
Are Multi-view Edges Incomplete for Depth Estimation?

Numair Khan1, Min H. Kim2, James Tompkin1*

1Brown University, Providence, RI, United States.
2KAIST, Daejeon, South Korea.

*Corresponding author(s). E-mail(s): james tompkin@brown.edu;
Contributing authors: numair khan@brown.edu; minhkim@vclab.kaist.ac.kr;

Abstract

Depth estimation tries to obtain 3D scene geometry from low-dimensional data like 2D images. This
is a vital operation in computer vision and any general solution must preserve all depth information of
potential relevance to support higher-level tasks. For scenes with well-defined depth, this work shows
that multi-view edges can encode all relevant information—that multi-view edges are complete. For
this, we follow Elder’s complementary work on the completeness of 2D edges for image reconstruc-
tion. We deploy an image-space geometric representation: an encoding of multi-view scene edges as
constraints and a diffusion reconstruction method for inverting this code into depth maps. Due to
inaccurate constraints, diffusion-based methods have previously underperformed against deep learning
methods; however, we will reassess the value of diffusion-based methods and show their competitive-
ness without requiring training data. To begin, we work with structured light fields and Epipolar
Plane Images (EPIs). EPIs present high-gradient edges in the angular domain: with correct process-
ing, EPIs provide depth constraints with accurate occlusion boundaries and view consistency. Then,
we present a differentiable representation form that allows the constraints and the diffusion recon-
struction to be optimized in an unsupervised way via a multi-view reconstruction loss. This is based
around point splatting via radiative transport, and extends to unstructured multi-view images. We
evaluate our reconstructions for accuracy, occlusion handling, view consistency, and sparsity to show
that they retain the geometric information required for higher-level tasks.

Keywords: Edges, depth reconstruction, diffusion, light fields, multi-view reconstruction.

1 Introduction

Depth estimation is a vital first step in many
computer vision tasks such as novel view synthe-
sis [1–4], scene editing [5–7], lighting and material
estimation [8], and augmented reality [9]. The
problem has a long history with a wide variety
of proposed solutions. These include photomet-
ric stereo [10], shape from shading [11], depth
from defocus [12, 13], active illumination [10, 14–
17], and deep-learning-based methods including
monocular settings [18–21].

The most popular and widely studied approach
is still binocular and multi-view passive stereo
depth estimation [22, 23]. This is due to its ability
to work in many environments and lighting condi-
tions, its immunity to interference from competing
active illumination signals, and its ability to gen-
erate depth at the same resolution as the color
input. In their basic form, stereo depth methods
use epipolar constraints to perform a correspon-
dence search at each pixel in neighboring images.
However, this search is computationally expensive

1

and is susceptible to failure in textureless, specu-
lar, and disoccluded regions. The baseline between
neighboring cameras can also have a significant
impact on quality: Small baselines reduce accu-
racy as the change in disparity relative to depth
is low, and large baselines make it difficult to find
corresponding points in neighboring images [24].

Nonetheless, stereo depth estimation remains
popular, especially with the recent proliferation
of camera sensors. Most smartphones now have
at least two back-facing cameras, e.g., the Google
Pixel 7 Pro has three, the Light L16 had sixteen,
and light field cameras may have many more. A
large number of sensors leads to increased—often
prohibitive—data and computational costs. But
it also enables new applications in computational
photography, including ones that require depth,
with the quality of depth often correlating with
the quality achieved in the computational photog-
raphy task. While depth accuracy is less important
for frontal-scene novel view synthesis [25], depth
accuracy is critical for tasks that require mea-
surement such as 3D reconstruction, tasks that
edit scenes such as light field painting [5, 26], or
tasks that rely on correct surface normals like
relighting [10] or material estimation [8].

Beyond accuracy, we must also consider other
properties of a representation for depth. For
instance, a depth map contains discrete samples
on a regular grid, but this may be redundant if
neighboring samples do not vary. For 2D appear-
ance images, Elder described the explicitness,
concision, and completeness of a given repre-
sentation [27], where completeness captures all
information of potential relevance to any higher-
level visual task. From this, Elder presented a
representation of 2D images based on sparse 2D
texture edges and a diffusion reconstruction step.
This provides an explicit, concise, and complete
image-space representation that is accurate in its
reconstruction of an original image.

From this inspiration, our paper shows that
sparse multi-view edges can similarly provide a
complete representation of scene depth; that is,
multi-view edges encode all relevant information
to support higher-level tasks that rely on depth
estimation. These can represent depth for all
input views with correct occlusion, maintaining
the explicitness of depth structures via occlusion
edges. Further, their concision is particularly use-
ful: beyond their sparseness helping to reduce data

costs from many input camera views, multi-view
edges can help us to ignore estimating depth in
low-confidence textureless regions and instead rely
on diffusion to fill in the gaps.

