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Abstract. Omnidirectional cameras are commonly equipped with fish-
eye lenses to capture 360-degree visual information, and severe spherical
projective distortion occurs when a 360-degree image is stored as a two-
dimensional image array. As a consequence, traditional depth estimation
methods are not directly applicable to omnidirectional cameras. Dense
depth estimation for omnidirectional imaging has been achieved by ap-
plying several offline processes, such as patch-matching, optical flow, and
convolutional propagation filtering, resulting in additional heavy compu-
tation. No dense depth estimation for real-time applications is available
yet. In response, we propose an efficient depth densification method de-
signed for omnidirectional imaging to achieve 360-degree dense depth
video with an omnidirectional camera. First, we compute the sparse
depth estimates using a conventional simultaneous localization and map-
ping (SLAM) method, and then use these estimates as input to a depth
densification method. We propose a novel densification method using the
spherical pull-push method by devising a joint spherical pyramid for color
and depth, based on multi-level icosahedron subdivision surfaces. This
allows us to propagate the sparse depth continuously over 360-degree
angles efficiently in an edge-aware manner. The results demonstrate that
our real-time densification method is comparable to state-of-the-art of-
fline methods in terms of per-pixel depth accuracy. Combining our depth
densification with a conventional SLAM allows us to capture real-time
360-degree RGB-D video with a single omnidirectional camera.
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1 Introduction

Omnidirectional cameras have been popularly used for capturing 360-degree im-
ages and are essential for virtual reality (VR)/augmented reality (AR) appli-
cations to mix rendered virtual objects in real scenes. Omnidirectional cameras
are equipped with fisheye-lenses to capture a very wide field of view (FOV) with
even more than 180 degrees for each lens, yielding 360-degree images with a
single camera. Different from ordinary 2D images, 360-degree images have spe-
cial properties that give rise to new challenges in terms of image processing.
First, in order to store 360-degree image data in the conventional 2D image ar-
ray, a geographic projection mapping between spherical and image coordinates
is required additionally: e.g., equirectangular projection, latitude-longitude pro-
jection, cube-map projection, concentric projection, etc. [22]. However, when
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Fig. 1. (a) shows an example of a sparse depth map as input obtained from a visual
SLAM method [5] and an equirectangular color image captured by an omnidirectional
camera. (b) presents a densification result in two different orientations using the fast
bilateral solver [1] on the equirectangular depth map. When the 360-degree image is
rotated, the simple densification on the equirectangular image suffers from the seam
artifacts. (c) shows our densification result. Our densification does not suffer from seam
artifacts when the depth map is rotated in a different orientation. The closeup of the
white/beige-colored wall compares the artifacts for the two methods.

360-degree image data are geographically projected and stored as a 2D image
array, severe geometrical warp inevitably occurs in the stored 360-degree im-
age; for example, a straight line of the object may appear warped like an arc
in the equirectangular image (see the white arc in the middle in Figure 1 as
an example), where certain parts are distorted, enlarged, or shrunk unevenly
and nonlinearly depending on their geometric positions. In particular, spherical
distortion in geographic projection mapping is a severe problem when applying
existing image processing operators for 360-degree images as they have been
developed for ordinary 2D images. These challenges have been resolved by addi-
tionally applying several offline processes, such as patch-matching, optical flow,
and convolutional propagation filtering, resulting in additional heavy compu-
tation. To the best of our knowledge, no fast depth densification method for
360-degree images is available yet.

Second, the ordinary 2D image data have four boundaries: the leftmost, right-
most, topmost, and bottommost ends of the image. In contrast, the 360-degree
image data have no ends; i.e., parts of the image are circularly connected without
ends. For example, when a patch-wise operator is applied for depth densifica-
tion on an unfolded 360-degree image (such as an equirectangular image, shown
in Figure 1), the leftmost and rightmost parts are different after applying the
densification operator. The difference becomes clear when the processed depth
map is wrapped in the 360-degree image data. The traditional algorithms are
not free from the inconsistency artifacts because they cannot satisfy the circular
constraints when the results are wrapped in 360-degree images.

