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Fig. 1. We propose the first sparse ellipsometry method that simultaneously captures both the polarimetric SVBRDF (including the 3D Mueller matrix and the
index of refraction) and the 3D shape of real-world objects. Different from traditional ellipsometry, our portable acquisition device is made up of off-the-shelf,
fixed optical components. Our sparse observations can be captured in minutes instead of days, allowing for accurate renderings of novel views under different
illuminations.

Ellipsometry techniques allow to measure polarization information of ma-
terials, requiring precise rotations of optical components with different
configurations of lights and sensors. This results in cumbersome capture
devices, carefully calibrated in lab conditions, and in very long acquisition
times, usually in the order of a few days per object. Recent techniques allow
to capture polarimetric spatially-varying reflectance information, but limited
to a single view, or to cover all view directions, but limited to spherical ob-
jects made of a single homogeneous material. We present sparse ellipsometry,
a portable polarimetric acquisition method that captures both polarimetric
SVBRDF and 3D shape simultaneously. Our handheld device consists of
off-the-shelf, fixed optical components. Instead of days, the total acquisition
time varies between twenty and thirty minutes per object. We develop a
complete polarimetric SVBRDF model that includes diffuse and specular
components, as well as single scattering, and devise a novel polarimetric
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inverse rendering algorithm with data augmentation of specular reflection
samples via generative modeling. Our results show a strong agreement with
a recent ground-truth dataset of captured polarimetric BRDFs of real-world
objects.
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1 INTRODUCTION
Realistic modeling of the bidirectional reflectance distribution func-
tions (BRDF) of real-world objects is a key aspect for physically
based rendering. The effect of scattering on the polarization state
of light, however, has been traditionally ignored since it is mostly
imperceptible to the human eye. Nevertheless, polarization can be
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easily captured by an optical sensor, and provides useful information
about the geometry and material properties of an object.

Ellipsometry techniques use optical measurements to characterize
how the interactions with a material change the polarization state
of incident light [Azzam 2016]. There are two main approaches, rep-
resented by two recent works. First, polarimetric spatially-varying
reflectance information of real-world objects can be captured, but
limited to a single view [Baek et al. 2018]; therefore, changes in
viewpoint are not possible without visible distortions. Alternatively,
polarimetric information can be measured from all view directions,
but limited to spherical objects made of one single, homogeneous
material [Baek et al. 2020]. Our work is the first to allow simultane-
ous capture of both polarimetric spatially-varying materials from
all view directions, as well as arbitrary geometry.
Furthermore, while these recent approaches [Baek et al. 2018,

2020] require sophisticated tabletop setups and rotating optical
equipment, combining polarization angles with different configura-
tions of light and sensor, we design a portable device that combines
an off-the-shelf polarization camera and flashlight with a linear
polarizer, without the need for rotating elements. Using our device,
we introduce a sparse ellipsometry technique that allows us to cap-
ture both a complete linear polarimetric spatially-varying BRDF
(SVBRDF) and the corresponding 3D geometry of a real-world ob-
ject from a series of unstructured flash photographs; instead of
days as with existing approaches, our method takes only between
twenty and thirty minutes of acquisition time, while also yielding
an accurate match with ground-truth data.

From the unstructured, sparse set of captured views, we recover
polarimetric reflectance and 3D shape using an optimization algo-
rithm that involves inverse rendering. Our polarimetric SVBRDF
model includes not only diffuse and specular reflection, but sub-
surface single scattering as well, accurately matching ground-truth
data recently captured with full ellipsometry techniques [Baek et al.
2020]. Since the sparse input data is often insufficient to estimate
per-vertex specular parameters, specially for very narrow specular
lobes, we devise a generative modeling strategy that augments the
input with novel synthetic views. Our technique captures linear
polarization, which corresponds to the first three components in
the Stokes vector. Since we do not capture circular polarization, our
scope is restricted to dielectric surfaces.

Figure 1 shows our portable device, along with a captured object,
visualization of polarimetric data including the 3D Mueller matrix,
and a novel view under different lighting conditions. Note that, even
though all the views are captured only with the frontal flash lighting
of our device, our inverse rendering technique is robust enough to
render captured objects with arbitrary illumination even at grazing
angles (see the rightmost image in Figure 1; please refer also to the
supplemental video).
In summary, our contributions are:

• A method to capture both polarimetric SVBRDF and 3D ge-
ometry information simultaneously.

• A portable measurement device for polarimetric reflectance
using off-the-shelf, fixed optics.

• A complete polarimetric SVBRDF model that includes diffuse
and specular components, as well as single scattering.

• A polarimetric inverse rendering algorithm that includes a
generative modeling strategy for data augmentation.

Our code is freely available for research purposes1.

2 RELATED WORK
Polarimetric BRDF models. Polarimetric BRDF (pBRDF) models

take into account changes in the polarization state of light as it inter-
acts with the corresponding surface. Several pBRDFmodels [Hyde IV
et al. 2009; Jarabo and Arellano 2017; Mojzik et al. 2016; Priest and
Gerner 2000] define reflection as a mixture of a rough polarizing
specular lobe (by accounting for Fresnel interactions in a microfacet
model) and a depolarizing diffuse lobe. However, other works have
shown diffuse (view independent) polarization effects [Baek et al.
2020; Ellis 1996; Maxwell et al. 1973; Sun 2007], which can be ex-
plained by multiple subsurface scattering events (which depolarize
light), followed by a Fresnel transmission from inside the object
to the air, which partially polarizes light [Atkinson and Hancock
2006].

Recent pBRDFmodels consider this diffuse polarizing effect [Baek
et al. 2018; Cui et al. 2017; Kadambi et al. 2015], and even leverage
it to estimate surface normals. Our pBRDF model includes both
polarizing diffuse and specular lobes, plus a new single scattering
lobe, thus providing an accurate match against measured ground-
truth data [Baek et al. 2020].

Polarimetric imaging. Polarization information has been used
for a wide range of imaging purposes, such as dehazing [Liu et al.
2015], elimination of specular highlights [Yang et al. 2016], or new
image editing techniques [del Molino and Muñoz 2019]. However,
separating specular and diffuse polarization from reflected light is an
open research problem due to the complex changes in polarization
caused by surface scattering.

Someworks take advantage of the polarizing effect of the specular
component to estimate reflectance parameters and/or geometry. Ma
et al. [2007] separate diffuse reflectance from specular components
using polarized gradient illumination. More complete appearance
models, including per-pixel diffuse and specular albedos, global
roughness, and normal map have been proposed: Ghosh et al. [2008]
extract layers of skin reflectance using polarization-difference im-
ages and data-driven techniques, for the particular case of faces.
Other works leverage circularly polarized light [Ghosh et al. 2010],
polarized gradient illumination [Ghosh et al. 2011], outdoors sky
light [Riviere et al. 2017], or including cross-polarization filters in
cameras [Riviere et al. 2020]. However, the high-frequency behavior
and angular dependency of the specular reflection require multi-
ple views and/or large-scale lighting setups to be able to find and
leverage the specular component.
Another strategy considers the polarization effect of the diffuse

reflection state as a function of the azimuth angle of the surface
normal, given the Fresnel transmission from the object to the air.
This has been used for geometry reconstruction (SfP, structure from
polarization), estimating geometry and normals from single view
polarimetric images [Atkinson and Hancock 2006; Huynh et al. 2013;
Miyazaki et al. 2003; Tozza et al. 2017] or multiple views [Cui et al.

1https://github.com/KAIST-VCLAB/SparseEllipsometry.git
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2017, 2019; Zhao et al. 2020; Zhu and Smith 2019]. Other methods
have used deep neural networks to reconstruct both normals and
spatially-varying material properties (i.e., SVBRDF) based on the
same diffuse polarization cues [Ba et al. 2020; Deschaintre et al.
2021; Lei et al. 2021]. Since light depolarizes as it enters the object
and given that the diffuse reflection is low frequency, these meth-
ods work even under unknown lighting conditions, while generally
requiring simpler setups. However, the specular component of re-
flectance is not properly accounted for, which may lead to errors.
Moreover, these existing methods leverage polarization information
mainly to estimate diffuse albedo and normal maps, but they do not
acquire complete polarimetric reflectance information, such as full
Mueller matrices and indices of refraction.