First, we describe how to quantify complete-
ness by the three metrics of accuracy, occlusion-
edge accuracy, and view-consistency, and then
define the proposed sparse multi-view edge repre-
sentation for scene depth (Section 2). Then, we
show how to estimate the parameters of the rep-
resentation for structured 4D light field images
(Section 3). Two-plane parameterized light fields
are a good starting point because multi-view edges
are well-defined via gradients in epipolar plane
images (EPIs). Evaluating the representation for
completeness requires measuring the loss of infor-
mation during encoding. Thus, we show how to
decode the representation into piece-wise smooth
multi-view depth maps using diffusion, where the
representation provides constraints upon the dif-
fusion operation (Section 4). We evaluate the rep-
resentation for completeness, observing that our
encoding/decoding approach finds a good balance
between the three metrics (Section 5).

However, even though our multi-view edge rep-
resentation is in principle complete, in practice
errors in the diffusion constraints may make it
less effective. This is one reason why diffusion-
based methods for depth estimation have declined
in favor versus deep-learning-based methods. To
reconsider this situation, we present a differ-
entiable encoding variant that allows us to
optimize representation parameters directly to
improve quality with respect to the three met-
rics (Section 6). Using Gaussian splatting and
radiative transport, this differentiable approach
optimizes constraints with respect to a multi-view
reprojection loss, and lets us relax our capture
scenario to unstructured multi-view images. Opti-
mizing the representation directly also lets us
easily control sparsity by assessing the value of
each multi-view edge. This produces accurate
and compact representations for scene depth that
can be competitive with deep learning methods
(Section 7), where the representation is especially
advantageous for sparsity and discreteness that
are difficult to represent with CNNs.

Code and video results are available online at
https://visual.cs.brown.edu/incompletedepth.

2

https://visual.cs.brown.edu/incompletedepth

2 Defining a Representation

2.1 Criteria

We begin by describing properties we would like
in a representation and how to measure them.
To evaluate an image representation, Elder [27]
determined explicitness, concision, and complete-
ness criteria. We contextualize these to the specific
setting of multi-view scene reconstruction and
consider them criteria for evaluating a general-
purpose image space geometric representation.

Explicitness

Important structural information should be
explicitly represented. Adelson [28] describes this
as representing “things” not “stuff.” For instance,
edges are more explicit than intensity values.
Multi-view color images implicitly store the geo-
metric structure of a scene. Depth maps explicitly
store geometric structure, and this is more eas-
ily usable by later tasks, e.g., through depth
map gradients we can define occlusion bound-
aries. Another example is spatio-angular segmen-
tation masks [6, 29] that define piece-wise constant
object surfaces. Both representations are more
explicit than multi-view RGB images.

Concision

Any redundant information in the input should be
discarded. This property—based on Barlow’s effi-
cient coding hypothesis [30]—is especially impor-
tant for multi-view input, as multi-view images
implicitly encode depth in their angular dimension
with high redundancy. Many methods [23, 31–38]
exploit this redundancy for higher-quality depth
reconstruction than traditional stereo. However,
suppose we store the reconstructed result as a
depth map per input view. This retains redun-
dancy and so per-view depth maps are not concise.
Concision also relates to the sparsity of a needed
representation, where textureless regions might
require little representation.

Completeness

The representation should encode all relevant
information to be able to support a variety of
higher-level tasks. Different tasks are enabled
as depth reconstruction quality increases, e.g.,
approximate reconstructions can suffice for novel

view synthesis tasks [25, 39] but not for nor-
mal or BRDF estimation [40, 41]. Only high
quality reconstruction everywhere makes stringent
higher-level tasks possible.

2.2 Measurement

Elder also lists generality, reliability and preci-
sion as evaluative criteria for a representation. We
believe these concepts are subsumed within three
metrics for a representation’s reconstructed depth.

Accuracy

Accuracy refers to the correctness of the estimated
depth maps in metric terms. Correct reconstruc-
tion is a broad goal of 3D reconstruction and so
accuracy is a prime metric in benchmarks [42–
45]. It quantifies the difference between the esti-
mated depth and a known ground truth measure.
Common quantitative metrics include the Mean
Absolute Error (MAE), the Mean Squared Error
(MSE), Q25, and a bad pixel measure BP(·). The
Q25 metric represents the 25th percentile of the
absolute error, and BP(t) is the percentage of
pixels falling above threshold t in absolute error.