Figure 1 compares depth densification results from the sparse depth input
(a) using a state-of-the-art method, the fast bilateral solver [1] (b) and ours
(c). The top rows of (b) and (c) show densification results by two different
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methods, and the bottom rows below present 180-degree rotated images of the
same scene. The top depth map in (b) is densified from the left sparse, an
equirectangular depth map by the densification method, and the map below
in (b) shows the 180-degree rotation of the same propagated depth map. Note
that the leftmost and rightmost regions indicate the same area, the white/beige-
colored wall, in (b) and (c). When the resulting 360-degree images are rotated,
the näıve densification method presents seam artifacts on the stitched area due
to inconsistent computation over edges.

In this work, we propose an efficient dense densification method specially
designed for omnidirectional imaging such that it allows the 360-degree dense
depth video to be captured with a single omnidirectional camera. First, we obtain
sparse depth estimates per each subframe from the input 360-degree video using a
real-time simultaneous localization and mapping (SLAM) method [5] as input for
our densification method. As our key contribution, we introduce a novel spherical
pull-push method by means of a joint spherical pyramid for color and depth
information, based on multi-level icosahedron subdivision surfaces. Our method
accounts for not only the aforementioned characteristics of 360-degree images
(i.e., distortion and circularity), but also is computationally efficient. It takes
just an additional 15 milliseconds for propagating the sparse depth estimates
to every pixel with awareness of edge structures using a conventional GPU.
Combining our depth densification with the conventional SLAM allows us to
capture 360-degree dense depth video in real-time with a single omnidirectional
camera.

2 Related Work

Multi-camera methods In order to cover the entire field of view in 360-degree
angles, several multi-camera omnidirectional methods have been proposed. They
are equipped with an array of multiple cameras with ordinary lenses on a circle
structure [2, 24]. They then apply the traditional stereo matching algorithm,
assuming a cylindrical projection model with an ordinary field of view. They can
search stereo correspondence based on epipolar geometry through rectification.
However, these methods can capture depth along the azimuthal angles only.
Their results cannot obtain complete 360-degree depth information, due to the
lack of cameras and image formation at the top and bottom directions.

The form factor of multi-camera systems is significantly increased by having
many cameras and consequently they are not portable. With efforts focused on
reducing the form factor, multiple fisheye lenses have been installed in omnidirec-
tional camera systems [16–18]. The FOV of fisheye lenses is significantly larger at
about 180◦ – 190◦ than those of ordinary lenses. Thus the pinhole-based perspec-
tive projection model is invalid with fisheye lenses. They, therefore, employ the
spherical rectification method, which is devised on the inverse-equirectangular
projection model, a.k.a. the latitude-longitude (LL) projection model. On the
rectified images in the spherical domain, they use the conventional stereo algo-
rithm, scanning stereo correspondence along the horizontal line on a pair of LL
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projection images. They produce a complete 360-degree depth map, but the com-
putation is time consuming. For instance, Lin et al. [18] took about 12 minutes
for rectification and depth estimation for processing one 360-degree image.

Single-camera methods Recently, extensive efforts have been made to enable
monoscopic 360-degree depth imaging. Caruso et al. [3] introduced a visual
SLAM method for a hemispherical fisheye-lens camera that covers 185◦ angles.
They estimate sparse depth points and propagate them partially while tracking
the camera motion. Their method is devised for navigation using a fisheye-lens
camera and therefore they only provide partially depth information, which is
not applicable for 360-degree image-based rendering. Im et al. [12] and Huang
et al. [11] make use of a single 360-degree RGB camera (equipped with two
front/back fisheye lenses). They both take video frames as input and apply
the structure-from-motion algorithm to estimate the camera pose parameters.
Im et al. densify the sparse depth using the sphere-sweeping method based on
the stereo algorithm. Huang et al. propagate the sparse depth using Delaunay
Triangulation-based densification [21]. However, similar to the previous spherical
stereo methods, these monoscopic methods also require more than 10 minutes
to densify the sparse depth for one omnidirectional depth map. The proposed
method is 40,000 times faster than the state-of-the-art methods of omnidirec-
tional depth densification, reducing the computational time from 10 minutes to
15 milliseconds.