Baek et al. [2018] introduced a pBRDF model as a linear combina-
tion of polarizing diffuse and specular components. Since then, there
have been works on structure from polarization methods that ac-
count for both polarizing effects [Ding et al. 2021; Fukao et al. 2021].
However, these methods require a full Mueller matrix per pixel,
which involves multiple shots changing the polarization state of the
incident light. This requires rotation by hardware, which translates
into heavy, sophisticated capture systems. These complex Mueller
matrix measurements have also been used for separating compo-
nents of light transport [Baek and Heide 2021] and for measuring
pBRDFs [Baek et al. 2020]. Our work also considers the effect of both
polarizing diffuse and specular components but, in contrast, it only
requires a single Stokes vector per pixel. Consequently, it does not
require a heavy polarimetric control of external light sources, lead-
ing to a compact hand-held capture device. In contrast, our portable
design allows us to integrate per-pixel Stokes vectors observations
from multiple views, enabling for the first time simultaneous ac-
quisition of full polarimetric SVBRDF (including 3D Mueller matrix
and index of refraction) and 3D shape.

3D geometry and SVBRDF acquisition. Traditionally, simultaneous
acquisition of geometry and SVBRDF required large-scale special-
ized setups, such as light stages including polarized light sources,
multiple cameras and/or projectors for structured lighting [Ghosh
et al. 2010, 2008; Ma et al. 2007]. These setups have become progres-
sively simpler, requiring a professional setup with multiple cameras
and polarized lights [Ghosh et al. 2011], a rotating LED pattern
for spherical harmonics [Tunwattanapong et al. 2013], controlled
front LED lighting with multiple cameras [Gotardo et al. 2018], or
spherical LED lighting with a single camera [Kampouris et al. 2018].

Other works focus on further simplifying the hardware setup for
the capture, relying on photometric stereo [Zhou et al. 2013], cali-
brated environments [Oxholm and Nishino 2014], RGB-D informa-
tion [Wu et al. 2016], video sequences [Xia et al. 2016], unstructured
flash photographies [Nam et al. 2018], or pretrained structured LED
illumination [Ma et al. 2021]. More recently, NeRF networks [Milden-
hall et al. 2020] are able to reconstruct geometry and appearance
parameters from images in arbitrary lighting condition [Boss et al.
2021; Srinivasan et al. 2021]. Our capture system also consists on a
simple and hand-held setup that includes a flashlight, a polarizer,
and polarization camera. Different from existing works, however, we
not only acquire 3D geometry and SVBRDF, but also polarization.

3 POLARIMETRIC IMAGE FORMATION

3.1 Background on Polarization
The Stokes vector s = [𝑠0, 𝑠1, 𝑠2, 𝑠3]⊤ is a four-dimensional quantity
that describes the polarization state of light. 𝑠0 represents total ra-
diance, while 𝑠1, 𝑠2, and 𝑠3 are the polarized components defined
by the degree of polarization𝜓 , polarization angle b , ellipticity an-
gle Z as s = [𝑠0, 𝑠0𝜓 cos 2Z cos 2b, 𝑠0𝜓 cos 2Z sin 2b, 𝑠0𝜓 sin 2Z ]. The
𝑠1, 𝑠2 and 𝑠3 components describe horizontal, linearly diagonal, and
circular polarization, respectively.

The Mueller matrixM represents a transformation of the polariza-
tion state of light represented by a Stokes vector: s𝑎 = Ms𝑏 , where
s𝑎,𝑏 are the Stokes vectors before and after any transformation event,
such as a change of coordinates, reflection, transmission or filtering.

A change on the polarization state after a reflection or transmis-
sion on an interface depends on Fresnel equations, which indicates
that light polarized along the axis parallel to the plane of incidence
is affected differently than light polarized perpendicular to that
plane of incidence. Therefore, before the interaction, we need to
align one of the axis (the 𝑦-axis in our case) to be parallel to the
plane of incidence, which requires a rotation of the local frame (see
Section 3.2). Specifically, the counterclockwise rotation with angle 𝜗
is represented by the following matrix C as

C (𝜗) =


1 0 0 0
0 cos 2𝜗 sin 2𝜗 0
0 − sin 2𝜗 cos 2𝜗 0
0 0 0 1

 . (1)

Once in the adequate local frame, transmission and reflection of
light can be represented by the Fresnel matrix F:

F𝐹 ∈{𝑇,𝑅} =


𝐹⊥+𝐹 ∥

2
𝐹⊥−𝐹 ∥

2 0 0
𝐹⊥−𝐹 ∥

2
𝐹⊥+𝐹 ∥

2 0 0
0 0

√
𝐹⊥𝐹 ∥ cos𝛿

√
𝐹⊥𝐹 ∥ sin𝛿

0 0 −
√
𝐹⊥𝐹 ∥ sin𝛿

√
𝐹⊥𝐹 ∥ cos𝛿


,

(2)
where 𝐹 ∈ {𝑇, 𝑅} represents the Fresnel transmission (𝑇 ) or re-
flection (𝑅) coefficients, and 𝛿 is the retardation (delay) phase shift
(0 when the incident angle is larger than the Brewster angle, 𝜋 oth-
erwise). 𝐹⊥ and 𝐹 ∥ are the Fresnel coefficients for the perpendicular
and parallel components with respect to the plane of incidence (see
the work ofWilkie andWeidlich [2012] for a complete description of
polarized light). In the following 𝐹 will refer to𝑇 or 𝑅, depending on
the specific interaction (transmission or reflection) being considered.
For convenience, notations are summarized in Table 2.

3.2 Polarimetric Reflectance Model
The light transport of polarized light can be defined in terms of the
Stokes vector and the pBRDF as

s𝑜 = 𝑆P (𝝎𝑖 ,𝝎𝑜 ) s𝑖 . (3)

where 𝑆 =
(n·𝜔𝑖 )
𝑑2

is the shading term including light attenuation,
𝑑 is the distance between the light and the surface and P (𝝎𝑖 ,𝝎𝑜 ) is
the pBRDF that yields a Mueller matrix for a specific incoming and
outgoing direction.
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Fig. 2. (a) Our polarimetric coordinate system. (b) Our handheld polarimet-
ric imaging setup consisting of a polarimetric camera and a photographic
flashlight.

Recent pBRDF models follow microfacet theory [Cook and Tor-
rance 1982; Lee et al. 2018; Torrance and Sparrow 1967] and separate
reflectance into diffuse and specular terms [Baek and Heide 2021;
Baek et al. 2018]. However, our experiments have shown that the
combination of those two lobes does not match captured datasets for
polarimetric appearance [Baek et al. 2020]. We thus introduce a new
additional term that takes into account single scattering effects; our
resulting model provides a better fit against captured polarization
data (see Section 6.2).
Our new polarimetric pBRDF model can then be expressed as

P = P𝑑 + P𝑠 + P𝑠𝑠 , (4)

where P𝑑 , P𝑠 and P𝑠𝑠 are the pBRDF lobes of diffuse reflection, spec-
ular reflection, and single scattering, respectively. The dependency
on 𝝎𝑖 and 𝝎𝑜 has been omitted for the sake of brevity.