Occlusion Edge Accuracy

For some tasks, like compositing a new scene
element behind an existing one, the mean error
over all pixels may be less relevant than the
error specifically for pixels upon depth boundaries.
The accuracy of occlusion edge reconstruction is
measured by restricting MSE, MAE, Q25, and
bad pixel BP(·) to the vicinity of depth edges
defined by gradients in ground truth. We also show
precision-recall curves of these edges.

View-Consistency

View consistency in multi-view depth estimation
requires the globally-consistent reconstruction of
each view Ii as represented by a depth map Di :
R2 → R in camera space coordinates. View consis-
tency is vital for avoiding flickering and swimming
artifacts in applications that involve interaction
with all input views simultaneously or in quick
succession, such as when editing a light field or for
output on a light field display [5, 46].

We measure view consistency by reprojecting
a depth map onto a reference view and comput-
ing the variance. Let D0, D1, . . . , Dn represent the

3

depth maps for n views warped onto a target view
(u, v). The view consistency at pixel s in view
(u, v) is given by:

C(u,v)(s) =
1

n

n∑
i=0

(Di(s)− µs)
2, (1)

µs =
1

n

n∑
i=0

Di(s), (2)

and overall consistency is given as the mean over
all pixels s in the target view S:

C(u,v) =
1

S

S∑
s=0

C(u,v)(s). (3)

This form allows consistency to be evaluated for
both synthetic and real world scenes.

Discussion

A fundamental trade-off exists between these
three metrics. Maximizing consistency penalizes
general and occlusion edge accuracy: in the
extreme case, a single depth value for all pixels
would provide the highest consistency with low
accuracy and no occlusion edges. A continuous or
smooth range of depth values allows greater pre-
cision and accuracy but leads to lower gradient
edges. A complete depth representation should be
general enough to optimize each metric separately.

2.3 A Complete Multi-view Edge
Representation for Depth

Next, let us begin to define our representation by
considering Elder’s edge-based representation for
images [27]. This consists of four components:

1. The 2D pixel location (xi, yi) of edges within
an image,

2. The brightness and contrast (bi, ci) of intensity
values at each edge pixel,

3. A 2D gradient vector (gi) that indicates the
direction perpendicular to an edge, and

4. A blur scale (ri) describing the extent and
attenuation of the edge.

Elder’s paper shows results for grayscale images,
but the concepts extend to each spectral channel.

Assuming that we can recover the represen-
tation from an image, the original image can be

Fig. 1: Top: Elder showed that a representa-
tion of image edges including position, brightness
and contrast, gradient, and blur scale is complete
as it lets us reconstruct the image via a diffu-
sion process with low error. Left to right: Orig-
inal image, edge locations, reconstructed image;
reproduced from [27]. Bottom: We show that a
similar approach is possible for multi-view images
and provides a complete representation for scene
geometry via depth.

reconstructed with low error through anisotropic
diffusion (Figure 1). The representation is more
compact than an image (≈2–10% of the input
pixels) as constant or smoothly-varying intensity
values are not stored; instead, edges are blurred by
the diffusion process according to their direction
and scale to fill in these gaps. This representa-
tion can be used by tasks like editing by adding,
varying, or removing points from the representa-
tion, such as removing windows from an image of
a house as shown in Elder’s succeeding paper [47].

With this inspiration, let us formulate a repre-
sentation of sparse geometry based on multi-view
edges in image space. A multi-view edge refers to
the pairing of a 2D edge location with a depth
label that allows the edge point to be uniquely
identified and localized in multiple views.

Our model consists of:

1. The 2D subpixel location (xi, yi) of an edge in
the central camera view,

2. A depth value (di) for the edge,

3. A 2D surface vector (si) that indicates the
direction of occlusion, and

4. A confidence value (ci) of the edge being a
depth edge rather than a texture edge.

4

(a) (b) (c) (d) (e)

MSE: 0.66 MSE: 0.54 MSE: 0.27 MSE: 0.22

Fig. 2: Model completeness on synthetic scene. With correct constraints set in our multi-view edge model,
diffusion-based reconstruction generates high-quality results. The drastic improvement between (b) and
(c) also shows the potential of providing better constraints within an optimization approach (Section 6).
(a) Direct diffusion of sparse depth labels with no constraint optimization. (b) Our initial reconstruction
approach using bidirectional diffusion (Section 4). (c) Using an oracle to optimize the surface vector
parameter. (d) Using an oracle to optimize both the surface vectors and the sparse edge set. (e) Ground
truth depth and input light field view. Please zoom in to the PDF to see the detail.

