑅F

[ ↔
𝑓

]
(�̂�) = ®𝑅S

[ ↔
𝑓

(
®𝑅−1�̂�

)]
, ∀

↔
𝑓 : Ŝ2 → S�̂� . (97)

Note that the inner product in Definition 4.1 is often written as simply
〈 ↔
𝑓 ,

↔
𝑔

〉
F
. The rotation defined in

Definition 4.2 is illustrated in Figure 3(b).

4.4 Scalar SH to Stokes Vector Fields
Now, we will show two problems when using scalar SH to Stokes vectors: singularity and violation of rotation
invariance.

4.4.1 Singularity. We first focus on the continuity condition for Stokes vector fields. Concretely, we can try to
naïvely apply the scalar SH on each component 𝑓0 ...𝑓3 of the Stokes vector field with respect to the 𝜃𝜙-frame
field ®F𝜃𝜙 (�̂�) as

↔
𝑌

(naive)
𝑙𝑚0 B


𝑌𝑙𝑚 (�̂�)

0
0
0

 ®F𝜃𝜙 (�̂� )

, · · · ,
↔
𝑌

(naive)
𝑙𝑚3 B


0
0
0

𝑌𝑙𝑚 (�̂�)

 ®F𝜃𝜙 (�̂� )

, (98)

which is considered as a basis, where 0 ≤ |𝑚 | ≤ 𝑙 . However, scalar SH satisfy

𝑌𝑙0 (0, 𝜙) = const. ≠ 0,
𝑌𝑙0 (𝜋, 𝜙) = const. ≠ 0, (99)

and those conditions never satisfy the continuity condition of spin-2 functions in Equation (95). Thus, even if
a continuous Stokes vector field

↔
𝑓 is given, its finite projection on the basis in Equation (98) up to 𝑙 ≤ 𝑙max is

always discontinuous at ±𝑧𝑔 . This is a fundamentally different feature from how the scalar SH behaved on scalar
fields, which always converts finite coefficients to continuous functions and has a smoothing role.

4.4.2 Rotation invariance violation. The singularity issue of basis functions is not only the presence of singularity
itself but also the effects of the continuity of the basis function, which is a necessary condition for rotation
invariance.
Note that

↔
𝑌

(naive)
𝑙 ′01 (�̂�) is discontinuous at �̂� = ±𝑧𝑔. So when rotating it by ®𝑅 = ®𝑅𝑦𝑔

(
𝜋
2
)
, then the rotated basis

®𝑅F
[↔
𝑌

(naive)
𝑙 ′01

]
is discontinuous at �̂� = ±𝑥𝑔. Thus, when decomposing it into a linear combination of the original

basis
↔
𝑌

(naive)
𝑙 ′𝑚𝑝

, which is always continuous at �̂� = ±𝑥𝑔, the linear combination must be an infinite sum to make
such discontinuity since the finite sum of continuous functions is always continuous. Generally, it can be written
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as a coefficient matrix of the rotation as〈↔
𝑌

(naive)
𝑙𝑚𝑝

, ®𝑅F
[↔
𝑌

(naive)
𝑙 ′𝑚′𝑝′

]〉
F
≠ 0, for 𝑙 ≠ 𝑙 ′, (100)

where an inner product of two Stokes vector fields is defined in Definition 4.1
Recall that the rotation invariance of SH for scalar fields is represented as a block diagonal coefficient matrix

in Equation (45). However, Equation (100) implies that the elements of the coefficient matrix at 𝑙 ≠ 𝑙 ′ are nonzero.
This means SH for the Stokes vector field does not yield a block diagonal and violates the rotation invariance. For
further validation related to rotation invariance, refer to Section 6.2 in the main paper.

4.5 Rotation Form of Stokes Vector Fields
Rather than unwrapping Stokes vector fields into spherical coordinates, the following formulation is sometimes
useful in deriving our theory.

Definition 4.3: Rotation form of Stokes vector fields

Given a global frame ®F𝑔, for a spin-2 Stokes vector field
↔
𝑓 : Ŝ2 → S�̂� , its rotation form 𝑓 :

−→
𝑆𝑂 (3) → C is

defined as follows.

𝑓

(
®𝑅
)
=

[ ↔
𝑓

(
®𝑅𝑧𝑔

)] ®𝑅®F𝑔
. (101)

Note that full Stokes vector fields can be similarly redefined as a function with codomain R4 rather than C.
Note that the following property is converse.

Proposition 4.4: Stokes vector fields from rotation forms

A function 𝑓 :
−→
𝑆𝑂 (3) → C can be a rotation form of a spin-2 Stokes vector field if and only if

𝑓

(
®𝑅 ®𝑅𝑧𝑔 (𝜓 )

)
= 𝑒−2𝑖𝜓 𝑓

(
®𝑅
)
. (102)

Note that it comes from the continuity condition of Stokes vector fields. For a function 𝑓 :
−→
𝑆𝑂 (3) → R4, the

condition to be equivalent to a full Stokes vector can be obtained by substituting 𝑒2𝑖𝜓 by the C®F→®G matrix.

4.6 Mueller Transform Fields
Similar to Stokes vector fields, we can also define a Mueller transform field as a function

↔
𝑀 : Ŝ2 × Ŝ2 → M�̂�𝑖→�̂�𝑜

which satisfies
↔
𝑀 (�̂�𝑖 , �̂�𝑜 ) ∈ M�̂�𝑖→�̂�𝑜

.
We define the rotation of a Mueller transform field as follows.

Definition 4.5: Rotation of Mueller transform fields

For ®𝑅 ∈ −→
𝑆𝑂 (3), it can acts as ®𝑅F ∈ L

(
F

(
Ŝ2 × Ŝ2,M

)
, F

(
Ŝ2 × Ŝ2,M

))
, a linear operator on Mueller

transform fields as follows.
®𝑅F

[ ↔
𝑀

]
(�̂�𝑖 , �̂�𝑜 ) = ®𝑅M

[ ↔
𝑀

(
®𝑅−1�̂�𝑖 , ®𝑅−1�̂�𝑜

)]
, ∀

↔
𝑓 : Ŝ2 → S�̂� . (103)

Note that it can be understood as a pBRDF obtained by rotating the material in a rendering context.
Mueller transform fields are more discussed in later Section 5.5.

ACM Trans. Graph., Vol. 43, No. 4, Article 127. Publication date: July 2024.



Supplemental Document: Spin-Weighted Spherical Harmonics for Polarized Light Transport • 127:39

5 POLARIZED SPHERICAL HARMONICS FOR STOKES VECTOR FIELD

5.1 Spin-weighted Spherical Harmonics
Note that our definition of spin-weighted functions and SWSH may take a slightly different formulation than
other literature, but still equivalent. We chose our formulation for convenience to derive our PSH theory.

Definition 5.1: Spin-weight 𝑠 functions

Given a global frame ®F𝑔, 𝑓 :
−→
𝑆𝑂 (3) (3) → C (or 𝑓 : ®F3 → C) is called a spin-weight 𝑠 function (or spin-𝑠

function, simply) if:
𝑓

(
®𝑅 ®𝑅𝑧𝑔 (𝜓 )

)
= 𝑒−𝑖𝑠𝜓 𝑓

(
®𝑅
)
for any ®𝑅 ∈ −→

𝑆𝑂 (3) ,𝜓 ∈ R. (104)

Equivalently, it can also be defined as 𝑓 : Ŝ2 → ⋃
�̂�∈Ŝ2

(
C × ®F�̂�

)
/∼

𝑓 (�̂�) ∈
(
C × ®F�̂�

)
/∼, where

(
𝑧1, ®F1

)
∼
(
𝑧2, ®F2

)
if and only if ®F2 = ®F1R𝑧 (𝜓 ) for some 𝜗 and 𝑧2 = 𝑒

−𝑖𝑠𝜓𝑧1.

The condition also can be represented as:

𝑓 (cos𝜓𝑥 − sin𝜓𝑦, sin𝜓𝑥 + cos𝜓𝑦, 𝑧) = 𝑒𝑖𝑠𝜓 𝑓 (𝑥,𝑦, 𝑧) , (105)

by considering 𝑓 as a function on ®F3. Note that the definition of spin-𝑠 functions does not depend on the choice
of global frame ®F𝑔. An important property is that there is a natural correspondence between spin-2 functions
and Stokes-valued spherical functions by considering 𝑓 (𝑥,𝑦, 𝑧) as 𝑠1 + 𝑖𝑠2 where 𝑠1 and 𝑠2 are linear Stokes
parameter for a ray along 𝑧 with respect to the frame [𝑥,𝑦, 𝑧]. One also observes that spin-0 and spin-1 functions
are equivalent to the sphere’s scalar and tangent vector fields, respectively.
Taking equivalent but slightly different orders to derive SWSH, we define SWSH as follows.

Definition 5.2: Spin-weighted spherical harmonics

The spin-weighted spherical harmonics with spin 𝑠 , order 𝑙 , and degree𝑚 is a spin-𝑠 function defined as
follows:

𝑠𝑌𝑙𝑚

(
®𝑅
)
= (−1)𝑠

√︂
2𝑙 + 1

4𝜋
𝐷𝑙∗
𝑚,−𝑠

(
®𝑅
)
. (106)

Note that due to Proposition 2.6(6), SWSH becomes an orthonormal basis for spin-𝑠 functions, with a differential
measure on Ŝ2 following the definition through equivalence classes described in Definition 5.1.

Proposition 5.3: Spin-2 spherical harmonics in Stokes vector fields

Defining a spin-2 Stokes vector field
↔
𝑌𝑙𝑚 (�̂�) B

[
2𝑌𝑙𝑚

(
®𝑅
)]

®𝑅®F𝑔
, it becomes the well defined orthonormal

basis for Stokes vectors fields, over scalar C.