Local polarization frame. Our coordinate system is defined by a
local frame with three orthonormal vectors, where the 𝑧-axis fol-
lows the propagation of light, the 𝑦-axis is aligned with the camera
up vector for outgoing light, and with the orthogonal direction
of the horizontal linear polarization filter on the light for incom-
ing light, and the 𝑥-axis is perpendicular to both (see Figure 2a).
This is different from previous work [Baek et al. 2018] in that we
do not need to flip axes for incoming and outgoing light; instead,
the frame is rotated so that its 𝑦-axis is aligned to the plane of
incidence, thus matching the expected orientation for Fresnel in-
teractions. The plane of incidence is defined by the surface nor-
mal n for the diffuse lobe and by the halfway vector h for the
specular and single scattering lobes. We define the polarimetric
azimuth angles for incident and exitant light corresponding to these
two planes, respectively: 𝜙{𝑖,𝑜 } = tan−1 ((n · y{𝑖,𝑜 } )/(n · x{𝑖,𝑜 } ))
and 𝜑{𝑖,𝑜 } = tan−1 ((h · y{𝑖,𝑜 } )/(h · x{𝑖,𝑜 } )). Therefore, the corre-
sponding rotation angles required to match the incident and exi-
tant frames to the interaction plane are 𝜙⌞{𝑖,𝑜 } = 𝜙{𝑖,𝑜 } − 𝜋/2 and
𝜑⌞{𝑖,𝑜 } = 𝜑{𝑖,𝑜 } − 𝜋/2, respectively.

Diffuse and specular terms. We adopt the diffuse and specular
terms from state-of-the-art pBRDF models [Baek and Heide 2021;
Baek et al. 2018], which we briefly summarize here for completeness.
Polarized diffuse reflection is formulated as

P𝑑 = C𝑛→𝑜

(
−𝜙⌞𝑜

)
F𝑇 (\𝑜 ;[) D (𝜌𝑑 ) F𝑇 (\𝑖 ;[) C𝑖→𝑛

(
𝜙⌞𝑖

)
, (5)
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Fig. 3. (a) Geometry of our polarimetric scattering model. The s𝑠𝑜 yellow vec-
tor represents the specular term, the brown vector s𝑑𝑜 represents the diffuse
term, and the red vector s𝑠𝑠𝑜 represents our additional single scattering term.
(b) Our simplified scattering model for polarimetric inverse rendering.

where D is the depolarization matrix with diffuse albedo 𝜌𝑑 . In
Mueller matrix form, P𝑑 is

P𝑑 = 𝜌𝑑


𝑇 +
𝑜 𝑇

+
𝑖

−𝑇 +
𝑜 𝑇

−
𝑖
𝛽𝑖 −𝑇 +

𝑜 𝑇
−
𝑖
𝛼𝑖 0

−𝑇 −
𝑜 𝑇

+
𝑖
𝛽𝑜 𝑇 −

𝑜 𝑇
−
𝑖
𝛽𝑖𝛽𝑜 𝑇 −

𝑜 𝑇
−
𝑖
𝛼𝑖𝛽𝑜 0

−𝑇 −
𝑜 𝑇

+
𝑖
𝛼𝑜 𝑇 −

𝑜 𝑇
−
𝑖
𝛼𝑜𝛽𝑖 𝑇 −

𝑜 𝑇
−
𝑖
𝛼𝑜𝛼𝑖 0

0 0 0 0

 , (6)

where 𝛼{𝑖,𝑜 } and 𝛽{𝑖,𝑜 } indicate sin(2𝜙{𝑖,𝑜 } ) and cos(2𝜙{𝑖,𝑜 } ), re-
spectively. Here𝑇 +

{𝑖,𝑜 } and𝑇
−
{𝑖,𝑜 } are computed from incident/exitant

Fresnel transmission coefficients, (𝑇⊥
{𝑖,𝑜 } + 𝑇

∥
{𝑖,𝑜 } )/2 and (𝑇⊥

{𝑖,𝑜 } −

𝑇
∥
{𝑖,𝑜 } )/2.
Polarized specular reflection, on the other hand, is described as a

single-bounce reflection on the microfacets as

P𝑠 = ^𝑠Cℎ→𝑜

(
−𝜑⌞𝑜

)
F𝑅 (\𝑑 ;[) C𝑖→ℎ

(
𝜑⌞𝑖

)
, (7)

where ^𝑠 = 𝜌𝑠
𝐷 (\ℎ ;𝜎𝑠 )𝐺 (\𝑖 ,\𝑜 ;𝜎𝑠 )

4(n·𝝎𝑖 ) (n·𝝎𝑜 ) is the specular reflection term,
𝐷 is the normal GGX distribution function [Walter et al. 2007], 𝜎𝑠 is
surface roughness, 𝐺 is Smith’s geometric attenuation function of
shadowing/masking [Heitz 2014], and 𝜌𝑠 is the specular albedo.
Assuming that our target surface is dielectric, specular reflection
can be considered monochromatic. The specular lobe P𝑠 can be
expressed in Mueller matrix form as

P𝑠 = (8)

^𝑠


𝑅+ −𝑅−𝛾𝑖 −𝑅−𝜒𝑖 0

−𝑅−𝛾𝑜 𝑅+𝛾𝑖𝛾𝑜 + 𝑅×𝜒𝑖 𝜒𝑜 cos𝛿 𝑅+𝜒𝑖𝛾𝑜 − 𝑅×𝛾𝑖 𝜒𝑜 cos𝛿 𝑅×𝜒𝑜 sin𝛿
−𝑅−𝜒𝑜 𝑅+𝛾𝑖 𝜒𝑜 − 𝑅×𝜒𝑖𝛾𝑜 cos𝛿 𝑅+𝜒𝑖 𝜒𝑜 + 𝑅×𝛾𝑖𝛾𝑜 cos𝛿 −𝑅×𝛾𝑜 sin𝛿

0 −𝑅×𝜒𝑖 sin𝛿 𝑅×𝛾𝑖 sin𝛿 𝑅× cos𝛿

 ,
where 𝜒{𝑖,𝑜 } and 𝛾{𝑖,𝑜 } denote sin(2𝜑{𝑖,𝑜 } ) and cos(2𝜑{𝑖,𝑜 } ), respec-
tively. For a dielectric surface cos𝛿 = −1 when the incident angle is
less than the Brewster angle, and 1 otherwise.

Single scattering term. We extend existing pBRDF models by in-
corporating a new polarimetric single scattering term, which yields
a better match with captured data. In our model, the path of light
for a single scattering event includes a Fresnel transmission into the
object, a scattering reflection, and a second Fresnel transmission
back into the air (s𝑠𝑠𝑜 , see red vectors in Figure 3a). Different from
specular reflection, color can change according to the albedo of the
medium 𝜌𝑠𝑠 , while its angular distribution is a combination of the
roughness of the surface (which affects Fresnel transmission) and
the phase function 𝑝 (𝝎𝑖 ,𝝎𝑜 ). Our single-scattering term can thus
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be modeled as

P𝑠𝑠 =C𝑛→𝑜

(
−𝜙⌞𝑜

)
F𝑇 (\𝑜 ;[) Cℎ′→𝑛

(
−𝜑⌞

′
𝑜

)
F𝑅

(
\ ′
𝑑
;[𝑝

)
(9)

· 𝑟𝑠𝑠C𝑛→ℎ′

(
𝜑⌞

′
𝑖

)
F𝑇 (\𝑖 ;[) C𝑖→𝑛

(
𝜙⌞𝑖

)
,

where 𝜑⌞
′

{𝑖,𝑜 } is the rotation angle w.r.t. the medium’s microfacet
h′ vector for incoming/outgoing rays (Figure 3a), and [ and [𝑝 are
the indices of refraction for the surface and the single scattering
interactions, respectively. The parameter 𝑟𝑠𝑠 represents the single-
scattering BRDF [Hanrahan and Krueger 1993] as:

𝑟𝑠𝑠 = 𝜌𝑠𝑠𝑝
(
𝝎′
𝑖 ,𝝎

′
𝑜

) 1
h′ · 𝝎′

𝑖
+ h′ · 𝝎′

𝑜

, (10)

where directions 𝝎′
𝑖
and 𝝎′

𝑜 are deterministically calculated us-
ing Snell’s Law, and the phase function 𝑝

(
𝝎′
𝑖
,𝝎′
𝑜

)
is the angu-

lar distribution that may be represented by Henyey-Greenstein’s
model [Henyey and Greenstein 1941].
While physically accurate, the model defined in Equation (9) is

ill-posed and not suitable for inverse rendering, since the single
scattering event is occluded from direct view after a refractive event
with an unknown index of refraction. We therefore introduce a sim-
plified model, approximating the physically-based behavior of our
single scattering component and making it practical for imaging and
inverse rendering applications. We make the following observations:

• Single scattering presents a polarization state similar to the
polarization state of specular reflections [Ghosh et al. 2008].