Elder’s single-view edge model [27] encodes photo-
metric information, whereas our multi-view edge
model encodes geometric information. It assumes
that smoothly-varying depth regions can be inter-
polated from sharp neighboring edges via their
surface vectors and confidences that define the
direction and contribution to the local region’s
depth estimate (cf. to image edges blurring to
contribute). Subpixel edge locations and continu-
ous depth values are required when projecting the
representation into multiple cameras at different
positions, and special attention will be required to
handle aliasing given the limited sensor resolution.

This representation makes structural features
of the input explicit. This includes edges that
provide information about changes in the visual
composition of a scene, and occlusion surfaces and
depth boundaries that together provide informa-
tion about the 3D structure of a scene. Moreover,
this information encoding is concise. Redundant
measurements are avoided and noisy estimates
in smooth and texture-less regions—ambiguous
areas for most correspondence-based dense depth
estimation methods—are discarded.

Reconstruction Methods

A reconstruction method allows us to convert our
edge model into a depth map. Using only the
first two model parameters along with a piece-wise
constant depth reconstruction can produce view-
consistent results. This can be posed as a 4D light
field superpixel segmentation task [48] and is use-
ful for tasks such as view interpolation that might
not require as-highly-accurate depth estimates.

However, for tasks like light field editing or
compositing, accuracy is important and requires
the use of all four parameters of our model along
with a smooth reconstruction method. For our
work, this is achieved by guided diffusion of depth
values from edges in both the angular and spa-
tial domain through the solution of a constrained
optimization problem [49]. The solution minimizes
an energy E that encourages adherence to the
sparse edge depth values—the so-called data term
Ed—while reducing the gradient everywhere via a
smoothness term Es:

E = λd Ed + λs Es. (4)

Terms are traded by hyperparameters λd and λs.

5

Demonstration of Completeness

To highlight the potential accuracy of this model,
we implement a brute-force optimization of repre-
sentation parameters given a ground truth depth
map on a synthetic scene (Figure 2). The multi-
view edge model can represent highly accurate
depth maps via diffusion-based reconstruction, so
long as the model parameters are correct.

Why an Image-space Representation?

The 2D subpixel locations and depth values of our
multi-view edges effectively describe a 3D point
cloud. This can be projected into 2D and, with the
surface vector and confidence parameters, diffused
at any particular image resolution. Thus, the rep-
resentation can offer a one-to-one correspondence
between color pixels and geometry, which is useful
for tasks like image editing, AR, and mixed reality
that operate on image pixels. Moreover, they can
typically more efficiently capture fine details than
a mesh or a voxel grid, the latter being expensive
in terms of resolution. Neural fields may offer these
advantages but are computationally expensive to
compute and difficult to edit once computed [50].

Limitations of Scope

Multi-view images encode both photometric and
geometric information; we focus on the geomet-
ric information encoded in our proposed model.
For this, we show the completeness and conci-
sion properties empirically and do not quantify
the explicitness of our model. Our work uses edges
and points recovered assuming the scene is com-
posed of Lambertian surfaces. In practice, we
demonstrate empirically that this model is often
sufficient for editing tasks of real-world scenes
captured with narrow baseline camera systems.
Finally, we assume that edges that lead to depth
estimates are not blurred.

3 Recovering Model
Parameters for Light Fields

We consider the case of structured light fields as
might be captured by a lenslet-array camera (e.g.,
Lytro). In Section 6, we will show examples that
extend this to unstructured multi-view images.
For now, structured light fields provide simpler
ways to extract multi-view edge information.

Fig. 3: LF (x, y, u, v) defines a two-plane light field
parameterization with central views H,V outlined
in dashed yellow. Light rays are shown as black
lines (top). We show epipolar plane images (EPIs)
sliced from the 4D volume below.

Given a 4D light field LF (x, y, u, v) (Figure 3),
we define the central horizontal row of views H =
LF (x, y, u, vc) and central vertical column of views
V = LF (x, y, uc, v). We call H,V the ‘cross-hair’
views. Each view I ∈ H contains a set of epipo-
lar plane images (EPIs) Ei(x, u) = I(x, yi, u),
with corresponding I ∈ V containing Ej(y, v) =
I(xj , y, v). With a Lambertian reflectance assump-
tion, a 3D scene point corresponds to a straight
line l in an EPI, where the depth of the point
determines the slope of the line.