Depth densification for traditional 2D images Depth densification is a long-
lasting problem and has been researched for many years in computer vision. For
brevity, we simplify the overview of depth densification methods for traditional
2D images. Sparse depth information as points or edges has been propagated to
every pixel in a dense depth map using the colorization solver [15], the guided
image filter [9], or the fast bilateral solver [1]. Different from the simple inter-
polation of sparse point, the main objective of these methods is to densify the
sparse information while preserving sharp edges of objects in the scene. Densifi-
cation is time consuming in nature [15, 8]. To address the speed, a fast bilateral
solver [1] and a fast depth densification [10] were also proposed for traditional 2D
images, in addition to an optimization approach [8] and neural network-based
inference [19, 4, 13]. However, all these methods are suitable for traditional 2D
images, and are not directly applicable for the projected views of 360-degree im-
age data, resulting in inconsistency artifacts (as shown in Figure 1). In contrast,
we propose a novel depth densification method using a joint spherical pyramid
on a multiscale architecture with icosahedron subdivision, which satisfies the
characteristics of 360-degree images.

3 Omnidirectional Depth Densification

3.1 360-degree Sparse Depth Estimation

We capture 360-degree video using a conventional omnidirectional camera and
then obtain sparse depth information and extrinsic camera parameters for each
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frame using a visual SLAM method [5]. We use the sparse depth information of
the 360-degree depth map as input for our densification method.

360-degree to 2D images The visual SLAM method that we used is a fast open
source method, but is designed for traditional 2D images [5], rather than 360-
degree images. The camera stores the input video in the equirectangular format.
When the SLAM method runs on the original format of 360-degree video, the
number of detected features decreases significantly due to geographic distor-
tion by spherical projection. To address this challenge, we project the input
360-degree video frames to the cube-map representation model, as shown in Fig-
ure 2. We first divide each input 360-degree image into six-face images that look
outward in six orthogonal directions to each other in the spherical domain.

Confidential 1
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Fig. 2. (a) An equirectangular image that represents a 360-degree image. (b) A sphere
mapping of the equirectangular image. (c) Projection from the sphere to a cube. (d) A
cube map of the 360-degree image. (e) The extension of each face with FOV margins
for robust depth estimation near borders.

Depth estimation It is worth noting that when we subdivided and projected to
six faces (shown in (d)) and ran the SLAM method for six cameras toward each
face, we found that SLAM features cannot be captured well near square boarders
of each face. We extended the camera FOV from 90 degrees to 102 degrees for
each face direction. Once we could obtain features well within the square face,
we cut out the extra margins when they were combined every detected feature
to a 360-degree depth map via the spherical representation. However, since we
estimate sparse depth on each face separately, the depth scales from each face
camera may be different from each other. Thus we normalize depth values in each
face camera using the magnitude of the six estimated camera translation vectors
and depth values overlapped in the extra margins. This allows us to capture
sparse features well with the omnidirectional camera input and traditional 2D
SLAM method. This preprocess can be substituted with any available 360-degree
SLAM method [3].

3.2 Omnidirectional Depth Densification

Now we describe a fast depth densification method that densifies the sparse
depth to obtain a complete 360-degree depth map using our spherical pull-push
algorithm.
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Joint Spherical Pyramid Since we estimate the sparse depth for the six faces
in the cube map, we then project them to the unit sphere domain, as shown
in the top-left sphere in Figure 3(a). The spherical image pyramid was initially
proposed to achieve scale-invariance for effectively detecting visual features in
omnidirectional SLAM methods [7, 23]. In contrast, we devise a novel spherical
architecture for fast depth densification. We propose a joint spherical pyramid
that includes multiscale color and depth information in the spherical domain
by subdividing icosahedron in multiple resolutions, where each level of pyramid
corresponds to each level of subdivision.

Figure 3(a) shows an example of our joint spherical pyramid. For example,
level 0 represents a 20-face icosahedron and level 1 represents an 80-face struc-
ture1. The number of triangles increases by four times when the level increases;
i.e., four triangles in level n+1 corresponds to one triangle in level n (see Fig-
ure 3b). Suppose we subdivide the 20-face icosahedron up to the 8th level. The
number of polygons increases to 20×48= 1,310,720 faces, the number of which is
similar to the number of pixels in a cube map with 6 faces of each face resolution
of 480×480 (1,382,400 pixels in total). We set the finest level of subdivision to
level 8 for our experiment.