• The angular distribution (roughness) of single scattering comes
from the combination of the roughness of both Fresnel trans-
missions and the phase function.

• While specular reflection does not change color, single scat-
tering modifies color according to the albedo and extinction
of the medium.

From these observations, our single scattering component can
be represented as an extension of the specular reflection term, with
independent roughness and albedo parameters:

P𝑠𝑠 = ^𝑠𝑠Cℎ→𝑜

(
−𝜑⌞𝑜

)
F𝑅 (\𝑑 ;[) C𝑖→ℎ

(
𝜑⌞𝑖

)
, (11)

where ^𝑠𝑠 = 𝜌𝑠𝑠 𝐷 (\ℎ ;𝜎𝑠𝑠 )𝐺 (\𝑖 ,\𝑜 ;𝜎𝑠𝑠 )
4(n·𝝎𝑖 ) (n·𝝎𝑜 ) describes the single scattering

lobe, and 𝜎𝑠𝑠 represents surface roughness for single scattering.
Note that the single scattering albedo 𝜌𝑠𝑠 is a colored vector, as
opposed to the single-value specular component.
Mueller matrix representation for the single scattering lobe is

P𝑠𝑠 = (12)

^𝑠𝑠


𝑅+ −𝑅−𝛾𝑖 −𝑅−𝜒𝑖 0

−𝑅−𝛾𝑜 𝑅+𝛾𝑖𝛾𝑜 + 𝑅×𝜒𝑖 𝜒𝑜 cos𝛿 𝑅+𝜒𝑖𝛾𝑜 − 𝑅×𝛾𝑖 𝜒𝑜 cos𝛿 𝑅×𝜒𝑜 sin𝛿
−𝑅−𝜒𝑜 𝑅+𝛾𝑖 𝜒𝑜 − 𝑅×𝜒𝑖𝛾𝑜 cos𝛿 𝑅+𝜒𝑖 𝜒𝑜 + 𝑅×𝛾𝑖𝛾𝑜 cos𝛿 −𝑅×𝛾𝑜 sin𝛿

0 −𝑅×𝜒𝑖 sin𝛿 𝑅×𝛾𝑖 sin𝛿 𝑅× cos𝛿

,
where 𝜒{𝑖,𝑜 } , 𝛾{𝑖,𝑜 } and cos𝛿 are the same as in specular reflection.

3.3 Portable Acquisition Setup
Capturing full polarimetric appearance information of an object
requires exhaustive sampling in both traditional ellipsometry [Az-
zam 1978] and image-based ellipsometry [Baek et al. 2020] methods,
which usually takes between two and five days. In addition, the
process needs a complex tabletop setup, with multiple rotating

polarization filters and retarders. We aim for a more usable, effi-
cient and practical approach, for which we leverage our (spatially
varying) pBRDF model (Section 3.2); while simpler and easier to
approximate, it provides a very good match with full polarimetric
measured data [Baek et al. 2020], as our results will show.

We propose a simple setup that consists of a polarimetric camera
with fixed linear polarization filters at four different orientations (0◦,
45◦, 90◦, and 135◦), and a photographic flashlight with a fixed linear
polarization filter at 0◦ angle. As shown in Figure 2(b), the light
and the camera are mounted close together in a near-coaxial setup
(around 3.5◦, but it needs to be calibrated), leading to a small enough
device for handheld acquisition. Our input is a set of multiple RAW
images including four different polarization angles. The intensity of
the flash varies randomly for each captured image (between {1/4,
1/8, 1/16} of its maximum intensity), so per-vertex HDR radiance
can be recovered [Debevec and Malik 1997].

Instead of rotating optical components in a complex, fixed table-
top setup, we leverage the portable form factor of our capture device
and develop a single-view image formation model (Section 3.4), and
apply this model in the optimization of multiple unstructured ob-
servations (Section 4).

3.4 Image Formation Model
Section 3.2 introduces our complete pBRDF model. We now cus-
tomize such a model to formulate light transport specifically for our
acquisition system where the camera and flashlight are narrowly
placed and oriented (see Section 3.3), and represent the physical mag-
nitudes of our pBRDF model as observations over the four captured
images.
This narrow setup has been used in a recent study [Baek et al.

2018]. It is clearly beneficial in polarimetric imaging because it
enables many simplifications of polarized interactions with surfaces.
Our hardware design takes the advantage of this simplification by
inheriting this near-coaxial setup. However, the approach by Baek
et al. [2018] is based on ellipsometry, exhaustively capturing sixteen
combinations of incident/exitant polarization states as input, while
our approach only requires four combinations (the four linear filters
of the camera and only one for the light source).
Some of these simplifications are purely geometrical: as light

and camera rays are only separated by approximately 3.5◦, we can
assume 𝝎𝑖 ≈ 𝝎𝑜 and, as the optical elements are equally oriented,
incident and exitant local polarization frames are also related as
𝜙𝑖 ≈ 𝜋 − 𝜙𝑜 and 𝜑𝑖 ≈ 2𝜋 − 𝜑𝑜 so therefore 𝛼𝑖 ≈ −𝛼𝑜 , 𝛽𝑖 ≈ 𝛽𝑜 ,𝜒𝑖 ≈
−𝜒𝑜 and 𝛾𝑖 ≈ 𝛾𝑜 . Furthermore, incident angle is by definition below
Brewster angle so cos𝛿 = −1 for both specular and single scattering
terms. The geometrical relations defined by this narrow geometry
are illustrated in Figure 4.
Last, the parallel and perpendicular components of the Fresnel

reflection become close to each other (𝑅 ∥ ≈ 𝑅⊥), so that 𝑅− ≈ 0
and 𝑅+ ≈ 𝑅× and light from the diffuse interaction gets depolarized
through multiple subsurface scattering so the degree of polarization
of incoming light 𝑇 −

𝑜 𝑇
−
𝑖

≈ 0.
Adding the three lobes defined in Equations (6), (8), and (12),

and taking into account these simplifications, our full pBRDF as a
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Fig. 4. The geometry of our portable setup is narrow, with the flashlight
slightly below the camera sensor. This establishes several geometrical re-
lationships between the light polarization frame, the camera polarization
frame, surface normal 𝑛, and halfway vector ℎ. This affects the relationship
between the polarimetric azimuths for the diffuse lobe (𝜙𝑖 ≈ 𝜋 − 𝜙𝑜 ) with
respect to the normal. Also, the projection of the halfway vector into the
incident polarization plane points towards the exitant frame and vice versa,
therefore establishing a relation between the corresponding polarization
azimuths (𝜑𝑖 ≈ 2𝜋 − 𝜑𝑜 ).