3.1 Finding Multi-view Edges

A multi-view edge refers to the pairing of a 2D
edge location with a depth label which allows the
edge point to be uniquely identified and localized
in multiple views. These two parameters corre-
spond exactly to the edges in an EPI. For robust
occlusion handling, we must accurately detect the
intersections of lines in EPIs (Figure 4). However,
classical edge detectors like Canny [51] and Com-
pass [52] often generate curved or noisy responses
at line intersections, which makes later line fit-
ting and occlusion localization difficult. Instead,

6

Epipolar Image Ei

yi

Fig. 4: EPI edges provide both the location and disparity labels of a sparse point set P. Thus, the first
stage of multi-view edge estimation consists of EPI edge detection and line fitting. In the second stage,
we compare the direction of each EPI line with underlying image gradients to remove noisy labels and
points that are occluded in the central view. Finally, we improve the disparity estimates of the sparse set
through an entropy-based random search.

we propose an EPI-specific method to detect a
line set L for each EPI of the central horizon-
tal and vertical views of our light field. Note: We
describe line detection for the central horizontal
views; central vertical views follow similarly.

EPI Edge Detection

We take all EPIs Ei(x, u) (size w × h) from the
horizontal central view images I ∈ H. We convolve
them with a set of 60 oriented Prewitt edge filters
with each representing a particular disparity. We
filter only the central views for efficiency and later
on will propagate their edges across all light field
views. To detect small occluded lines, we use 2h×
2h filters and convolve the entire (x, u) space. This
effectively extends occluded edge response to span
the height of the EPI.

From this, we pick the filter with maximal
response per pixel, which is a disparity map Z at
edges, and we take the value of the filter response
as an edge confidence map C. Then, we perform
non-maximal suppression per EPI. To suppress
false response in regions of uniform color, we mod-
ulate edge response by the standard deviation of
a 3 × 3 window around each pixel in the original
EPI [53]. Our final C map has clean intersections.

3.2 Multi-view Edge Refinement

3.2.1 Line Fitting

To create a parametric line set L, we form lines li
from each pixel in C in confidence order, with line
slopes from Z. As we add lines, any pixels in C
which lie within an λ-pixel perpendicular distance

of the line li are discarded. λ determines the min-
imum feature size that our algorithm can detect.
In all our experiments, we set λ = 0.2h. We pro-
ceed until we have considered all pixels in C. For
efficiency, we detect edges and form line sets in a
parallel computation per EPI.

3.2.2 Noise & Occlusion Filtering

The above process, while fast, may fail to remove
all false positives. To filter these out we use a
gradient-based alignment scheme: each line l ∈ L
is sampled at n locations to generate the set of
samples Sl = {(xi, yi)}. The line l is considered a
false-positive if the local image gradient of I does
not align with the line direction at a minimum k
number of samples:

∑
s∈Sl

1

(
∇I(s)(∇l)T

∥∇I(s)∥∥∇l∥
> cos(τf)

)
< k, (5)

where 1(·) is the indicator function that counts the
set of aligned samples, ∇I is the first-order image
gradient approximated using a 3×3 Sobel filter,
and ∇l is perpendicular to the line. The param-
eters τf and k are constants with τf = π/13 and
k = (EPI height)/c, with 1 ≤ c ≤ EPI height.
To determine the constant value c, we consider
two factors: 1) the accuracy of EPI line fitting,
and 2) the expected minimum number of views a
point is visible in. In the case of perfect alignment
between the line and EPI gradients, c = 1. This
means that a line with even a single misaligned
sample is rejected. However, if a point is occluded

7

in some views, the corresponding EPI line will
be hidden and misalignment of samples in those
views is inevitable. If we set c = 1 we risk dis-
carding such lines. We determine empirically that
c = 4 provides good results across the synthetic
and real-world scenes, and across the narrow and
wider baseline light fields that we evaluate.

The parametric definition of EPI lines does not
carry any visibility information for a point across
light field views. We determine visibility v(l) of a
point l ∈ L in the central view as:

v(l) = 1

(
∇I(sc)(∇l)T

∥∇I(sc)∥∥∇l∥
> cos(τv)

)
, (6)

where sc is the EPI sample corresponding to the
central view and τv = π/10.

3.2.3 Entropy-based Disparity
Refinement

Notice that the number of discrete disparity val-
ues of points in L is bounded by the number
of large Prewitt filters used for EPI line fitting.
Computational efficiency considerations prevent
this number from becoming too large. Moreover,
numerical precision and sampling errors result
in the granularity of depth estimates plateau-
ing beyond a certain number of filters. Thus, to
enable the calculation of sub-pixel disparity values
we fine-tune the initial estimates through random
search and filtering. Let Lc = {l ∈ L | v(l) = 1}.