1

· · ·

· · ·

· · ·

· · · Level 0

Level 1Level 4Level 8
(a) Spherical pull push (b) Filling empty triangles using pull push

empty
empty

PushPull

Pu
ll

Pu
sh

Le
ve

l n
Le

ve
l n

+1

Fig. 3. (a) Spherical pull-push algorithm using multiple subdivision levels of icosahe-
dron. (b) Four triangles in the current level corresponds to one triangle in the upper
level. We compute the mean of existing values in the pull phase, and fill empty triangles
with the mean value in the push phase.

Lookup tables Our method allows for precomputing the geographic relationship
between pixels and polygons of the spherical pyramid. We make use of two
precomputed lookup tables: (a) each pixel in the cube map to each polygon in
each level of the spherical pyramid, and (b) nearest neighbors for each polygon
at each level. Unlike in 2D images, we need to define the neighbor set N with
nearest neighbors as we use the spherical structure with triangle polygons. Since
we know every 3D position of triangles on the unit sphere, we can find neighbors
by calculating the Euclidean distance. The number of polygons is very large in

1 Note that contrary to the labeling convention of the image pyramid, we label each
level from the coarse to fine level in ascending order, following the subdivision la-
beling convention.
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Fig. 4. (a) shows the sparse depth input. (b) presents the initial depth map filled by
the pull-push process. (c) In the push phase, we refine the initial depth map using the
joint bilateral filter at each level to remove triangle artifacts, starting from level 5 to 8.
It refines and preserves edges in the final depth map. (d) shows the guide color images
used for filtering.

our case. Thus, we precompute the neighbors using an approximating nearest
neighbor algorithm [20] and save them as a lookup table for each level in advance.

Spherical Densification Our densification procedure consists of two main
parts: First, we fill empty depth pixels coarsely using the pull-push algorithm [6]
in our joint spherical pyramid. Second, we refine the coarsely filled depth values
to have fine edge details with joint bilateral filtering [14] at each fine level of the
spherical pyramid.

Our pull-push algorithm has two phases, the pull phase and the push phase.
In the pull phase, we compute the average of existing depth values for every four
triangles at the level n+1 and assign the average to the polygon at the level n.
See Figure 3(b). In case none of the four triangles at the level n+1 have depth
values, we treat the triangle as empty at the n-level. We found that setting level
0 with the 20-face icosahedron can fill every polygon at the end of the pull phase
with natural scenes. In the push phase, we fill every empty triangle in the n+1
level with the average depth values of the coarse triangles in the n level. Note
that we do not change existing values of the triangle in the push phase. This
allows us to fill empty regions while preserving low-frequency edge structures.

Edge-aware filtering In order to preserve high-frequency details, we refine depth
values with joint bilateral filtering [14] on the spherical space at each level before
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pushing the current depth values to the next finer level. For each triangle p and
its neighbor triangle q in the neighbor field N , the refined depth D̃p is calculated
by the Gaussian weighted sum of neighbor depths Dq. We employ two different
weights: spatial distance in the spherical space and the color difference as follows:

D̃p =
1

Wp

∑
q∈N

exp

(
−
‖Xp −Xq‖22

2σs
−
‖Cp − Cq‖22

2σc

)
, (1)

where Xp and Cp are a 3D coordinate vector and an RGB color vector of triangle
p, respectively. In addition, σs and σc are the parameters for spatial distance and
color difference, respectively, and Wp is the normalization constant, the sum of
the products of the Gaussian weights. We found that filtering the coarse depth
information at level 0 to 4 does not provide positive effects because each triangle
covers an excessively large area. Thus, we apply the filter from level 5 to level 8
(finest) only. Lastly, we reproject the dense depth values in the cube map into
the final output format, the equirectangular image. In addition, we apply the
temporal median filter among three neighboring frames (previous/current/next)
to reduce noise in the densified depth video. See Figure 4 for an example.