Mueller matrix can be obtained as

P ≈

𝜌𝑑𝑇

+𝑇 + + ^𝑠𝑅+ + ^𝑠𝑠𝑅+ −𝜌𝑑𝑇 −𝑇 +𝛽 𝜌𝑑𝑇
−𝑇 +𝛼 0

−𝜌𝑑𝑇 −𝑇 +𝛽 ^𝑠𝑅
+ + ^𝑠𝑠𝑅+ 0 0

−𝜌𝑑𝑇 −𝑇 +𝛼 0 −^𝑠𝑅+ − ^𝑠𝑠𝑅+ 0
0 0 0 −^𝑠𝑅+ − ^𝑠𝑠𝑅+

 .
(13)

Since the light source has a linear polarizer at 0◦, the incident
light is linearly polarized so its Stokes vector is s𝑖 = [1, 1, 0, 0]⊤.
Plugging this into Equation (3) leads to the reflected Stokes vector s𝑜
as

s𝑜 = 𝑆Ps𝑖 = 𝑆


𝜌𝑑𝑇

+𝑇 + − 𝜌𝑑𝑇 −𝑇 +𝛽 + ^𝑠𝑅+ + ^𝑠𝑠𝑅+
−𝜌𝑑𝑇 −𝑇 +𝛽 + ^𝑠𝑅+ + ^𝑠𝑠𝑅+

−𝜌𝑑𝑇 −𝑇 +𝛼
0

 . (14)

Given the fixed polarization filters, our camera captures a four-
channel color image including four different polarization orienta-
tions. The Stokes image I can then be expressed as

I =


𝐼0
𝐼90
𝐼45
𝐼135

 =

1 1 0 0
1 −1 0 0
1 0 1 0
1 0 −1 0

 s𝑜 (15)

=
𝑆

2


𝜌𝑑𝑇

+𝑇 + − 2𝜌𝑑𝑇 +𝑇 −𝛽 + 2^𝑠𝑅+ + 2^𝑠𝑠𝑅+
𝜌𝑑𝑇

+𝑇 +

𝜌𝑑𝑇
+𝑇 + − 𝜌𝑑𝑇 +𝑇 −𝛽 + ^𝑠𝑅+ + ^𝑠𝑠𝑅+ − 𝜌𝑑𝑇 −𝑇 +𝛼

𝜌𝑑𝑇
+𝑇 + − 𝜌𝑑𝑇 +𝑇 −𝛽 + ^𝑠𝑅+ + ^𝑠𝑠𝑅+ + 𝜌𝑑𝑇 −𝑇 +𝛼

 .
While previouswork required a dense set of angular samples [Baek

et al. 2018], the four components of I provide valuable enough in-
formation about the pBRDF. First, 𝐼90 refers to the diffuse lobe, so
we define our first diffuse shading observation 𝐼𝑑 as

𝐼𝑑 = 𝑆𝜌𝑑𝑇
+𝑇 + = 2𝐼90 . (16)

Information about the diffuse term can also be obtained from the
subtraction of 𝐼45 and 𝐼135, which we define as a diffuse polarization
observation 𝐼𝛼 as

𝐼𝛼 = 𝑆𝜌𝑑𝑇
−𝑇 +𝛼 = 𝐼135 − 𝐼45 . (17)

initialize update P update N update X update P

Fig. 5. Overview of our method. Iteratively, we alternate joint estimations
of polarimetric SVBRDF P and shading normals N with reconstructions of
3D geometry X.

Last, by substituting 𝐼90 in 𝐼0, we can obtain a combination of
specular reflection, single scattering and oriented diffuse parameters.
We define this combination as the specular-dominant polarization
observation 𝐼𝑠 as

𝐼𝑠 = 𝑆
(
^𝑠𝑅

+ + ^𝑠𝑠𝑅+ − 𝜌𝑑𝑇 −𝑇 +𝛽
)
= 𝐼0 − 𝐼90 . (18)

In the following section, we show how to leverage these single-
image observations to optimize spatially-varying pBRDF parameters
and surface geometry from multiple views.

4 MULTIVIEW RECONSTRUCTION OF POLARIMETRIC
SVBRDF AND SHAPE

4.1 Overview
An overview of our method can be seen in Figure 5. Our input con-
sists of a set of 𝐾 unstructured polarimetric photographs I = {𝐼𝑘 }
taken with our portable hardware (Section 3.3) and interpreted
through our image formation model (Section 3.4). First, an initializa-
tion step linearizes 𝐼𝑘 and obtains camera parameters and a rough
base geometry using conventional 3D reconstruction techniques
(Section 4.2). We then iteratively reconstruct polarimetric SVBRDF
information P and shading normals N through inverse rendering
(Section 4.3), and then reconstruct detailed 3D geometryX by means
of Poisson surface reconstruction (Section 4.4). In the last step, we
update the polarimetric SVBRDF P from the final 3D geometry.

4.2 Initialization
From our cross-polarized diffuse observations in the captured data,
defined as 𝐼𝑑 in Equation (16), we first obtain a dense 3D point cloud
with normal information and camera poses, which will provide the
correspondences between 3D points and pixels in multiple views,
using Structure-from-Motion (SfM) [Schönberger et al. 2016]. To
mitigate the inherent reconstruction errors from SfM, we first create
a low-resolution mesh (27-level octree in the voxel grid) using the
screened Poisson surface reconstruction [Kazhdan and Hoppe 2013],
then subdivide it to obtain a finer mesh (29-level). This finer mesh is
used as the initial geometry of our iterative technique, andmight still
miss geometric details due to the limitations of SfM. The geometry
stage of our iterative algorithm (Section 4.4) recovers these details.

4.3 Optimizing Polarimetric SVBRDF and Normals
We jointly optimize polarimetric SVBRDF and normals by minimiz-
ing the sum of four loss terms as

min
[,𝜎𝑠 ,𝜌𝑠 ,𝜌𝑠𝑠 ,𝜌𝑑 ,n

(
_1L𝜓 + _2L𝑑 + _3L𝑠 + _4L𝜙

)
, (19)

where L𝜓 is the refractive index loss, L𝑑 is the diffuse loss, L𝑠 is
the specular and single scattering loss, and L𝜙 is the normal loss.
We set the weights to _{1,3} = 1, _{2,4} = 100. For efficiency, L𝑑
and L𝑠 are calculated by linear optimization, while L𝜓 and L𝜙 are
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computed by nonlinear optimization, using the sequential quadratic
programming method.

Refractive index loss L𝜓 . Existing approaches [Baek and Heide
2021; Baek et al. 2018] require dense angular samples, which force
fixed acquisition setups. Our novel refractive index loss overcomes
such angular density requirements, providing amore flexible capture
setup. The key insight is that the degree of polarization (DoP) of
the diffuse reflection depends on the refractive index and normal
orientation can be represented as a ratio of Fresnel transmission
functions (𝜓 = |𝑇 −/𝑇 + |). We thus define L𝜓 as a loss function over
DoP as

L𝜓 =
∑︁𝐾

𝑘=1
𝑤𝑣
𝑘

(
𝜓
(
[, \𝑜,𝑘

)
−𝜓

𝑘

)2
, (20)

where𝜓 is the predicted DoP value for the 𝑘-th view, represented
as |𝑇 −/𝑇 + |. Fresnel transmissions depend on normal orientation
\𝑜,𝑘 and index of refraction [ (both being optimized with this loss
function). The visibility weight 𝑤𝑣

𝑘
for this view is calculated as

𝑤𝑣
𝑘
= 𝑣𝑘/

∑𝐾
𝑖=1 𝑣𝑖 , where 𝑣 = {0, 1}.

Our input does not provide a direct observed DoP value 𝜓𝑘 ,
so we approximate it from our observations 𝐼𝑑 , 𝐼𝛼 , and 𝐼𝑠 (Equa-
tions (16), (17), and (18) in Section 3.4). Our diffuse Mueller matrix,
described in Equation (6), depends on two parameters: 𝛼 = sin(2𝜙),
and 𝛽 = cos(2𝜙). This leads to two diffusely polarized images
𝐼𝛼 = −𝑆𝜌𝑑𝑇 −𝑇 +𝛼 and 𝐼𝛽 = −𝑆𝜌𝑑𝑇 −𝑇 +𝛽 , from which diffuse polar-
ization can be obtained as Γ =

√︁
(𝐼𝛼 )2 + (𝐼𝛽 )2, and𝜓𝑘 becomes

𝜓 =

���� Γ
𝐼𝑑

���� = ����𝑆𝜌𝑑𝑇 +𝑇 −

𝑆𝜌𝑑𝑇
+𝑇 +

���� , (21)

where Γ and 𝐼𝑑 have their three color channels averaged into a single
value. For simplicity, note that we have removed the subindex 𝑘
referring to each individual view.
Different from 𝐼𝛼 and 𝐼𝑑 , 𝐼𝛽 cannot be directly obtained from

our input images. Instead, we obtain 𝐼𝛽 by subtracting the polari-
metric specular components ^𝑠𝑆𝑅+ and ^𝑠𝑠𝑆𝑅+ from our specular-
dominant polarization observation 𝐼𝑠 , as

𝐼𝛽 = 𝐼𝑠 − ^𝑠𝑆𝑅+ − ^𝑠𝑠𝑆𝑅+, (22)

where the parameters’ values come from the previous iteration. For
the first iteration, we approximate 𝐼𝛽 ≈ 𝐼𝑠 .