E(l) =
∑
s∈Sl

−P (I(s)) log2(P (I(s))), (7)

where I(s) is the intensity value at s and P (s) is
estimated from a histogram.

We minimize E(l) through a random search
in the 2D parameter space defined by the x-
intercepts of l on the top and bottom edge of
the EPI, l = (xt, xb): at the jth iteration of
the search we generate uniform random numbers
(ot, ob) ∼ U(−1, 1)(αtj), to generate a proposal
lj = (xt + ot, xb + ob) (Figure 4). This is accepted
with probability one if E(lj) < E(lj−1). We use
t = 0.88, α = 0.15, and run ten search iterations.

Then, the resulting disparity estimates are
refined by joint filtering in the spatial, disparity,
and LAB color space. Let P represent the spa-
tial projection of Lc into the central view, and

let ps, pd, and pc be the spatial position, dis-
parity, and color of a point p ∈ P. The filtered
disparity estimate f(pd) is calculated via a spatial
neighborhood S around p:

f(pd) =
1

W

∑
q∈S

Nσs
(∥ps − qs∥)Nσd

(pd − qd)·

Nσc
(∥pc − qc∥)pd,

(8)

where the normalization factor W is given by

W =
∑
q∈S

Nσs
(∥ps − qs∥)Nσd

(pd − qd)·

Nσc
(∥pc − qc∥). (9)

In theory, the parameters σc and σd depend on the
scene content and the maximum disparity. In prac-
tice, the maximum disparity is usually bounded
and the color gradient characteristics of most real-
world scenes are fairly uniform. Thus, we found
that the combination σs = 10, σd = 0.1 and
σc = 0.5 works for all scenes in our experiments.

3.3 Surface Vectors

At each depth edge, a surface vector indicates
the direction of the occluding surface. This infor-
mation is required since multi-view edges by
themselves do not encode sufficient information to
uniquely reconstruct a scene. In Figure 5(a), two
different scene configurations generate a similar
EPI and, thus, similar multi-view edge parame-
ters. The problem is exacerbated by the fact that
in practice we do not even know the location of the
discontinuity—that is, the edge—precisely in pix-
els when using Prewitt filters: Figure 5(b) shows
that a Prewitt filter convolved with a set of pix-
els representing an edge will generate a non-zero
activation along two-pixel columns.

Using a model without surface vector parame-
ters results in significant errors around edges when
using a smooth reconstruction method. However,
retrieving the direction of occlusion as the surface
vector is a difficult task: determining it requires
us to know the depth at pixels around each label,
but we only have a sparse set of labeled points
at edges. Holynski and Kopf [9] deal with this by
assuming that sparse labels do not lie on depth
edges so that neighboring pixels have a similar

8

(a) (b)

Fig. 5: Sparse labels at edges are difficult to propagate because the edge is weakly localized at the
boundary of two projected surfaces. As a result, labels may be assigned to the incorrect side of a depth
boundary. (a) Two different scene configurations captured with cameras C1 and C2 may generate similar
EPIs. The EPI edge represents the boundary of the occluding surface. For C1 this is the surface on the
left (black); for C2 it is on the right (blue). (b) The direction from which occlusion happens cannot be
disambiguated from edge activations alone, leading to incorrect label placement.

label. Yucer et al. [54] handle labels on depth
edges, but their method is designed for light fields
with a large number (≈3000+) of views. Our
novel contribution is that we determine surface
direction from other sparse labels within context.
We present a method that uses a bidirectional
‘backward-forward’ diffusion process to generate a
surface vector parallel to the image gradient.

As all potential occlusion edges are also depth
edges, one way to determine occluding surface,
or diffusion, direction is by distinguishing depth
and texture edges. Yucer et al. [54] compare the
variation in texture on both sides of an edge as
the view changes: the background seen around a
depth edge will change more rapidly than the fore-
ground, leading to a larger variation in texture
along one side of the edge. The correct diffusion
direction is to the side with a lower variation. This
method works for light fields with thousands of
views (3000+ images) but proves ineffective on
datasets that are captured using a lenslet array
or camera rig (Figure 10). This is because the
assumption fails to hold in cases where 1) the
background lacks texture, and 2) the light field
has a small baseline with relatively few views, as is
common for handheld cameras. Here, occlusion is
minimal and intensity variation is caused more by
sensor noise than by background texture variation.