See also the rotation form of Stokes vectors fields discussed in Definition 4.3 and Proposition 4.4. Then a
representation under the 𝜃𝜙 frame field ®F𝜃𝜙 , which is introduced in the main paper, is defined as follows:

2𝑌𝑙𝑚 (𝜃, 𝜙) B
[↔
𝑌𝑙𝑚 (𝜃, 𝜙)

] ®F𝜃𝜙 (𝜃,𝜙 )
. (107)
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Note that our main paper introduces the function in Equation (107) first and then derives the formulation in
Proposition 5.3 later to start from numerically measurable quantity, which is regarded more practical.

5.2 Converting Between R2 and C
we defines symbols to convert C and R2 or R2×2.

C

( [
𝑥

𝑦

] )
B 𝑥 + 𝑦𝑖 ∈ C, (108)

R2 (𝑥 + 𝑦𝑖) B
[
𝑥

𝑦

]
∈ R2, (109)

R2×2 (𝑥 + 𝑦𝑖) B
[
𝑥 −𝑦
𝑦 𝑥

]
∈ R2×2 . (110)

Then we get:

R2 (𝑧1)𝑇 R2×2 (𝑧2) · · ·R2×2 (𝑧𝑛−1) R2 (𝑧𝑛) = ℜ ⟨𝑧1, 𝑧2 · · · 𝑧𝑛⟩C = ℜ
(
𝑧∗1𝑧2 · · · 𝑧𝑛

)
. (111)

Complex pair separation. We observe that Equations (108) and (109) are the inverses of each other, but the
function in Equation (110) has not the inverse since it is not surjective. However, we found that any 2 × 2 real

matrix M =

[
𝑚11 𝑚12
𝑚21 𝑚22

]
can be represented by two complex numbers as follows:

M = R2×2 (Ciso (M)) + R2×2 (Cconj (M)
)
J,

where Ciso (M) B 𝑚11 +𝑚22

2
+ 𝑚21 −𝑚12

2
𝑖,

Cconj (M) B 𝑚11 −𝑚22

2
+ 𝑚21 +𝑚12

2
𝑖,

J B
[
1 0
0 −1

]
.

(112)

We call Ciso (M) and Cconj (M) the isomorphic part and the conjugation part of M, respectively.
The matrix J acts on all right complex representations as complex conjugation, i.e.,

JR2 (𝑧) = R2 (𝑧∗) . (113)

In general,

R2 (𝑧1)𝑇 R2×2 (𝑧2) · · ·R2×2 (𝑧𝑑 ) JR2×2 (𝑧𝑑+1) · · ·R2×2 (𝑧𝑛−1) R2 (𝑧𝑛)
= R2 (𝑧1)𝑇 R2×2 (𝑧2 · · · 𝑧𝑑 ) JR2 (𝑧𝑑+1 · · · 𝑧𝑛) = ℜ

〈
𝑧1, 𝑧2 · · · 𝑧𝑑𝑧∗𝑑+1 · · · 𝑧

∗
𝑛

〉
C

(114)

Please be careful that this fact cannot be reduced to a product of J and a single 2 × 2 matrix, i.e.,

JR2×2 (𝑧) ≠ R2×2 (𝑧∗) , (115)

since J cannot be R2×2 (𝑧) for some 𝑧 ∈ C. Thus, we observe that Equation (114) should be obtained by contracting
R2×2 (𝑧𝑑+1) · · ·R2×2 (𝑧𝑛−1) R2 (𝑧𝑛) = R2 (𝑧𝑑+1 · · · 𝑧𝑛) first, and followed by applying Equation (113)
Complex indexing formulae. Due to the complexity of our derivation, such as viewing a function space as a
linear space over scalar both R or C, The following conversion equations will be useful. We call them complex
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indexing formulae.

Mat
[
ℜ

(
𝑖1−𝑝𝑧

)
| 𝑝 = 1, 2

]
=

[
ℜ𝑧
ℑ𝑧

]
= R2 (𝑧) , (116)

Mat
[
ℜ

(
𝑖𝑝−1𝑧

)
| 𝑝 = 1, 2

]
=

[
ℜ𝑧∗
ℑ𝑧∗

]
= R2 (𝑧∗) , (117)

Mat
[
ℜ

(
𝑖𝑝𝑖−𝑝𝑜𝑧

)
| 𝑝𝑜 , 𝑝𝑖 = 1, 2

]
=

[
ℜ𝑧 −ℑ𝑧
ℑ𝑧 ℜ𝑧

]
= R2×2 (𝑧) , (118)

Mat
[
ℜ

(
𝑖2−𝑝𝑖−𝑝𝑜𝑧

)
| 𝑝𝑜 , 𝑝𝑖 = 1, 2

]
=

[
ℜ𝑧 ℑ𝑧
ℑ𝑧 −ℜ𝑧

]
= R2×2 (𝑧) J. (119)

5.3 Polarized Spherical Harmonics
5.3.1 Discussion on real coefficient formulation. Note that we already discussed the necessity of our real coefficient
formulation for spin-2 components for our PSH in the main paper in terms of complex pair separation, which
is described both in the main paper and this document through Equations (112) to (115). Now, we discuss our
real coefficient formulation for spin-0 components. We now have two choices when we fix spin-2 coefficients
as R2. Using a basis 𝛿𝑝0𝑌

𝑅
𝑙𝑚

⊕
(
𝛿𝑝1

↔
𝑌𝑙𝑚1 + 𝛿𝑝2

↔
𝑌𝑙𝑚2

)
⊕ 𝛿𝑝3𝑌

𝑅
𝑙𝑚

and coefficients in R4, or using a basis 𝛿𝑝0𝑌
𝐶
𝑙𝑚

⊕(
𝛿𝑝1

↔
𝑌𝑙𝑚1 + 𝛿𝑝2

↔
𝑌𝑙𝑚2

)
⊕ 𝛿𝑝3𝑌

𝐶
𝑙𝑚

and coefficients in C ⊕ R2 ⊕ C. While the former one, which will be selected our
polarized spherical harmonics basis in Proposition 5.4, clearly implies that it encodes general R-linear operators
on F

(
Ŝ2,S�̂�

)
into 4 × 4 real matrices of coefficients for fixed 𝑙 and𝑚 indices, the later one cannot well define

coefficient matrices. First, R-linear operators on C ⊕ R2 ⊕ C belong to
(
R2 ⊕ R2 ⊕ R2)2, which requires 2 × 2 real

coefficients for fixed 𝑙 and𝑚 indices to represent operators from 𝑠0 components to 𝑠0 components. It contains
too much redundant information to describe real-valued data from the original angular domain. It is not even
compatible with conventional formulation where SH encodes linear operators on scalar fields to a coefficient
simply in R or C for fixed 𝑙 and𝑚 indices. As another choice, if one tries to define a coefficient matrix with mixed
entry types, C and R, we cannot define it as closed under matrix multiplication. If taking a product of two such
matrices, complex values in spin 0-to-0 submatrices make spin 0-to-2 and 2-to-0 submatrices become complex.
Finally, they make spin 2-to-2 submatrices become complex when multiplying another matrix again. It yields a
contradiction.

5.3.2 Polarized spherical harmonics. As discussed in the previous section, we define our polarized SH by combin-
ing spin-0 and spin-2 SH with real coefficient formulation.
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Proposition 5.4: Polarized spherical harmonics

With an index set
𝐼PSH =

{
(𝑙,𝑚, 𝑝) ∈ Z2 | |𝑚 | ≤ 𝑙, 0 ≤ 𝑝 < 4, and [if 𝑝 = 1, 2 then 𝑙 ≥ 2]

}
, (120)

↔
𝑌𝑙𝑚𝑝 ’s are an orthonormal basis for the linear space of Stokes vector fields

{
𝑓 : Ŝ2 → S�̂�

}
over the scalar

R, where

↔
𝑌𝑙𝑚0 (�̂�) =


𝑌𝑅
𝑙𝑚

(�̂�)
0
0
0

 ®F𝜃𝜙 (�̂� )

,
↔
𝑌𝑙𝑚1 (�̂�) =


0

ℜ [2𝑌𝑙𝑚 (�̂�)]
ℑ [2𝑌𝑙𝑚 (�̂�)]

0

 ®F𝜃𝜙 (�̂� )

,
↔
𝑌𝑙𝑚2 (�̂�) =


0

−ℑ [2𝑌𝑙𝑚 (�̂�)]
ℜ [2𝑌𝑙𝑚 (�̂�)]

0

 ®F𝜃𝜙 (�̂� )

,
↔
𝑌𝑙𝑚3 (�̂�) =


0
0
0

𝑌𝑅
𝑙𝑚

(�̂�)

 ®F𝜃𝜙 (�̂� )

.

(121)

Note that it can be rewritten as
↔
𝑌𝑙𝑚𝑝 = 𝛿𝑝0𝑌

𝑅
𝑙𝑚

(�̂�) ⊕
(
𝛿𝑝1

↔
𝑌𝑙𝑚1 + 𝛿𝑝2

↔
𝑌𝑙𝑚2

)
⊕ 𝛿𝑝3𝑌

𝑅
𝑙𝑚
. Also note that taking spin-2

Stokes vector from
↔
𝑌𝑙𝑚1 and

↔
𝑌𝑙𝑚2,

↔
𝑌𝑙𝑚 =

↔
𝑌𝑙𝑚1 and 𝑖

↔
𝑌𝑙𝑚 =

↔
𝑌𝑙𝑚2. The following formula is useful to derive our

linear operator formulations through a few equations rather than enumerating each indices 𝑝𝑖 and 𝑝𝑜 . Using
Equation (116), for 𝑝 = 1, 2,

↔
𝑌𝑙𝑚𝑝 = 0 ⊕

[
𝑖𝑝−1

2𝑌𝑙𝑚
]
®F𝜃𝜙 ⊕ 0. (122)

5.4 Rotation of Polarized Spherical Harmonics
Here, we provide the statement describing the PSH coefficient matrices of rotations on Stokes vector fields and
its proof.