Diffuse Loss L𝑑 . We formulate our diffuse loss L𝑑 by comparing
the predicted diffuse image 𝐼𝑑

𝑘
with the captured image 𝐼𝑑

𝑘
for the

𝑘-th view as
L𝑑 =

∑︁𝐾

𝑘=1
𝑤𝑣
𝑘

(
𝐼𝑑
𝑘
− 𝐼𝑑

𝑘

)2
, (23)

where the Fresnel transmission in 𝐼𝑑
𝑘
, shown in Equation (16), is

computed from the refractive index of the previous iteration (initially
set to [ = 1.5). Losses of each color channel are summed together.

Specular and single scattering loss L𝑠 . Despite using multiple
photographs as input, the number of samples is often insufficient
to estimate per-vertex specular and single scattering parameters,
especially for very narrow specular lobes. To solve this, the approach
by existing reconstruction methods [Alldrin et al. 2008; Baek et al.
2018; Chen et al. 2014; Lawrence et al. 2006; Nam et al. 2018, 2016;Wu
and Zhou 2015; Zhou et al. 2016] is to obtain the specular parameters

of vertices with no suitable view by clustering vertices and assigning
them the same specular parameters, which is prone to appearance
parameter estimation errors due to imperfectness in the clustering
algorithm. We instead apply a novel specular augmentation strategy
to increment the number of per-vertex observations, by generating
virtual samples from the specular and single scattering parameters
of its local neighborhood.
Then, our specular and single scattering loss term is composed

of two parts. The first, as expected, is the difference between the
predicted specular and single scattering polarization 𝐼𝑠

𝑘
and the cap-

tured 𝐼𝑠
𝑘
for the 𝑘-th view, and the second is the difference between

the predicted specular and single scattering 𝐼𝑠𝑚 and the sample 𝐼𝑠𝑚
for a virtual𝑚-th observation, as

L𝑠 =
∑︁𝐾

𝑘=1
𝑤𝑣
𝑘

(
𝐼𝑠
𝑘
− 𝐼𝑠

𝑘

)2
+ _𝑔

∑︁𝑀

𝑚=1
𝑤𝑎𝑚

(
𝐼𝑠𝑚 − 𝐼𝑠𝑚

)2
, (24)

where 𝑤𝑎 is a normalized cos(\ℎ) weight, 𝑚 ∈ [1, ..., 𝑀] is the
virtual observation index (we set 𝑀 to 180 to cover 90◦), _𝑔 is the
specular augmentation loss weight, set to 0.1 so that the loss function
prioritices the match from real views over the virtual observations.
Losses for each color channel are summed together.
To generate these new virtual views 𝐼𝑠𝑚 , we assume that many

similar vertices share similar material features, and thus vertices
that share similar refractive index and diffuse albedo are more likely
to share also specular and single scattering properties. We therefore
define a four-dimensional feature vector that includes the refractive
index and all three channels of the diffuse albedo, and use 𝐾-means
to cluster vertices according to such features.

We then regress the specular and single scattering model param-
eters for each cluster by minimizing

min
[,𝜎𝑠 ,𝜎𝑠𝑠 ,𝜌𝑠 ,𝜌𝑠𝑠 ,Δ\ℎ

(
L𝜓 + L′

𝑠 + L\
)
, (25)

where L′
𝑠 represents the first loss term only in Equation (24), Δ\ℎ is

a variable that accounts for potential \ℎ errors in the measured
samples (to which specular parameters are specially sensitive), and
L\ = (Δ\ℎ)2 is a regularization loss for Δ\ℎ . This yields specular
parameters per cluster. In contrast to previous works [Baek et al.
2018; Nam et al. 2018], the optimized specular parameters are not
directly set for the vertices (which is very prone to errors over edges
and high-frequency textures) but used to generate novel views to
include in the loss function. We render these new views as per-
vertex 𝐼𝑠 observations distributed uniformly in \ℎ from zero to 90◦
at 0.5◦ intervals and include them into the loss function as defined
in Equation (24).

Last, the calculation of the loss function for the real views requires
the evaluation of the specular-dominant observations 𝐼𝑠 as in Equa-
tion (18). 𝐼𝑠 includes a term −𝜌𝑑𝑆𝑇 −𝑇 +𝛽 which is noisy, relatively
weak and cancels out at different views, so we approximate it to zero.
We assume dielectric surfaces, and thus we use a single channel for
specular albedo and three channels for the single scattering albedo.

Normal loss L𝜙 . The zenith angle \𝑜 of the normal is already
accounted for by the aforementioned loss terms for the index of
refractive, diffuse, and specular polarization, since it affects the
Fresnel terms. Therefore, our normal loss term deals only with the
azimuth angle 𝜙𝑜 . However, 𝜙𝑜 contains an ambiguity of 𝜋 radians,
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which leads to errors in the reconstructions; this is known as the
azimuthal ambiguity [Atkinson and Hancock 2006; Kadambi et al.
2015]. In our work, we minimize the errors caused by this ambiguity
leveraging our multiple observations from different view angles.
Our normal loss is formulated as

L𝜙 =
∑︁𝐾

𝑘=1
2𝑤𝑝

𝑘

(
1 − cos

(
2𝜙𝑜,𝑘 − 2𝜙𝐼 ,𝑘

))
, (26)

where 𝜙𝑜,𝑘 is the azimuth angle of the estimated normal at the 𝑘-th
view and𝜙𝐼 ,𝑘 is the observed azimuth angle from diffuse polarization
computed by 2𝜙𝐼 ,𝑘 = tan−1 (𝐼𝛼

𝑘
/𝐼𝛽
𝑘
). The diffuse polarization weight

𝑤
𝑝

𝑘
= 𝑤𝑣

𝑘
Γ2
𝑘
prioritizes stronger diffuse polarization signals.

4.4 Optimizing Geometry
After estimating the polarimetric SVBRDF P and shading normals N,
we then reconstruct the geometry X so that it agrees with the
polarimetric observations. We update this geometry with estimated
shading normals, following a recent work [Nam et al. 2018]. Since
the shading normalsNmay contain high-frequency noise, we choose
the screened Poisson method [Kazhdan and Hoppe 2013], designed
to reconstruct implicit surfaces in a voxel grid in a coarse-to-fine
approach. This leads to a robust performance when integrating
noisy surface normals into 3D geometry.
In the last iteration, after the denoised final shading normals N

are obtained from the final geometry X, we only optimize the po-
larimetric SVBRDF P one last time.

5 IMPLEMENTATION DETAILS
Experimental setup. We build our capture setup from two off-the-

shelf components: a polarization machine vision camera (LUCID
PHX050S-QC), and a flashlight (Nikon Speedlight SB24) covered
with a linear polarization film. The two components are supported
together with a custom 3D-printed structure (see Figures 1 and 2b).
To properly capture HDR specular reflections we rely on multi-
bracketing [Debevec and Malik 1997], using three flash levels at
{1/4,1/8,1/16} of its maximum intensity per view.We capture around
100 and 300 views per object. The exact number of views for each
of our results can be found in the supplemental material.

Calibration. To estimate the exact geometric relation between
the camera and the flash (since they cannot be perfectly coaxial),
we use the mirror reflections of the flashlight on multiple stainless
spheres with a known radius. We place them on a grid at regular
25mm intervals, and estimate the light position with respect to the
camera by accounting for the trigonometry of the specular reflec-
tions, following Lensch et al. [2003]. In our device, the separation
between the camera and the light source is 5 cm, so the angle be-
tween light and camera rays is ∼3.5◦ when the captured object is
at a distance of around 80–100 cm. The intrinsic geometry of the
polarization camera is calibrated using the method by Zhang [2000].
Last, we also calibrate color reproduction by estimating a linear
matrix from RAW RGB channels to the sRGB color channels using
a Macbeth ColorChecker. Note that these calibrations only need to
be performed once per device.