Our proposed solution to the depth edge iden-
tification problem works for light fields with few
views (e.g., 7×7 from a Lytro). We use S[A] to rep-
resent the image created by splatting sparse points
in a set A onto a w×h raster grid, and D to be a

dense w×h disparity map. Diffusion is formulated
as a constrained quadratic optimization problem:

D̂[A] = argmin
D

∑
p∈A

Ed(p) +
∑

(p,q)∈S

Es(p, q),

(10)

where D̂[A] is the optimal disparity map given the
sparsely labeled image S[A] and S is the set of
all four-connected neighbors in D. The data term
Ed(p) and smoothness term Es(p, q) are:

Ed(p) = λd(p)
∥∥S[A](p)−D(p)

∥∥, (11)

Es(p, q) = λs(p)
∥∥D(p)−D(q)

∥∥, (12)

with λd(·) and λs(·) being the spatially-varying
data and smoothness weights.

Equation (10) represents a standard Poisson
problem, and we solve it using an implementa-
tion of the LAHBPCG solver [55] by posing the
constraints in the gradient domain [56]. We begin
by defining two sets formed from opposite offset
directions ∇I(p) and −∇I(p):

Pf = {p+∇I(p) ∀ p ∈ P}, (13)

Pb = {p−∇I(p) ∀ p ∈ P}, (14)

where ∇I(p) is the gradient of the central light
field view at point p. Then, we solve Equation (10)
for both offset directions D̂[Pf] and D̂[Pb] using

9

Fig. 6: Top: Given an edge point p with image
gradient ∇I(p) and depth label pd, we would like
to determine which side of the edge to propa-
gate pd. We generate images D̂[Pf] (middle), and

D̂[Pb] (bottom) by solving a Poisson optimiza-
tion problem with diffusion direction p + ∇I(p)
and p − ∇I(p) respectively. The correct diffusion
direction (middle; forward) generates an intensity
profile resembling a step function. In the example
shown, pd corresponds to the surface on the right
of the edge as p+∇I(p) generates a profile more
closely resembling a step function.

data and smoothness weights:

λd(p) =

{
106 if p ∈ A,
0 otherwise,

(15)

λs(p) =
1

∥∇I(p)∥+ ϵ
. (16)

Given both solutions, we compare the normal-
ized depth profile around each point p ∈ P along
∇I(p) in D̂[Pf] and D̂[Pb]. Figure 6 shows that
the profile for the correct offset direction (∇I(p)
or −∇I(p)) more closely resembles a step func-
tion around p due to a strong depth gradient. This

Fig. 7: Estimated depth edge confidence λs, which
successfully ignores texture edges on the bunny in
the top scene and shadow edges on the dinosaur
skeleton in the bottom scene.

is because neighboring points in the correct off-
set direction will have a disparity value similar to
p. The high data term together with the global
smoothness constraint results in a small gradient
around p when the incorrect offset pushes it to
the wrong side of the edge. We estimate the pro-
file around p in D̂[Pf] and D̂[Pb] by convolving
the normalized value of a set Np of pixels around
p with the step filter F = [−1 −1 +1 +1].

3.4 Depth Edge Confidence

The bi-directional diffusion process descried above
also allows us to identify the final parameter of
our multi-view edge model, depth edge confidence.
This is given by the mean gradient at each pixel
across the backward-forward pass (Figure 7). Tex-
ture edge gradient remains low in both passes. For
depth edges, the gradient is higher in one pass. For
depth edges that are not meant to be sharp, the
change in depth around that region from the bi-
directional solve is small, and picking either offset
leads to low error.

10

Fig. 8: (a) Ground-truth disparity maps from two different camera positions C1 and C2. (b) Naively
attempting to generate the output of C2 by reprojecting C1 results in large holes (in green). (c) Our
method uses depth edges to guide disparity propagation in such disoccluded regions. The EPIs corre-
sponding to the highlighted row are shown in (d) and (e). The EPI in (e) constitutes our depth EPI Do.

4 Occlusion-aware 4D Depth
Reconstruction

Section 3 estimates accurate view-consistent
depth for multi-view edges; next, we present an
occlusion-aware reconstruction method to invert
our multi-view edge encoding into depth maps. By
showing that our representation encodes all rele-
vant information required for generating accurate
and view-consistent depth reconstructions with
strong occlusion edges, we establish completeness.
Practically, this accomplishes light field depth esti-
mation. Methods often strive for geometric accu-
racy without considering occlusion edges, which
are especially important for handling visibility in
computational photography applications. More-
over, aggregating information across many light
field views produces high accuracy depth, but
most approaches estimate only a depth map for
the central view. We show how to estimate depth
for every pixel in the light field, e.g., for editing
a light field photograph where every output view
will be seen on a light field display.