Proposition 5.5: Rotation coefficients of PSH

The coefficient matrices of a rotation transform ®𝑅 ∈ −→
𝑆𝑂 (3) acting on the function space of Stokes vector

fields, ®𝑅F , is evaluated as follows.

Mat
[〈↔
𝑌𝑙𝑜𝑚𝑜𝑝𝑜 ,

®𝑅F
[↔
𝑌𝑙𝑖𝑚𝑖𝑝𝑖

]〉
F
| 𝑝0, 𝑝𝑖 = 0, · · · , 3

]

= 𝛿𝑙𝑖𝑙𝑜



𝐷
𝑙,𝑅
𝑚𝑜𝑚𝑖

(
®𝑅
)

0 0 0

0 ℜ𝐷𝑙,𝐶
𝑚𝑜𝑚𝑖

(
®𝑅
)

−ℑ𝐷𝑙,𝐶
𝑚𝑜𝑚𝑖

(
®𝑅
)

0

0 ℑ𝐷𝑙,𝐶
𝑚𝑜𝑚𝑖

(
®𝑅
)

ℜ𝐷𝑙,𝐶
𝑚𝑜𝑚𝑖

(
®𝑅
)

0

0 0 0 𝐷
𝑙,𝑅
𝑚𝑜𝑚𝑖

(
®𝑅
)


= 𝛿𝑙𝑖𝑙𝑜


𝐷
𝑙,𝑅
𝑚𝑜𝑚𝑖

(
®𝑅
)

01×2 0

02×1 R2×2
(
𝐷
𝑙,𝐶
𝑚𝑜𝑚𝑖

(
®𝑅
))

02×1

0 01×2 𝐷
𝑙,𝑅
𝑚𝑜𝑚𝑖

(
®𝑅
)

.

(123)
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Proof: Relation between spin-weighted spherical harmonics and Wigner-D matrices:

𝐷𝑙
𝑚,−𝑠 (𝜙, 𝜃,𝜓 ) = (−1)𝑠

√︂
4𝜋

2𝑙 + 1 𝑠𝑌
∗
𝑙𝑚

(𝜃, 𝜙) 𝑒𝑠𝑖𝜓 . (124)

Using rotation matrices and 𝑧:

𝐷𝑙
𝑚,−𝑠

(
®𝑅
)
= (−1)𝑠

√︂
4𝜋

2𝑙 + 1 𝑠𝑌
∗
𝑙𝑚

(
®𝑅𝑧
)
𝑒
𝑠𝑖𝛾𝑧𝑦𝑧

(
®𝑅
)
, (125)

where 𝛾𝑧𝑦𝑧
(
®𝑅
)
indicates an angle 𝛾 such that ®𝑅 = ®𝑅𝑧𝑔 �̂�𝑔𝑧𝑔 (𝛼, 𝛽,𝛾).

Rotated basis can be evaluated as:[(
®𝑅F

↔
𝑌𝑙𝑚𝑝

) (
®𝑅′𝑧

)] ®𝑅′®F
=

[↔
𝑌𝑙𝑚𝑝

(
®𝑅−1 ®𝑅′𝑧

)] ®𝑅−1 ®𝑅′®F
=

√︂
2𝑙 + 1

4𝜋
R2

[
𝑖𝑝−1𝐷𝑙∗

𝑚,−2

(
®𝑅−1 ®𝑅′

)]
(126)

〈↔
𝑌𝑙 ′𝑚′𝑝′ , ®𝑅F

[↔
𝑌𝑙𝑚𝑝

]〉
=

√︁
(2𝑙 + 1) (2𝑙 ′ + 1)

8𝜋2 ℜ
∫
𝑆𝑂 (3)

𝑖𝑝−𝑝
′
𝐷𝑙 ′
𝑚′,−2 (𝑆) 𝐷𝑙∗

𝑚,−2
(
𝑅−1𝑆

)
d𝑆

= 𝛿𝑙𝑙 ′𝛿𝑚𝑚′ℜ
[
𝑖𝑝−𝑝

′
𝐷𝑙∗
𝑚𝑚′

(
𝑅−1) ] = 𝛿𝑙𝑙 ′𝛿𝑚𝑚′ℜ

[
𝑖𝑝−𝑝

′
𝐷𝑙
𝑚′𝑚 (𝑅)

]
= 𝛿𝑙𝑙 ′𝛿𝑚𝑚′

(
R2×2 ◦ 𝐷𝑙

𝑚′𝑚 (𝑅)
)
𝑝′𝑝

.

(127)

See also Boyle [2013]. □

5.5 Linear Operators (pBRDF, Radiance Transfer)
A linear operator on Stokes fields is characterized as a function of two directions into Mueller spaces.

Definition 5.6: Linear operators and kernels

Suppose there is a Mueller transform field
↔
𝐾 : S2 × S2 → M�̂�𝑖→�̂�𝑜

. The linear operator of the kernel
↔
𝐾 ,

denoted by
↔
𝐾F ∈ L

(
F

(
Ŝ2,S�̂�𝑖

)
, F

(
Ŝ2,S�̂�𝑜

))
, is defined as follows:

∀↔
𝑠 ∈ F

(
Ŝ2,S�̂�

)
,

↔
𝐾F

[↔
𝑠
]
(�̂�𝑖 ) =

∫
Ŝ2

↔
𝐾 (�̂�𝑖 , �̂�𝑜 ) ↔

𝑠 (�̂�𝑖 ) d�̂�𝑖 . (128)

If a linear operator
↔
𝐾F is given first, a Mueller field

↔
𝐾 satisfying the above equation is called the kernel of

the operator
↔
𝐾F .

A linear operator on Stokes fields can also be written as a function of two rotation transforms, similar to
rotation forms for Stokes vector fields.
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Definition 5.7: Rotation form of a Mueller transform field

The rotation form of the Mueller transform field
↔
𝐾 : S2 ×S2 → M�̂�𝑖→�̂�𝑜

(or the rotation form of the operator
↔
𝐾F) is defined as:

K̃ :
−→
𝑆𝑂 (3) × −→

𝑆𝑂 (3) → R4×4,

�̃�

(
®𝑅𝑖 , ®𝑅𝑜

)
=

[↔
𝐾

(
®𝑅𝑖𝑧, ®𝑅𝑜𝑧

)] ®𝑅𝑖 ®F𝑒→®𝑅𝑜 ®F𝑒
.

(129)

Conversely, when a function K̃ :
−→
𝑆𝑂 (3) × −→

𝑆𝑂 (3) → R4×4 is given, it can be the rotation form of a Mueller
transform field if and only if it satisfies the following constraints:

�̃�

(
®𝑅𝑖 ®𝑅𝑧 (𝜓1) , ®𝑅𝑜 ®𝑅𝑧 (𝜓2)

)
= R1:2 (−2𝜓2) �̃�

(
®𝑅𝑖 , ®𝑅𝑜

)
R1:2 (2𝜓1) . (130)

We found that applying a linear operator to a Stokes vector field can be done in rotation forms of the Mueller
transform field and the Stokes vector field.

Proposition 5.8: Applying linear operator in rotation forms

↔
𝑓 : Ŝ2 → S�̂� and

↔
𝐾 : Ŝ2×Ŝ2 → M�̂�𝑖→�̂�𝑜

are a Stokes vector field andMueller transform field, respectively.
The rotation forms of

↔
𝑓 and

↔
𝐾 are denoted by and M, respectively. Then the rotation form of

↔
𝐾F

[ ↔
𝑓

]
can

be evaluated as follows.
g
(
®𝑅𝑜
)
=

1
2𝜋

∫
−→
𝑆𝑂 (3)

K
(
®𝑅𝑖 , ®𝑅𝑜

)
f
(
®𝑅𝑖
)

d ®𝑅𝑖 ,

where g denotes the rotation form of the resulting Stokes vector field.

Proof: By definition g is obtained as:

g
(
®𝑅𝑜
)
=

[↔
𝐾F

[ ↔
𝑓

] (
®𝑅𝑜𝑧𝑔

)] ®𝑅𝑜 ®F𝑔
.

The term inside [·] can be obtained as follows using the integral conversion in Equation (15):∫
Ŝ2

↔
𝐾

(
�̂�𝑖 , ®𝑅𝑜𝑧𝑔

) ↔
𝑓 (�̂�𝑖 ) d�̂�𝑖 =

1
2𝜋

∫
−→
𝑆𝑂 (3)

↔
𝐾

(
®𝑅𝑖𝑧𝑔, ®𝑅𝑜𝑧𝑔

) ↔
𝑓

(
®𝑅𝑖𝑧𝑔

)
d ®𝑅𝑖 .