Optimization. The size of our reconstructed models varies be-
tween 500, 000 and 800, 000 vertices, with pBRDF parameters stored

as per-vertex attributes. We optimize Equation (19) by means of
a nonlinear optimizer, sequential quadratic programming (SQP),
using fmincon in MATLAB. One iteration takes about one hour in
a desktop computer with an Intel i9-12900 CPU 3.2 GHz and 64 GB
of memory and an NVIDIA Titan RTX GPU (similar to previous
approaches). Final results are produced after ten iterations.

6 VALIDATION

6.1 pBRDFs Models
First, we evaluate the accuracy of our proposed physically-based
and practical pBRDFmodels against actual pBRDFmeasurements by
Baek et al. [2020], both at 111◦ near the Brewster angle of the object,
and at 9◦, closest to our coaxial setup. Figure 6 shows the resulting
Mueller matrices, along with false-color difference maps. Despite
its simplifications, our practical model offers accurate results while
being suitable for optimization.

6.2 Single Scattering
Our new single scattering component, as defined by Equation (11), is
different from the specular component in two ways: first, it presents
a colored albedowhich is different from the diffuse component, while
the specular reflection retains the color of the illumination. Second,
it has an independent roughness parameter, which approximates
two Fresnel transmissions and a single subsurface interaction with
an unknown phase function. The combination of colored albedo and
independent roughness leads to clearly different single scattering
and specular components in most scenes. Figure 7 shows side-by-
side comparisons between captured polarimetric data from a red
billiard ball [Baek et al. 2020] and the results optimizing our practical
pBRDF model (Section 3.4). We use the measurements closest to the
coaxial angle (9◦ between the light and the sensor in [Baek et al.
2020], compared to 3.5◦ in our setup). This shows a good agreement
with measured data.

6.3 Index of Refraction
The index of refraction is the most unstable parameter when opti-
mizing our model, since it affects all the lobes of the polarimetric
SVBRDF in different ways, with ambiguities regarding how its vari-
ation affects appearance. We validate the accuracy of our optimized
index of refraction against real-world materials from the existing
pBRDF dataset of Baek et al. [2020]. As input, we use synthetic
views generated from the captured dataset. The ground truth index
of refraction from measured data is obtained from the Brewster
angle as explained in the comprehensive work of Collett [2005].

Table 1 shows the results. Despite needing only four linear polar-
ization measurements per view instead of the dense measurements
of full ellipsometry, the accuracy of our method is consistently high.

6.4 Impact of Specular Augmentation
Next, we evaluate the impact of our specular augmentation algo-
rithm (Section 4.3). Figure 8(a) shows one of our input photographs;
for this particular view, there are almost no specular reflections in
the vertex indicated by the arrow. Figure 8(b) shows a scatter plot of
the captured specular-dominant samples 𝐼𝑠 , where each black dot
indicates a specular observation projected onto the normal space
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Fig. 6. Validation of our pBRDF models by comparing the resulting Mueller matrices, at two different angles. (a) Ground-truth, captured data of an organic
thermoplastic polymer object (PEEK) [Baek et al. 2020]. (b) Our full pBRDF model and its difference map with respect to the ground truth. (c) Our practical
model and its difference map. Despite the simplifications introduced in our practical model, it offers accurate results while being suitable for optimization.

(b) Cross-polarized 
diffuse I d

(c) Single scattering, 
spec., & diff. pol. I d

(d) Rotated diffuse 
polarization only I 𝛼𝛼

(e) Single scattering 
& specular M(1,1)

O
ur

 m
od

el

(a) Unpolarized 
intensity M(0,0)

M
ea

su
re

m
en

t

20×20× 100×

100×20×20×

Fig. 7. Top: measured polarimetric data from a red billiard ball [Baek et al.
2020] (the rainbow speckles are caused by lens flare effects in the capture
system). Bottom: results from our model. Columns (c), (d), and (e) have been
amplified by the indicated factors for visualization purposes.

Table 1. Comparison between the ground truth index of refraction of several
objects measured by Baek et al. [2020] and our optimized results.

Material [𝑚 [𝑜𝑢𝑟𝑠 error
White billiard 1.463 1.465 0.10%
Red billiard 1.485 1.476 0.61%
Green billiard 1.503 1.476 1.80%
POM 1.462 1.457 0.34%
Fake pearl 2.295 2.244 2.22%
Yellow silicone 1.303 1.337 2.61%
PEEK 1.663 1.617 2.77%
Average 1.49%

of the vertex in the 3D object. The blue line shows the profile of
the resulting regressed specular reflection, which would translate
into an overly diffuse appearance. The red line represents the opti-
mized profile after our specular data augmentation method, which

0 10 20 30 40 50 60 70 80 90
h (deg)

0
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0.2
0.3
0.4
0.5
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0.8

Is

I s observation
w/o specular augmentation 
w/ specular augmentation

(a) (b)

Fig. 8. The sparse nature of our input images would lead to wrong esti-
mations of specular reflections. (a) Example input image without specular
information in the highlighted area. (b) The resulting specular reflection
functions with and without data augmentation (red and blue lines, respec-
tively).

recovers the missing specular information and better fits the sparse
captured data. For this owl scene, we obtain a PSNR of 34.0 dB with
our proposed data augmentation, which drops to 30.8 dB without it.

7 RESULTS

7.1 Comparisons with Other Methods
We first compare our shape and appearance reconstructions against
two recent state-of-the-art methods. Nam et al. [2018] reconstruct
3D models with conventional SVBRDF from multiview stereo as
input, while Baek et al. [2018] estimate polarimetric SVBRDF and
surface normals from a given geometry in a single view. Figure 9
shows the results when generating novel views under different illu-
mination. Nam’s method estimates the normal distribution function
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OursBaek et al. 2018Nam et al. 2018Photograph and scanned geometry

Fig. 9. Comparison of our method with two state-of-the-art techniques: a multiview 3D reconstruction method [Nam et al. 2018], and a polarimetric
reconstruction method [Baek et al. 2018]. The former yields visible overfitting errors in the reflectance, with overly smooth geometric details (see also Figure 10).
The latter suffers from overfitting and clustering artifacts in reflectance, as well as geometric distortions in novel views.

Ground truth Nam et al. (2018) Ours

Fig. 10. Accuracy of our 3D reconstructions against a state-of-the-art mul-
tiview reconstruction method [Nam et al. 2018]. Leveraging information
about the polarization of light allows us to recover more geometrical details.

as a tabulated function, which is convenient for representing spec-
ular reflection but it often causes visible artifacts in the recovered
reflectance, due to overfitting during optimization. This is clearly
visible in the eye region and, to a lesser extent, in the swirling pat-
terns on the body. Baek’s method, on the other hand, also suffers
from overfitting artifacts in the reflectance, while showing addi-
tional clustering artifacts as well. Moreover, being a single-view
method, it cannot reconstruct the full 3D geometry, which leads
to visible distortions when rendering novel views. In contrast, our
method does not suffer from overfitting nor clustering artifacts in
the reflectance, while our geometric reconstruction is more detailed,
and closer to the ground truth from a commercial 3D laser scanner
(NextEngine).

We further compare the accuracy of our resulting 3D reconstruc-
tions against the state-of-the-art multiview technique of Nam et al.
[2018]. As shown in Figure 10, our method recovers more detailed
geometry, since it leverages polarization information at different
angles, while Nam’s work only takes into account variations in the
intensity of light.

7.2 Real-World Objects
We have captured geometry and polarimetric SVBRDF of several
real-world objects with our device and our sparse ellipsometry ap-
proach. Figure 11 presents results for two objects; more results with
different objects are available in our supplemental material, along
with videos showing different poses and dynamic illumination. The
angle of linear polarization (AoLP) and the degree of polarization
(DoP) are visualized as proposed by Wilkie and Weidlich [2010].
The negative components of the 3D Mueller matrices for all objects
are also included in the supplemental material.