4 Results

We tested our algorithm with 360-degree videos (1920×960 pixels) captured by
a Ricoh Theta camera. Our algorithm is implemented using C++ with CUDA.
We used a machine with an Intel i7-6700 4.00 GHz processor with 32 GB RAM
and NVIDIA GeForce GTX 1080 Ti. We configured a total of eight levels of
subdivisions of an icosahedron to compose the joint spherical pyramid. In the
push phase, the joint bilateral filter is applied from level 5 to level 8 only. The
color weight parameter σc is set to 4.02 and the spatial parameter σs is set
to 40.2. N is set to 500 to ensure the filter preserves edges effectively. Our
algorithm takes less than 15 milliseconds with our CUDA implementation to
densify a sparse depth map obtained from the visual SLAM method [5].

For a quantitative evaluation of our algorithm, we rendered two virtual scenes
and captured the ground-truth (GT) depth in the equirectangular image format.
We also obtained sparse depth maps from the virtual scenes as input for den-
sification algorithms. We compared the accuracy of our method compared (15
milliseconds per frame on GPU) with other densification methods: fast bilateral
solver (0.49 second per frame on CPU) [1], colorization solver (96.83 seconds per
frame on CPU) [15], and guided image filter (0.36 second per frame on CPU) [9].
We used the authors’ original publicly available implementations, which are writ-
ten in Python. Therefore, performance is not directly comparable. As shown in
Table 1, our method provides accurate dense depth maps compared to other
methods. We measured the mean squared error (MSE) values for each result
with GT. The colorization solver and ours show the highest accuracy among
four methods. However, as shown in Figure 5, the colorization solver presents
severe color dependency when densifying depth and also cannot preserve high-
frequency details in dense depth maps, compared to our method.
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Fig. 5. Closeup results compared to the ground-truth image. (a) Ground-truth depth
image. (b) Fast bilateral solver. (c) Colorization solver. (d) Guided image filter. (e)
Ours.

Method Fast bilateral solver Colorization solver Guided image filter Ours

GT scene #1 0.5758 0.0448 0.2040 0.0336
GT scene #2 0.3764 0.0518 0.2463 0.1659

Table 1. The MSE errors between each result (Figure 5) and the ground-truth depth
map with the four different methods. The colorization solver and our method provide
the highest accuracy. However, the colorization solver cannot preserve edge structures
well, while our method preserves high-frequency edge structures clearly with overall
high accuracy.

Figure 6 presents dense depth map results from real monoscopic, omnidirec-
tional camera input. Our method outperforms other densification methods in
two aspects: First, as shown in the first row of closeups, our method can prop-
agate sparse depth more independently of color properties than the compared
methods. Second, as shown in the second row of results, our method is free from
the seam artifacts at the stitched border of the 360-degree image. This is be-
cause our method takes the spherical characteristics into account. Note that the
flickering artifacts in videos are originated from the inaccurate depth estimates
of the used SLAM method [5].

Finally, we compared our results with the monocular, omnidirectional dense
depth imaging method proposed by Im et al. [12]. Our method is based on
the SLAM input and allows for dynamic motion, yielding real-time dense depth
output. However, 30 frames with small motion are required to estimate one depth
frame. Therefore, their method is not applicable to large motion. Moreover, their
computation is time consuming. It took 5 minutes per frame, thus not allowing
for real-time applications. Figure 7 qualitatively compares dense depth maps
captured by two methods.

5 Conclusion

We have presented a novel depth densification algorithm using a joint spheri-
cal pyramid that considers color and depth simultaneously. The joint spherical
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pyramid is made of a total of eight levels of subdivision of a 20-face icosahedron.
Our algorithm consists of two phases; in the pull phase, we average up the sparse
depth values and store them in the spherical pyramid from the fine to the coarse
level. In the push phase, we filled empty polygons from the averaged depth values
of the upper level of the pyramid. In order to preserve high-frequency details,
we filter each level with the joint bilateral filter with the input color image.
Our method accounts for the characteristics of the 360-degree images and as
such it shows no seam effects of propagation. Moreover, our method is compu-
tationally efficient, taking less than 15 milliseconds, because it is parallelizable
and implemented with CUDA and make use of precomputed lookup tables. It
is adoptable for other real-time VR/AR applications that require dense depth
maps for handling occlusion in rendering.
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