Note that the integrand on the right hand side is
[
K
(
®𝑅𝑖 , ®𝑅𝑜

)
f
(
®𝑅𝑖
)]

®𝑅𝑜 ®F𝑔
. Substituting all equations into

the first one,
g
(
®𝑅𝑜
)
=

1
2𝜋

∫
−→
𝑆𝑂 (3)

K
(
®𝑅𝑖 , ®𝑅𝑜

)
f
(
®𝑅𝑖
)

d ®𝑅𝑖 , (131)

which also yields
↔
𝑔

(
®𝑅𝑜𝑧𝑔

)
=

1
2𝜋

[∫
−→
𝑆𝑂 (3)

K
(
®𝑅𝑖 , ®𝑅𝑜

)
f
(
®𝑅𝑖
)

d ®𝑅𝑖
]
®𝑅𝑜 ®F𝑔

. (132)

□
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Definition 5.9: Complex form of a Mueller transform field

The complex form of a Mueller transform field
↔
𝐾 : S2 × S2 → M�̂�𝑖→�̂�𝑜

is defined as ten functions
�̃�0 |3,0 |3 : Ŝ2 × Ŝ2 → R and �̃�0 |3,p, �̃�p,0 |3, �̃�ppi, �̃�ppc : Ŝ2 × Ŝ2 → C which satisfy:

[↔
𝐾 (�̂�𝑖 , �̂�𝑜 )

] ®F𝜃𝜙 (�̂�𝑖 )→®F𝜃𝜙 (�̂�𝑜 )
=


�̃�00 R2

(
�̃�0p

)𝑇
�̃�03

R2
(
�̃�p0

)
R2×2

(
�̃�ppi

)
+ R2×2

(
�̃�ppc

)
J R2

(
�̃�p3

)
�̃�30 R2

(
�̃�3p

)𝑇
�̃�33


. (133)

Note that we omit the variables (�̂�𝑖 , �̂�𝑜 ) for each �̃� component for simplicity.

In Definition 5.9, each component should satisfy the following quantities and functions on the rotation group,
which satisfy the following can be complex forms of a Mueller transform field, conversely.

�̃�0 |3,𝑝
(
®𝑅𝑖 ®𝑅𝑧 (𝜓 ) , ®𝑅𝑜

)
= �̃�0 |3,𝑝

(
®𝑅𝑖 , ®𝑅𝑜

)
𝑒−2𝜓𝑖 (134)

�̃�𝑝,0 |3
(
®𝑅𝑖 , ®𝑅𝑜 ®𝑅𝑧 (𝜓 )

)
= �̃�𝑝,0 |3

(
®𝑅𝑖 , ®𝑅𝑜

)
𝑒−2𝜓𝑖 (135)

�̃�𝑝𝑝𝑎

(
®𝑅𝑖 ®𝑅𝑧 (𝜓1) , ®𝑅𝑜 ®𝑅𝑧 (𝜓2)

)
= �̃�𝑝𝑝𝑎

(
®𝑅𝑖 , ®𝑅𝑜

)
𝑒−2(𝜓2−𝜓1 )𝑖 (136)

�̃�𝑝𝑝𝑏

(
®𝑅𝑖 ®𝑅𝑧 (𝜓1) , ®𝑅𝑜 ®𝑅𝑧 (𝜓2)

)
= �̃�𝑝𝑝𝑎

(
®𝑅𝑖 , ®𝑅𝑜

)
𝑒−2(𝜓2+𝜓1 )𝑖 (137)

The coefficient matrix of a linear operator on Stokes vector fields can be defined and evaluated by 16 integral
formulae obtained by directly extending Proposition 1.4. However, we found that they can be evaluated with
fewer formulae using the complex form of the Mueller transform field.

Proposition 5.10: Coefficient matrix using the complex form of a Mueller field

The polarized spherical harmonics coefficients M𝑙𝑜𝑚𝑜𝑝𝑝 ,𝑙𝑖𝑚𝑖𝑝𝑖 B
〈↔
𝑌𝑙𝑜𝑚𝑜𝑝𝑝 ,

↔
𝑀F

[↔
𝑌𝑙𝑖𝑚𝑖𝑝𝑖

]〉
of a linear opera-

tor with the kernel
↔
𝑀 : S2 × S2 → M�̂�𝑖→�̂�𝑜

is evaluated using the complex form of
↔
𝑀 as follows:

M𝑙𝑜𝑚𝑜0 |3,𝑙𝑖𝑚𝑖0 |3 =

∫
Ŝ2×Ŝ2

𝑌𝑅
𝑙𝑜𝑚𝑜

(�̂�𝑜 ) �̃�0 |3,0 |3 (�̂�𝑖 , �̂�𝑜 ) 𝑌𝑅
𝑙𝑖𝑚𝑖

(�̂�𝑖 ) d�̂�𝑖d�̂�𝑜 ,[
M𝑙𝑜𝑚𝑜0 |3,𝑙𝑖𝑚𝑖1 M𝑙𝑜𝑚𝑜0 |3,𝑙𝑖𝑚𝑖2

]
= R2

(∫
Ŝ2×Ŝ2

𝑌𝑅
𝑙𝑜𝑚𝑜

(�̂�𝑜 ) �̃�0 |3,p (�̂�𝑖 , �̂�𝑜 ) 2𝑌
∗
𝑙𝑖𝑚𝑖

(�̂�𝑖 ) d�̂�𝑖d�̂�𝑜

)𝑇
,[

M𝑙𝑜𝑚𝑜1,𝑙𝑖𝑚𝑖0 |3
M𝑙𝑜𝑚𝑜2,𝑙𝑖𝑚𝑖0 |3

]
= R2

(∫
Ŝ2×Ŝ2

2𝑌
∗
𝑙𝑜𝑚𝑜

(�̂�𝑜 ) �̃�p,0 |3 (�̂�𝑖 , �̂�𝑜 ) 𝑌𝑅
𝑙𝑖𝑚𝑖

(�̂�𝑖 ) d�̂�𝑖d�̂�𝑜

)
,[

M𝑙𝑜𝑚𝑜1,𝑙𝑖𝑚𝑖1 M𝑙𝑜𝑚𝑜1,𝑙𝑖𝑚𝑖2
M𝑙𝑜𝑚𝑜2,𝑙𝑖𝑚𝑖1 M𝑙𝑜𝑚𝑜2,𝑙𝑖𝑚𝑖2

]
= R2×2

(∫
Ŝ2×Ŝ2

2𝑌
∗
𝑙𝑜𝑚𝑜

(�̂�𝑜 ) �̃�ppi (�̂�𝑖 , �̂�𝑜 ) 2𝑌𝑙𝑖𝑚𝑖
(�̂�𝑖 ) d�̂�𝑖d�̂�𝑜

)
+ R2×2

(∫
Ŝ2×Ŝ2

2𝑌
∗
𝑙𝑜𝑚𝑜

(�̂�𝑜 ) �̃�ppc (�̂�𝑖 , �̂�𝑜 ) 2𝑌
∗
𝑙𝑖𝑚𝑖

(�̂�𝑖 ) d�̂�𝑖d�̂�𝑜

)
J.

(138)
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Proof: Proof can be done by using the definition of the complex forms. Here, we clarify derivation steps for
spin 2-to-2 components, 𝑝𝑖 , 𝑝𝑜 = 1, 2, which additionally utilize our complex pair separation and complex
indexing formulae in Equations (118) and (119) as

f [𝑙𝑖𝑚𝑖𝑝𝑖 , 𝑙𝑜𝑚𝑜𝑝𝑜 ] =
〈↔
𝑌𝑙𝑜𝑚𝑜𝑝𝑜 ,

↔
𝑀

↔
𝑌𝑙𝑖𝑚𝑖𝑝𝑖

〉
= ℜ

∫
𝑆2×𝑆2

𝑖1−𝑝𝑜 2𝑌
∗
𝑙𝑜𝑚𝑜

(�̂�𝑜 )
[
𝑖𝑝𝑖−1�̃�ppi 2𝑌𝑙𝑖𝑚𝑖

+ 𝑖1−𝑝𝑖 �̃�ppi 2𝑌
∗
𝑙𝑖𝑚𝑖

]
d�̂�𝑖d�̂�𝑜

= R2×2
[∫

𝑆2×𝑆2
�̃�ppi (�̂�𝑖 , �̂�𝑜 ) 2𝑌

∗
𝑙𝑜𝑚𝑜

(�̂�𝑜 ) 2𝑌𝑙𝑖𝑚𝑖
(�̂�𝑖 ) d�̂�𝑖d�̂�𝑜

]
+ R2×2

[∫
𝑆2×𝑆2

�̃�ppc (�̂�𝑖 , �̂�𝑜 ) 2𝑌
∗
𝑙𝑜𝑚𝑜

(�̂�𝑜 ) 2𝑌
∗
𝑙𝑖𝑚𝑖

(�̂�𝑖 ) d�̂�𝑖d�̂�𝑜

]
J.

(139)

□

5.6 Reflection Operator
To adapt Section 2.7 to our PSH, we first define a reflection operator 𝑇S ∈ L (S,S) with respect to 𝑧𝑔 as follows.[

𝑇S
(↔
𝑠
) ] ®𝑅𝑧𝑦𝑧 (𝛼,𝛽,𝛾 )®F𝑔

=

( [↔
𝑠
] ®𝑅𝑧𝑦𝑧 (𝛼,𝜋−𝛽,0 |𝜋−𝛾 )®F𝑔 )∗

. (140)

Note that it can be understood by flipping the double-sided arrow, which visualizes a Stokes vector. It is also
equivalent to perfect mirror reflection by the dielectric material of infinite index of refraction.