7.3 Application: Material Identification
Polarimetric appearance information may be used to identify or
discriminate betweenmaterials. As an illustrative example, Figure 12
shows the results of using our sparse ellipsometry technique on
a real orange and a fake one made of plastic. The first column
shows the two objects, whose appearance looks almost identical. The
second column shows how the single scattering component of the
real fruit is significantly higher than the plastic fake, which is hollow
inside. The third column shows the angle of linear polarization under
linearly polarized light (0◦). The strong single scattering in the real
orange preserves the polarization of the incident light, which is not
the case for the fake one.

8 DISCUSSION
Circular polarization. Our handheld setup captures four channels

of linear polarization (0◦, 45◦, 90◦, and 135◦) and illuminates with a
flashlight with fixed orientation (0◦). Therefore, the effect of circular
polarization (𝑠3 of the Stokes vector) is not taken into account,
which constitutes the main limitation of our method. Such circular
polarization could be included by installing a retarder in front of
the camera, but at the cost of losing one of the linear components
(swapping 𝑠2 and 𝑠3, for instance). Another possibility would be
to install and rotate optical components, which is something we
avoid by design to keep our device truly portable and handheld.
Furthermore, retarders have a different effect per wavelength, so
using them would require additional color calibration, making our
approach less practical.
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Fig. 11. Results for two examples of real objects (refer to the supplemental material for other objects and videos). (a) Captured photograph. (b) Diffuse albedo.
(c) Single scattering. (d) Specular reflections. (e) Our reconstruction. (f) Novel light and view renderings. (g) Angle of linear polarization image under linearly
polarized light. (h) Degree of polarization. (i) Index of refraction. (j) 3D geometry including normal information. (k) 3D Mueller matrix (positive) for a single
view. Note that the non-diagonal components have been multiplied by 10, while the M{1,1} and M{2,2} components have been multiplied by 4 for visualization
purposes.
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Fig. 12. Comparison of polarimetric information for a real (top) and a fake
orange (bottom). Despite their similar appearance, polarimetric information
allows us to distinguish between the two: the real orange presents a stronger
single scattering component while preserving the polarization of incident
light (as shown by the angle of linear polarization, AoLP).

Since circular polarization is omitted, our technique cannot es-
timate the appearance of metallic surfaces nor multiple scattering
effects accurately. Nevertheless, geometry information strongly de-
pends on linear polarization; dropping some of its components to
add additional circular polarization information would lead to worse
geometrical reconstructions, which would in turn lead to poor re-
flectance estimations. Furthermore, our polarimetric SVBRDF model
is based on dielectric surfaces including Fresnel reflectance and
transmittance, for which linear polarization also plays a signifi-
cant role. As observed in the measured pBRDF dataset of Baek et
al. [2020], the amount of circular polarization is very small in a
near-coaxial setup, for a dielectric surface illuminated with linear
polarization. In any case, we expect our method to degrade grace-
fully with increasing circular polarization.

Polarimetric SVBRDF model. An interesting finding of our opti-
mization procedure is that the value of the single scattering rough-
ness 𝜎𝑠𝑠 consistently converges to a high value (> 0.9). This is to be
expected in our model since 𝜎𝑠𝑠 represents the accumulated rough-
ness of two rough Fresnel transmissions and a phase function, so
it stands to reason that it behaves as an almost diffuse lobe with
specular-like orientation and polarimetry. Leveraging this, 𝜎𝑠𝑠 could
potentially be fixed to a high value during inverse rendering, saving
up to an estimated 56% in computation time with no significant ac-
curacy penalty. This strategy, while reasonable, has not been applied
to any result of this paper. As a proof of concept for the owl scene,
fixing 𝜎𝑠𝑠 = 1 leads to a PSNR of 33.9 dB compared to 34.0 dB using
our full pipeline while fixing 𝜎𝑠𝑠 = 0.9 yields a PSNR of 34.2 dB.

Impact of vertex resolution and initial geometry. Vertex resolution
is determined by the depth of the octree in the screened Poisson sur-
face reconstruction method, which we set to 9. This depth provides
an adequate tradeoff between geometry resolution and convergence
time. Our inverse renderingmethod optimizes per-vertex reflectance
and geometrical properties (position and normals) with small-scale

geometry shifts for mesoscale details. Similar to other state-of-the-
art methods [Nam et al. 2018], our results would degrade with poor
initial geometry. In all our experiments, Poisson surface reconstruc-
tion has consistently provided a good enough initial geometry, but
other methods (i.e., ball pivoting or visual hull) could be used if
needed.

Failure cases. While robust, our method is not free of limitations.
If the captured surface is extremely dark our DoP calculation will
be affected by noise, which in turn degrades the accuracy of the
refractive index. Also, in situations in which the specular and single
scattering components cannot be easily disambiguated (e.g., a white
rough surface or a very smooth surface with dominant specularity),
insufficient observations will yield imperfect separations. This may
lead to dark blotches, as the single scattering image in Figure 11
(turtle scene, c) shows.

Table 2. Notations used in this paper.
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M General Mueller matrix
P pBRDF, a reflectance function of (𝝎𝑖 ,𝝎𝑜 )
P𝑑,𝑠,𝑠𝑠 Diffuse/specular/single scattering pBRDF
C𝑖→𝑛 Coordinate conversion Mueller matrix from light to plane of incidence
C𝑛→𝑜 Coordinate conversion from plane of incidence to camera system
F𝑇
𝑖,𝑜

Incident/exitant Fresnel transmission matrix
F𝑅 Fresnel reflection matrix
D depolarization matrix
s General Stokes vector consisting of four elements: [𝑠0, 𝑠1, 𝑠2, 𝑠3]
si,o Stokes vectors of the light incident/exitant to an object surface
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y𝑖,𝑜 𝑦-axis of the light/camera coordinate system
n Normal vector
𝝎𝑖 Incident light vector
𝝎𝑜 View vector
h Half way vector
\𝑖,𝑜 Zenith angle between normals and the incident/exitant light
\ℎ Zenith angle between normals and halfway vector
\𝑑 Zenith angle between incident light and halfway vector
𝜙𝑖,𝑜 Azimuth angle between the object plane of incidence

and the 𝑦-axis of the incident/exitant
𝜑𝑖,𝑜 Azimuth angle between the micro-facet plane of incidence

and the 𝑦-axis of the incident/exitant light
𝛼𝑖,𝑜 𝛼𝑖,𝑜 = sin(2𝜙𝑖,𝑜 )
𝛽𝑖,𝑜 𝛽𝑖,𝑜 = cos(2𝜙𝑖,𝑜 )
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𝜌𝑠 Specular albedo
𝜌𝑠𝑠 Single scattering albedo
𝜎 Surface roughness
[ Refractive index
𝐺 Smith’s shadowing/masking function
𝐷 GGX micro-facet distribution function
𝑆 Light attenuation by shading, 𝑆 =
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𝜓 Degree of polarization
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𝑇
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Fresnel incident transmission coefficients
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9 CONCLUSION
Our sparse ellipsometry technique allows us to estimate both shape
and polarimetric SVBRDF with high accuracy, yielding results that
are on par with full ellipsometry, despite needing only a few min-
utes (instead of days) of acquisition time, and without the need for
complex tabletop capture setups. Instead, we just require a handheld
camera setup with fixed polarizing optical elements, with which a
series of unstructured photographs are taken. Moreover, our work
overcomes the main limitations of two recent related methods that
deal with polarization, lifting both the single-view constraint of Baek
et al. [2018], and the single-material restriction of Baek et al. [2020],
thus allowing for the first time to capture simultaneously polari-
metric SVBRDF and 3D geometry. We expect that our approach will
foster the development of novel accurate polarimetric imaging ap-
plications with portable devices, not limited to carefully calibrated
lab conditions.
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