It can also act on Stokes vector fields, and its PSH coefficients are obtained in the following steps. Using ZYZ
Euler angles for rotations,〈↔

𝑌𝑙𝑚,𝑇F
[↔
𝑌𝑙 ′𝑚′

]〉
=

∫
S2

2𝑌
∗
𝑙𝑚

(𝛼, 𝛽,𝛾) 2𝑌
∗
𝑙 ′𝑚′ (𝛼, 𝜋 − 𝛽, 0|𝜋 − 𝛾) d�̂� . (141)

Note that it is constant for 𝛾 . For Wigner-D form:√︂
(2𝑙 + 1) (2𝑙 ′ + 1)

16𝜋2
1

2𝜋

∫
𝑆𝑂 (3)

𝐷𝑙
𝑚,−2 (𝛼, 𝛽,𝛾) 𝐷𝑙 ′

𝑚′,−2 (𝛼, 𝜋 − 𝛽, 0|𝜋 − 𝛾) d ®𝑅. (142)

By symmetry of small-D 𝑑𝑙
𝑚𝑚′ and Wigner-D,

𝐷𝑙 ′
𝑚′,−2 (𝛼, 𝜋 − 𝛽, 0|𝜋 − 𝛾) = (−1)𝑙 ′+𝑚′

𝐷𝑙 ′
𝑚′,2 (𝛼, 𝛽,𝛾) = (−1)𝑙 ′ 𝐷𝑙 ′∗

−𝑚′,−2 (𝛼, 𝛽,𝛾) . (143)

Substituting the above, the orthogonality of Wigner D-functions yields:〈↔
𝑌𝑙𝑚,𝑇F

[↔
𝑌𝑙 ′𝑚′

]〉
= (−1)𝑙 𝛿𝑙𝑙 ′𝛿𝑚,−𝑚′ . (144)

5.7 Triple Product of SWSH
There are special symbols to represent the SWSH triple product. Spin-0 SH can be written as:∫

Ŝ2
𝑌 ∗
𝑙1𝑚1

𝑌𝑙2𝑚2𝑌𝑙3𝑚3 d�̂� = (−1)𝑚1

√︂
(2𝑙1 + 1) (2𝑙2 + 1) (2𝑙3 + 1)

4𝜋

(
𝑙1 𝑙2 𝑙3

−𝑚1 𝑚2 𝑚3

) (
𝑙1 𝑙2 𝑙3
0 0 0

)
, (145)
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where the symbol
(
𝑙1 𝑙2 𝑙3

−𝑚1 𝑚2 𝑚3

)
is called aWigner 3-j symbol. Then the triple product of two spin-2 SH and

one spin-0 SH, which is a spin-SH coefficient of scalar multiplication of another spin-2 SH by a spin-0 SH, is
written as:∫

Ŝ2
2𝑌

∗
𝑙1𝑚1

𝑌𝑙2𝑚2 2𝑌𝑙3𝑚3 d�̂� = (−1)𝑚1

√︂
(2𝑙1 + 1) (2𝑙2 + 1) (2𝑙3 + 1)

4𝜋

(
𝑙1 𝑙2 𝑙3

−𝑚1 𝑚2 𝑚3

) (
𝑙1 𝑙2 𝑙3
−2 0 2

)
. (146)

We do not explicitly introduce what Wigner 3-j symbols are and how we can compute them. However, note
that the above two equations have the same kind of special symbols, which only depend on integer indices.
Since existing PRT methods have been used to spin-0 triple product, we can also compute spin-2 SH from their
implementation.

5.8 Convolution on Stokes Vectors Fields
In this section, we derive polarized spherical convolution as a rotation equivariant linear operator on Stokes
vector fields.

Definition 5.11: Rotation equivariant opeartor

A linear operator 𝐾F ∈ L
(
F

(
Ŝ2,S

)
, F

(
Ŝ2,S

))
on Stokes vector fields called rotation equivariant if

®𝑅F
(
𝐾F

[ ↔
𝑓

] )
= 𝐾F

[
®𝑅F

↔
𝑓

]
holds for any ®𝑅 ∈ −→

𝑆𝑂 (3) and
↔
𝑓 : Ŝ2 → S�̂� .

If such an operator has a kernel, Mueller transform field, then rotation equivariant can be stated as follows.

Proposition 5.12: Rotation equivariant for operator kernel

Suppose there is a Mueller transform field
↔
𝐾 : S2 × S2 → M�̂�𝑖→�̂�𝑜

. The linear operator of the kernel
↔
𝐾 ,

↔
𝐾F is rotation equivariant if and only if ®𝑅F

[↔
𝐾

]
=

↔
𝐾 for any ®𝑅 ∈ −→

𝑆𝑂 (3).

The above condition ®𝑅F
[↔
𝐾

]
=

↔
𝐾 can be written using the rotation form K :

−→
𝑆𝑂 (3) × −→

𝑆𝑂 (3) → R4×4 of the
Mueller transform as follows:

K
(
®𝑅 ®𝑅𝑖 , ®𝑅 ®𝑅𝑜

)
= K

(
®𝑅𝑖 , ®𝑅𝑜

)
, ∀®𝑅, ®𝑅𝑖 , ®𝑅𝑜 ∈ −→

𝑆𝑂 (3) . (147)

Then, we finally obtain a minimal form of the rotation equivariant (operator) kernel. It can be considered
an extension that a rotation equivariant operator on scalar fields has been characterized by a simple azimuthal
symmetric scalar field. However, we have more information in the codomain of the polarized convolution kernel.

Proposition 5.13: Minimal form of a rotation equivariant operator kernel

AMueller transform field
↔
𝐾 : S2 ×S2 → M�̂�𝑖→�̂�𝑜

which is a kernel of rotation equivariant linear operator
can be characterized by a Mueller transform function of a single angle as K

(
®𝐼 , ®𝑅�̂�𝑔 (𝛽)

)
, where K denotes

the rotation form of
↔
𝐾 .
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Proof: Using rotation equivariance K
(
®𝑅 ®𝑅𝑖 , ®𝑅 ®𝑅𝑜

)
= K

(
®𝑅𝑖 , ®𝑅𝑜

)
, we get:

K
(
®𝑅𝑖 , ®𝑅𝑜

)
= K

(
®𝐼 , ®𝑅−1

𝑖
®𝑅𝑜
)
.

With ZYZ Euler angle ®𝑅𝑧𝑔 �̂�𝑔𝑧𝑔 (𝛼, 𝛽,𝛾) = ®𝑅−1
𝑖

®𝑅𝑜 and the constraint of rotation forms of Mueller transform
fields,

K
(
®𝐼 , ®𝑅−1

𝑖
®𝑅𝑜
)
= R1:2 (−2𝛾) K

(
®𝐼 , ®𝑅�̂�𝑔 (𝛽)

)
R1:2 (−2𝛼) . (148)

□

Note that K
(
®𝐼 , ®𝑅�̂�𝑔 (𝛽)

)
C k (𝛽) ∈ R4×4 is the polarized convolution kernel which also introduced in our main

paper. Equation (148) yields its constraints by substituting 𝛽 = 0 and 𝛽 = 𝜋 and using ®𝑅𝑧𝑦𝑧 (𝛼, 0, 𝛾) = ®𝑅𝑧 (𝛼 + 𝛾)
and ®𝑅𝑧𝑦𝑧 (𝛼, 𝜋,𝛾) = ®𝑅𝑧𝑦 (𝛼 − 𝛾, 𝜋):

k (0) = R1:2 (𝜓 ) k (0) R1:2 (−𝜓 ) ,
k (𝜋) = R1:2 (𝜓 ) k (𝜋) R1:2 (𝜓 ) ,

(149)

for any𝜓 . A particular corollary of it is that the isomorphic and conjugation parts of spin 2-to-2 submatrix of k
become zero at 𝜃 = 𝜋 and 𝜃 = 0, respectively. These constraints are highly related to each subspace of PSH bases
for each submatrix of convolution kernels.

5.9 Convolution in Polarized Spherical Harmonics
Note that the following lemma is useful. It comes from Wigner D-function identities.

Lemma 5.13.1. For any indices 𝑙𝑖 ,𝑚𝑖 , and𝑚′
𝑖 for 𝑖 = 1, 2 in the valid range and rotation transforms ®𝑆, ®𝑇 ∈ −→

𝑆𝑂 (3),∫
−→
𝑆𝑂 (3)

𝐷
𝑙1
𝑚1𝑚

′
1

(
®𝑅 ®𝑆
)
𝐷
𝑙2∗
𝑚2𝑚

′
2

(
®𝑅 ®𝑇

)
d𝜇

(
®𝑅
)
=

8𝜋2

2𝑙1 + 1
𝛿 (𝑙1𝑚1 ) (𝑙2𝑚2 )𝐷

𝑙1∗
𝑚′

1𝑚
′
2

(
®𝑆−1 ®𝑇

)
=

8𝜋2

2𝑙1 + 1
𝛿 (𝑙1𝑚1 ) (𝑙2𝑚2 )𝐷

𝑙1
𝑚′

2𝑚
′
1

(
®𝑇 −1 ®𝑆

)
.

(150)

Spin 0-to-2. Starting from the definition, an entry of the coefficient matrix of a rotation equivariant linear
operator on Stokes vector fields

↔
𝐾F is obtained as follows. Note that in this section, �̃� denotes the complex form

of the Mueller transform
↔
𝐾 , and ⟨·, ·⟩C denotes the inner product on the Stokes space over scalar C.

K𝑙𝑜𝑚𝑜𝑝𝑜 ,𝑙𝑖𝑚𝑖0 =
〈↔
𝑌𝑙𝑜𝑚𝑜𝑝𝑜 ,

↔
𝐾F

[
𝑌𝑅
𝑙𝑖𝑚𝑖

]〉
=

∬
Ŝ2×Ŝ2

〈↔
𝑌𝑙𝑜𝑚𝑜𝑝𝑜 (�̂�𝑜 ) ,

↔
𝐾p0 (�̂�𝑖 , �̂�𝑜 ) 𝑌𝑅

𝑙𝑖𝑚𝑖
(�̂�𝑖 )

〉
S

d�̂�𝑖d�̂�𝑜 =

=

∫ 𝜋

0

∫
−→
𝑆𝑂 (3)

[
↔
𝑌𝑙𝑜𝑚𝑜𝑝𝑜

(
®𝑅 ®𝑅𝑦

(
𝜃

2

)
𝑧

)] ®𝑅 ®𝑅𝑦 ( 𝜃
2 )®F𝑔

·
[
↔
𝐾p0

(
®𝑅 ®𝑅𝑦

(
−𝜃

2

)
𝑧, ®𝑅 ®𝑅𝑦

(
𝜃

2

)
𝑧

)
𝑌𝑅
𝑙𝑖𝑚𝑖

(
®𝑅 ®𝑅𝑦

(
−𝜃

2

)
𝑧

)] ®𝑅 ®𝑅𝑦 ( 𝜃
2 )®F𝑔

d ®𝑅 sin𝜃d𝜃 .

(151)

Using the relation between spin-weighted spherical harmonics and Wigner-D functions in Definition 5.2,
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Eq. (151) = 𝐵𝑙𝑖𝑙𝑜ℜ
[
𝑖1−𝑝𝑜

∫ 𝜋

0

∫
−→
𝑆𝑂 (3)

𝐷
𝑙𝑜
𝑚𝑜 ,−2

(
®𝑅 ®𝑅𝑦

(
𝜃

2

))
�̃�p0

(
®𝑅 ®𝑅𝑦

(
−𝜃

2

)
, ®𝑅 ®𝑅𝑦

(
𝜃

2

))
𝐷
𝑙𝑖 ,𝑅
𝑚𝑖0

(
®𝑅 ®𝑅𝑦

(
−𝜃

2

))
d ®𝑅 sin𝜃d𝜃

]
C 𝐵𝑙𝑖𝑙𝑜ℜ

[
𝑖1−𝑝𝑜 𝐼1

]
,

(152)

where 𝐵𝑙𝑖𝑙𝑜 B
√

(2𝑙𝑖+1) (2𝑙𝑖+1)
4𝜋 , and we are denoting the integral term as 𝐼1 for simplicity of later steps. In the

integrand of 𝐼1, rotation equivariance of �̃�p0 yields:

�̃�p0

(
®𝑅 ®𝑅𝑦

(
−𝜃

2

)
, ®𝑅 ®𝑅𝑦

(
𝜃

2

))
= �̃�p0

(
®𝐼 , ®𝑅𝑦 (𝜃 )

)
. (153)

We observe that it is independent of ®𝑅 so that it can go outside of the integral over ®𝑅. Then, using the relation
between real and complex Wigner-D functions in Equation (60), 𝐼1 becomes:

𝐼1 =

∫ 𝜋

0
�̃�p0

(
®𝐼 , ®𝑅𝑦 (𝜃 )

) ∫
−→
𝑆𝑂 (3)

𝐷
𝑙𝑜
𝑚𝑜 ,−2

(
®𝑅 ®𝑅𝑦

(
𝜃

2

)) ∑︁
𝑚𝑐=±𝑚𝑖

(
𝑀𝐶→𝑅

𝑚𝑖𝑚𝑐

)∗
𝐷
𝑙𝑖
𝑚𝑐0

(
®𝑅 ®𝑅𝑦

(
−𝜃

2

))
d ®𝑅 sin𝜃d𝜃 . (154)

Thenwe can use Lemma 5.13.1 to the inner integral with a symmetry ofWigner-D functions𝐷𝑙𝑖
𝑚𝑐0 = (−1)𝑚𝑐 𝐷

𝑙𝑖 ,∗
−𝑚𝑐0.

𝐼1 = 𝛿𝑙𝑖𝑙𝑜
2𝜋
𝐵𝑙𝑖𝑙𝑖

∫ 𝜋

0
�̃�p0

(
®𝐼 , ®𝑅𝑦 (𝜃 )

) ∑︁
𝑚𝑐=±𝑚𝑖

𝛿𝑚𝑜 ,−𝑚𝑐
(−1)𝑚𝑐

(
𝑀𝐶→𝑅

𝑚𝑖𝑚𝑐

)∗
𝐷
𝑙𝑖
0,−2

(
®𝑅𝑦 (𝜃 )

)
sin𝜃d𝜃 . (155)

Here, we observe that 𝐼1 = 0 if |𝑚𝑖 | = |𝑚𝑜 |, terms containing𝑚𝑖 ,𝑚𝑜 , and𝑚𝑠 , denoted by Up0, is evaluated as
follows.

Up0 B Mat

[ ∑︁
𝑚𝑐=±𝑚𝑖

𝛿𝑚𝑜 ,−𝑚𝑐
(−1)𝑚𝑐

(
𝑀𝐶→𝑅

𝑚𝑖𝑚𝑐

)∗
| 𝑚𝑜 ,𝑚𝑖 = + |𝑚 | ,− |𝑚 |

]
= (−1)𝑚

[
0 1
1 0

]
1
√

2

[
1 𝑖

(−1)𝑚 − (−1)𝑚 𝑖

]
=

1
√

2

[
1 −𝑖

(−1)𝑚 (−1)𝑚 𝑖

]
. (156)

Then, combining Equations (155) and (156) and converting the Wigner-D to a spin-weighted spherical harmonics
conversely, we get

𝐼1 = 𝛿 (𝑙𝑖 |𝑚𝑖 | ) (𝑙𝑜 |𝑚𝑜 | )𝑈
p0
𝑚𝑜𝑚𝑖

2𝜋
𝐵𝑙𝑖𝑙𝑖𝑙𝑖

∫ 2𝜋

0

〈↔
𝑌𝑙0 (𝜃, 0) ,

↔
𝐾p0

(
𝑧𝑔, �̂�sph (𝜃, 0)

)〉
C

sin𝜃d𝜃 . (157)

We observe here that, similar to conventional convolution through scalar spherical harmonics, the only degree of
freedom comes from the order 𝑙 . Thus, we can define the convolution coefficient of the scalar-to-Stokes part of

↔
𝐾

as follows.
k𝑙,p0 = 2𝜋

∫ 𝜋

0

〈↔
𝑌𝑙0𝑝 (𝜃, 0) ,

↔
𝐾p0

(
𝑧𝑔, �̂�sph (𝜃, 0)

)〉
C

sin𝜃d𝜃 ∈ C, (158)

which can be considered as an inner product over the entire Ŝ2 as scalar SH convolution is. Note that we are
defining the convolution coefficient k𝑙,p0 as a complex number so that we will takeℜ in later steps.
Now we finally get the coefficient of the linear operator by combining Equations (152), (157), and (158).

K𝑙𝑜𝑚𝑜𝑝𝑜 ,𝑙𝑖𝑚𝑖0 = 𝛿 (𝑙𝑖 |𝑚𝑖 | ) (𝑙𝑜 |𝑚𝑜 | )

√︂
4𝜋

2𝑙𝑖 + 1
ℜ

(
𝑖1−𝑝𝑜𝑈

p0
𝑚𝑜𝑚𝑖

k𝑙,p0

)
, (159)

ACM Trans. Graph., Vol. 43, No. 4, Article 127. Publication date: July 2024.



127:50 • Shinyoung Yi, Donggun Kim, Jiwoong Na, Xin Tong, and Min H. Kim

where 𝑝𝑜 = 1, 2.

Spin 2-to-0. We can follow similar steps to scalar-Stokes components. The coefficient of the linear operator is:

K𝑙𝑜𝑚𝑜0,𝑙𝑖𝑚𝑖𝑝𝑖 =

〈
𝑌𝑅
𝑙𝑜𝑚𝑜

,
↔
𝐾F

[↔
𝑌𝑙𝑖𝑚𝑖𝑝𝑖

]〉
=

∬
Ŝ2×Ŝ2

𝑌𝑅
𝑙𝑜𝑚𝑜

(�̂�𝑜 )
〈↔
𝐾0p (�̂�𝑖 , �̂�𝑜 ) ,

↔
𝑌𝑙𝑖𝑚𝑖𝑝𝑖 (�̂�𝑖 )

〉
S

d�̂�𝑖d�̂�𝑜 =

=

∫ 𝜋

0

∫
−→
𝑆𝑂 (3)

𝑌𝑅
𝑙𝑜𝑚𝑜

(
®𝑅 ®𝑅𝑦

(
𝜃

2

)
𝑧

) [
↔
𝐾0p

(
®𝑅 ®𝑅𝑦

(
−𝜃

2

)
𝑧, ®𝑅 ®𝑅𝑦

(
𝜃

2

)
𝑧

)] ®𝑅 ®𝑅𝑦 (− 𝜃
2 )®F𝑔

·
[
↔
𝑌𝑙𝑖𝑚𝑖𝑝𝑖

(
®𝑅 ®𝑅𝑦

(
−𝜃

2

)
𝑧

)] ®𝑅 ®𝑅𝑦 (− 𝜃
2 )®F𝑔

d ®𝑅 sin𝜃d𝜃

= 𝐵𝑙𝑖𝑙𝑜ℜ
[
𝑖𝑝𝑖−1

∫ 𝜋

0

∫
−→
𝑆𝑂 (3)

𝐷
𝑙𝑜 ,𝑅
𝑚𝑜 ,0

(
®𝑅 ®𝑅𝑦

(
𝜃

2

))
�̃�0p

(
®𝐼 , ®𝑅𝑦 (𝜃 )

)
𝐷
𝑙𝑖 ,∗
𝑚𝑖 ,−2

(
®𝑅 ®𝑅𝑦

(
−𝜃

2

))
d ®𝑅 sin𝜃d𝜃

]
C 𝐵𝑙𝑖𝑙𝑜ℜ

[
𝑝𝑝𝑖−1𝐼2

]
.

(160)

Here, we denote the integral term by 𝐼2. Using the relation between real and complex Wigner-D functions in
Equation (60) followed by Lemma 5.13.1,

𝐼2 =

∫ 𝜋

0
�̃�0p

(
®𝐼 , ®𝑅𝑦 (𝜃 )

) ∫
−→
𝑆𝑂 (3)

∑︁
𝑚𝑐=±𝑚𝑜

(
𝑀𝐶→𝑅

𝑚𝑜𝑚𝑐

)∗
𝐷
𝑙𝑜
𝑚𝑐 ,0

(
®𝑅 ®𝑅𝑦

(
𝜃

2

))
𝐷
𝑙𝑖 ,∗
𝑚𝑖 ,−2

(
®𝑅 ®𝑅𝑦

(
−𝜃

2

))
d ®𝑅 sin𝜃d𝜃

= 𝛿𝑙𝑖𝑙𝑜
2𝜋
𝐵𝑙𝑖𝑙𝑖

∫ 𝜋

0
�̃�0p

(
®𝐼 , ®𝑅𝑦 (𝜃 )

) ∑︁
𝑚𝑐=±𝑚𝑜

𝛿𝑚𝑐𝑚𝑖

(
𝑀𝐶→𝑅

𝑚𝑜𝑚𝑐

)∗
𝐷
𝑙𝑖
−2,0

(
®𝑅𝑦 (𝜃 )

)
sin𝜃d𝜃 .

(161)

On the right-hand side, we can reduce the terms containing𝑚𝑐 , denoted by U0p as follows:

U0p B Mat

[ ∑︁
𝑚𝑐=±𝑚𝑜

𝛿𝑚𝑐𝑚𝑖

(
𝑀𝐶→𝑅

𝑚𝑜𝑚𝑐

)∗
| 𝑚𝑜 ,𝑚𝑖 = + |𝑚 | ,− |𝑚 |

]
= Mat

[(
𝑀𝐶→𝑅

𝑚𝑜𝑚𝑖

)∗
| 𝑚𝑜 ,𝑚𝑖 = + |𝑚 | ,− |𝑚 |

]
=

1
√

2

[
1 (−1)𝑚
𝑖 − (−1)𝑚 𝑖

]
. (162)

Combining Equations (161) and (162) yields:

𝐼2 = 𝛿 (𝑙𝑖 |𝑚𝑖 | ) (𝑙𝑜 |𝑚𝑜 | )𝑈
0p
𝑚𝑜𝑚𝑖

2𝜋
𝐵𝑙𝑖𝑙𝑖𝑙𝑖

∫ 𝜋

0
𝑌
𝐶,∗
𝑙,−2 (𝜃, 0)

〈
↔
𝐾0p

(
𝑧𝑔, �̂�sph (𝜃, 0)

)
,

[
1
0

]
®F𝑔

〉
C

sin𝜃d𝜃 . (163)

Now we can finally define the convolution coefficient of the Stokes-to-scalar part of
↔
𝐾 , denoted by k𝑙,0p, and

obtain the coefficient of a linear operator in terms of k𝑙,0p.

k𝑙,0p = 2𝜋
∫ 𝜋

0
𝑌
𝐶,∗
𝑙,−2 (𝜃, 0)

〈
↔
𝐾0p

(
𝑧𝑔, �̂�sph (𝜃, 0)

)
,

[
1
0

]
®F𝑔

〉
C

sin𝜃d𝜃 ∈ C, (164)

K𝑙𝑜𝑚𝑜0,𝑙𝑖𝑚𝑖𝑝𝑖 = 𝛿 (𝑙𝑖 |𝑚𝑖 | ) (𝑙𝑜 |𝑚𝑜 | )

√︂
4𝜋

2𝑙𝑖 + 1
ℜ

(
𝑖𝑝𝑖−1𝑈

0p
𝑚𝑜𝑚𝑖

k𝑙,0p
)
, (165)

where 𝑝𝑜 = 1, 2.

Spin 2-to-2. The coefficient of the linear operator is:
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K𝑙𝑜𝑚𝑜𝑝𝑜 ,𝑙𝑖𝑚𝑖𝑝𝑖 =

〈↔
𝑌𝑙𝑜𝑚𝑜𝑝𝑜 ,

↔
𝐾F

[↔
𝑌𝑙𝑖𝑚𝑖𝑝𝑖

]〉
=

∬
Ŝ2×Ŝ2

〈↔
𝑌𝑙𝑜𝑚𝑜𝑝𝑜 (�̂�𝑜 ) ,

↔
𝐾pp (�̂�𝑖 , �̂�𝑜 )

[↔
𝑌𝑙𝑖𝑚𝑖𝑝𝑖 (�̂�𝑖 )

]〉
S

d�̂�𝑖d�̂�𝑜 (166)

=

∫ 𝜋

0

∫
−→
𝑆𝑂 (3)

[↔
𝑌𝑙𝑜𝑚𝑜𝑝𝑜

(
®𝑅𝑜𝑧

)] ®F𝑜
·
[↔
𝐾pp

(
®𝑅𝑖𝑧, ®𝑅𝑜𝑧

)] ®F𝑖→®F𝑜 [↔
𝑌𝑙𝑖𝑚𝑖𝑝𝑖

(
®𝑅𝑖𝑧

)] ®F𝑜
d ®𝑅 sin𝜃d𝜃, (167)

where ®𝑅𝑖 B ®𝑅 ®𝑅𝑦
(
−𝜃

2

)
, ®𝑅𝑜 B ®𝑅 ®𝑅𝑦

(
𝜃
2

)
, ®F𝑖 B ®𝑅𝑖®F𝑔, and ®F𝑜 B ®𝑅𝑜®F𝑔. It can be rewritten in terms of Wigner-D

functions as:

K𝑙𝑜𝑚𝑜𝑝𝑜 ,𝑙𝑖𝑚𝑖𝑝𝑖 = 𝐵𝑙𝑖𝑙𝑜

∫ 𝜋

0

∫
−→
𝑆𝑂 (3)
R2

(
𝑖𝑝𝑜−1𝐷𝑙𝑜 ,∗

𝑚𝑜 ,−2

(
®𝑅𝑜
))𝑇

K̃pp

(
®𝑅𝑖 , ®𝑅𝑜

)
R2

(
𝑖𝑝𝑖−1𝐷𝑙𝑖 ,∗

𝑚𝑖 ,−2

(
®𝑅𝑖
))

d ®𝑅 sin𝜃d𝜃 . (168)

Here, we need an additional step that was not needed for scalar-to-Stokes and Stokes-to-scalar terms. Note that
2 × 2 matrix K̃ can be decompose into two terms K̃pp = R

2×2
(
�̃�ppi

)
+ R2×2

(
�̃�ppc

)
J. Then right two terms in the

integral in Equation (168) become as follows by Equation (114):

K̃pp

(
®𝑅𝑖 , ®𝑅𝑜

)
R2

(
𝑖𝑝𝑖−1𝐷𝑙𝑖 ,∗

𝑚𝑖 ,−2

(
®𝑅𝑖
))

= R2
(
𝑖𝑝𝑖−1�̃�ppi

(
®𝑅𝑖 , ®𝑅𝑜

)
𝐷
𝑙𝑖 ,∗
𝑚𝑖 ,−2

(
®𝑅𝑖
)
+ 𝑖1−𝑝𝑖 �̃�ppc

(
®𝑅𝑖 , ®𝑅𝑜

)
𝐷
𝑙𝑖
𝑚𝑖 ,−2

(
®𝑅𝑖
))
. (169)

Substituting this results into Equation (168),

K𝑙𝑜𝑚𝑜𝑝𝑜 ,𝑙𝑖𝑚𝑖𝑝𝑖 = 𝐵𝑙𝑖𝑙𝑜ℜ
[
𝑖𝑝𝑖−𝑝𝑜

∫ 𝜋

0

∫
−→
𝑆𝑂 (3)

𝐷
𝑙𝑜
𝑚𝑜 ,−2

(
®𝑅𝑜
)
�̃�ppi

(
®𝑅𝑖 , ®𝑅𝑜

)
𝐷
𝑙𝑖 ,∗
𝑚𝑖 ,−2

(
®𝑅𝑖
)

d ®𝑅 sin𝜃d𝜃
]

+ 𝐵𝑙𝑖𝑙𝑜ℜ
[
𝑖2−𝑝𝑖−𝑝𝑜

∫ 𝜋

0

∫
−→
𝑆𝑂 (3)

𝐷
𝑙𝑜
𝑚𝑜 ,−2

(
®𝑅𝑜
)
�̃�ppc

(
®𝑅𝑖 , ®𝑅𝑜

)
𝐷
𝑙𝑖
𝑚𝑖 ,−2

(
®𝑅𝑖
)

d ®𝑅 sin𝜃d𝜃
]

C 𝐵𝑙𝑖𝑙𝑜ℜ
[
𝑖𝑝𝑖−𝑝𝑜 𝐼3 + 𝑖2−𝑝𝑖−𝑝𝑜 𝐼4

]
.

(170)

Here, we denote two integral terms by 𝐼3 and 𝐼4, respectively. First, 𝐼3 can be evaluated similarly to previous
components.

𝐼3 = 𝛿 (𝑙𝑖𝑚𝑖 ) (𝑙𝑜𝑚𝑜 )
2𝜋
𝐵𝑙𝑖𝑙𝑖

∫ 𝜋

0
�̃�ppi

(
®𝐼 , ®𝑅𝑦 (𝜃 )

)
𝐷
𝑙𝑖
−2,−2

(
®𝑅𝑦 (𝜃 )

)
sin𝜃d𝜃 (171)

= 𝛿 (𝑙𝑖𝑚𝑖 ) (𝑙𝑜𝑚𝑜 )
2𝜋
𝐵𝑙𝑖𝑙𝑖𝑙𝑖

∫ 𝜋

0

〈
2𝑌 𝑙𝑖 ,−2 (𝜃, 0) , �̃�ppi

(
®𝐼 , ®𝑅𝑦 (𝜃 )

)〉
C

sin𝜃d𝜃 . (172)

Similarly, 𝐼4 is:

𝐼4 = 𝛿 (𝑙𝑖 ,−𝑚𝑖 ) (𝑙𝑜𝑚𝑜 ) (−1)𝑚𝑖
2𝜋
𝐵𝑙𝑖𝑙𝑖

∫ 𝜋

0
�̃�ppc

(
®𝐼 , ®𝑅𝑦 (𝜃 )

)
𝐷
𝑙𝑖
2,−2

(
®𝑅𝑦 (𝜃 )

)
sin𝜃d𝜃 (173)

= 𝛿 (𝑙𝑖 ,−𝑚𝑖 ) (𝑙𝑜𝑚𝑜 ) (−1)𝑚𝑖
2𝜋
𝐵𝑙𝑖𝑙𝑖𝑙𝑖

∫ 𝜋

0

〈
2𝑌 𝑙𝑖2 (𝜃, 0) , �̃�ppc

(
®𝐼 , ®𝑅𝑦 (𝜃 )

)〉
C

sin𝜃d𝜃 . (174)
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Finally, the convolution coefficient of the Stokes-to-Stokes part of
↔
𝐾 can be defined as two complex numbers

k𝑙,pp𝑎 and k𝑙,pp𝑏 , and the coefficient of linear operator can be written in terms of k𝑙,pp𝑎 and k𝑙,pp𝑏 .

k𝑙,ppi = 2𝜋
∫ 𝜋

0

〈
2𝑌 𝑙𝑖 ,−2 (𝜃, 0) , �̃�ppi

(
®𝐼 , ®𝑅𝑦 (𝜃 )

)〉
C

sin𝜃d𝜃 ∈ C, (175)

k𝑙,ppc = 2𝜋
∫ 𝜋

0

〈
2𝑌 𝑙𝑖 ,2 (𝜃, 0) , �̃�ppc

(
®𝐼 , ®𝑅𝑦 (𝜃 )

)〉
C

sin𝜃d𝜃 ∈ C, (176)

K𝑙𝑜𝑚𝑜𝑝𝑜 ,𝑙𝑖𝑚𝑖𝑝𝑖 = 𝛿𝑙𝑖𝑙𝑜

√︂
4𝜋

2𝑙𝑖 + 1
ℜ

(
𝛿𝑚𝑖𝑚𝑜

𝑖𝑝𝑖−𝑝𝑜 k𝑙,ppi + 𝛿−𝑚𝑖𝑚𝑜
(−1)𝑚𝑖 𝑖2−𝑝𝑖−𝑝𝑜 k𝑙,ppc

)
, (177)

where 𝑝𝑜 = 1, 2. Note that the final equation can be rewritten using Equations (118) and (119):

Mat
[
K𝑙𝑜𝑚𝑜𝑝𝑜 ,𝑙𝑖𝑚𝑖𝑝𝑖 | 𝑝𝑜 , 𝑝𝑖

]
= 𝛿𝑙𝑖𝑙𝑜

√︂
4𝜋

2𝑙𝑖 + 1
(
𝛿𝑚𝑖𝑚𝑜

R2×2 (k𝑙,ppi
)
+ 𝛿−𝑚𝑖𝑚𝑜

(−1)𝑚𝑖 R2×2 (k𝑙,ppc
)
J
)
. (178)

We observe that this expression is natural since �̃�ppi and �̃�ppc was decomposed from K̃pp = R2×2
(
�̃�ppi

)
+

R2×2
(
�̃�ppc

)
J.

ACM Trans. Graph., Vol. 43, No. 4, Article 127. Publication date: July 2024.



Supplemental Document: Spin-Weighted Spherical Harmonics for Polarized Light Transport • 127:53

6 RESULTS AND DISCUSSION

6.1 Results for Precomputed Polarized Radiance Transfer

Scene specification. We provide technical details of the scene setups throughout the main paper (Fig-
ures 1, 20 20, 21, 18, and 22) and this supplemental document (Figure 9) in Table 2. The reported numbers
of vertices include 3D models themselves and ground planes. Note that While (1) lighting (environment map),
(2) radiance transfer matrix of pBRDF and shadow, and (3) high-order convolution approximation of pBRDF
are encoded in PSH coefficients, each single coefficient contains trichromatic RGB values, refer to 12 bytes (4x3
bytes float). Each scene uses two materials. Note that while transfer matrices differ for each vertex, convolution
coefficients for high-order pBRDF are shared by all vertices of the same material due to rotation equivariance.
Validation against GT. Here we provide rendered images of Mitsuba 3 GT render and our PPRT method
for each cut-off frequency 𝑙max, which are discussed in Figure 19 in the main paper Section 7. The resulting
images and difference maps are shown in Figure 9. Since Mitsuba 3 does not support polarized environment
map emitters, we are using an unpolarized environment map for this scene. In addition, Baek et al. [2020]’s
data-based pBRDFs are only supported by multispectral variants of Mitsuba 3, while our implementation is based
on conventional RGB rendering by projecting multi-channel Baek et al. [2020] pBRDF into RGB in advance.
Instead, for this quantitative validation, we conducted this scene with an analytic pBRDF model Baek et al. [2018].
Specific configurations of this scene are also reported in Table 2.

Table 2. The scene setups specification throughout the main paper and this supplemental document. For several scenes
which do not use high-order convolution approximation we are not reporting numbers of such coefficients.

Scene # of vertices Lighting coeff. Radiance transfer
matrix (per vertex)

Convolution coeff.
(per material) FPS

Main Fig. 1 21,087 300 5,625 45 100

Main Fig. 20(a) Rows 1 & 2 10,115 75 5,625 – 475
Row 3 300 5,625 45 306

Main Fig. 20(b) Rows 1 & 2 20,545 75 5,625 – 162
Row 3 300 5,625 45 102

Main Fig. 21
(b)

10,115
75 5,625 – 480

(c) 108 11,664 – 210
(d) 300 5,625 45 308

Main Figs. 18, 22 19,944 300 5,625 45 111

Fig. 9

𝑙max = 4

3,482

75 5,625 – 750
𝑙max = 5 108 11,664 – 373
𝑙max = 6 147 21,609 – 208
𝑙max = 7 192 36,864 – 110
𝑙max = 8 243 59,049 – 75

6.2 Discussion on SWSH Formulations in Previous Work

Definitions of spin-weight spherical harmonics. For interested readers, we briefly review the formulations
of SWSH in previous work here. When SWSH were originally introduced by Newman and Penrose [1966], they
were defined using a special kind of differential operators, spin raising and lowering operators ð and ð̄. Then
Newman and Penrose [1966] defined SWSH in the spherical coordinates (𝜃, 𝜙), and dependency of local frames is
regarded implicitly. Goldberg et al. [1967] found a relationship between SWSH and Wigner D-functions. Our
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(a) 𝑠𝑠0 component

(b) 𝑠𝑠1 component

(c) 𝑠𝑠2 component

+0.2

-0.2

+0.1

-0.1

+0.1

-0.1

+0.1

-0.1

+0.1

-0.1

GT (Mitsuba 3) Ours 𝑙𝑙max = 4 Ours 𝑙𝑙max = 5 Ours 𝑙𝑙max = 6 Ours 𝑙𝑙max = 7 Ours 𝑙𝑙max = 8

Difference 𝑙𝑙max = 4 Difference 𝑙𝑙max = 5 Difference 𝑙𝑙max = 6 Difference 𝑙𝑙max = 7 Difference 𝑙𝑙max = 8

GT (Mitsuba 3) Ours 𝑙𝑙max = 4 Ours 𝑙𝑙max = 5 Ours 𝑙𝑙max = 6 Ours 𝑙𝑙max = 7 Ours 𝑙𝑙max = 8

Difference 𝑙𝑙max = 4 Difference 𝑙𝑙max = 5 Difference 𝑙𝑙max = 6 Difference 𝑙𝑙max = 7 Difference 𝑙𝑙max = 8

GT (Mitsuba 3) Ours 𝑙𝑙max = 4 Ours 𝑙𝑙max = 5 Ours 𝑙𝑙max = 6 Ours 𝑙𝑙max = 7 Ours 𝑙𝑙max = 8

Difference 𝑙𝑙max = 4 Difference 𝑙𝑙max = 5 Difference 𝑙𝑙max = 6 Difference 𝑙𝑙max = 7 Difference 𝑙𝑙max = 8

750 fps 373 fps 208 fps 110 fps 75 fps

Fig. 9. Rendered images for Figure 19 in the main paper. We validate our real-time polarized rendering with shadowed
radiance transfer compared with Mitsuba 3 GT ray tracer. (a) to (c) shows 𝑠0, 𝑠1, and 𝑠2 Stokes components of polarized
images, respectively. We observe our results get closer to GT results as the cut-off frequency 𝑙max increases. Note that
differences in this figure and Figure 19 in the main paper were computed only at pixels where the object exists.
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description of SWSH in Definition 5.2 is based on this relationship to make the frame dependency clear rather
than implicit. Note that we do not cover what ð and ð̄ operators are.
Spin-weight 𝑠 = −2 spherical harmonics. Ng and Liu [1999]; Zaldarriaga and Seljak [1997] used both spin +2
and −2 SH to handle the correlation of Stokes vector fields, but the necessity of two types of special functions for
describing a single type of quantity, Stokes vectors, has been somewhat counterintuitive. While the occurrence of
complex conjugation in several equations in this work (2𝑌 ∗

𝑙𝑖𝑚𝑖
and f̃∗

𝑙,−𝑚𝑝
in Equations (51c) and (69b) in the main

paper, respectively) can be considered to correspond to the spin −2 coefficients in Ng and Liu [1999]; Zaldarriaga
and Seljak [1997], we do not need to introduce spin −2 SH in our paper. Instead, the complex conjugation is
explained not as a property of special functions such as spin ±2 SH, but by the complex pair separation of Mueller
transform (Equation (47a) in the main paper and Equation (112) in this supplemental document), which is defined
in the angular domain without regarding any basis function.
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