Challenges

Our reconstruction method is an anisotropic dif-
fusion process that fills in missing regions. Depth
diffusion is a long-standing problem in which it
is difficult to ensure both consistency and cor-
rectness in non-central-view disoccluded regions
because these regions are sampled less by the cam-
era. As such, methods that estimate depth for

every light field pixel are often not strictly occlu-
sion aware, or are expensive [31, 34] due to the
extra angular dimension increasing data and com-
putation costs [34, 57]. Researchers have tried
to overcome this barrier by learning data-driven
priors with deep learning. Jiang et al. [35, 58] pre-
sented the first practical view consistent method
based on deep learning. Learning requires train-
ing data and may overfit to scenes or capture
scenarios [59]. Our multi-view edge encoding and
smooth reconstruction method is a counterpart
first principles method with no learned priors.

One solution to reconstruct per-view depth
from our multi-view edge encoding would compute
a disparity map for each sub-aperture view sepa-
rately. However, this is challenging for boundary
views and is inefficient in terms of redundant com-
putation and due to the spatial domain constraints
or regularization required to ensure consistency
across views. Another solution might calculate a
disparity map for a source view and then reproject
it into all other views. However, this fails to han-
dle scene points that are not visible in the source
view. Such points cause holes for disocclusions, or
lead to inaccurate disparity estimates when the
points lie on an occluding surface. While most
methods try to deal with holes through inpainting,
occluding surfaces are more difficult to deal with
as the occluding surface may have a depth value
(or label) not seen in the original view. Thus, tech-
niques like diffusion alone are insufficient to prove
or disprove the completeness of our edge model.

11

Approach

Our proposed method deals with this issue of
depth consistency in subviews of light fields via
an occlusion-aware diffusion process (Figure 8).
As our occlusion-aware multi-view edges persist
across views, we can use them as reliable guides
for an angular inpainting process that fills any
holes in reprojected views. As inpainting occurs
in the angular rather than the spatial domain of
the light field, this ensures depth view consistency
by design while accounting for the visibility of
points in disoccluded regions. This avoids trying
to constrain or regularize view consistency after
estimating depth spatially, and so aids efficiency.

4.1 Central View Depth Estimation

From our multi-view edge model, we have a sparse
set of multi-view edge points P, surface vectors
parallel to the image gradient ∇I(·), and an occlu-
sion edge confidence. Let A = {p±∇I(p) ∀ p ∈ P}
be the sparse set of points P offset by the surface
vector. We use S[A] to represent the image cre-
ated by splatting sparse points in a set A onto a
w×h raster grid, andD to be a dense w×h dispar-
ity map. Diffusion is formulated as a constrained
quadratic optimization problem:

D̂[A] = argmin
D

∑
p∈A

Ed(p) +
∑

(p,q)∈S

Es(p, q),

(17)

where D̂[A] is the optimal disparity map given the
sparsely labeled image S[A] and S is the set of
all four-connected neighbors in D. The data and
smoothness terms are defined as

Ed(p) = λd(p)
∥∥S[A](p)−D(p)

∥∥2
2
, (18)

Es(p, q) = λs(p)
∥∥D(p)−D(q)

∥∥2
2
, (19)

The data weight λd(p) is defined in terms of the
sets Pf = {p + ∇I(p) ∀ p ∈ P } and Pb = {p −
∇I(p) ∀ p ∈ P } as

λd(p) = ω exp(aλe(p)) (20)

λe(p) = max
{D̂[Pf],D̂[Pb]}

∥Np ⊛ F∥. (21)

where Np is a set of pixels around p, and F is the
step filter [−1 −1 +1 +1]. The parameters are set

to ω = 1.5 × 102 and a = 3 for all scenes. The
smoothness term λs(p) is provided by the depth
edge confidence at every pixel (Section 3.4).

Equation (17) represents a standard Poisson
problem, and we solve it using the Locally Adap-
tive Hierarchical Basis Preconditioning Conjugate
Gradient (LAHBPCG) solver [55] by posing the
constraints in the gradient domain as proposed by
Bhat et al. [56]. The result D̂[A] provides a dense
depth estimate for the central view.

4.2 Cross-hair View Projection

Our EPI line-fitting algorithm works on EPIs in
the central cross-hair views—that is, the central
row and column of light field images. Computing
this on other rows and columns can be expensive,
and the central set is usually sufficient to detect
visible surfaces in the light field [60]. Hence, we
project the estimated disparity map from the cen-
ter view into all views along the cross-hair. Since
gradients at depth edges in the estimated disparity
map are not completely sharp, this leads to some
edges being projected onto multiple pixels in the
target view. We deal with this by sharpening the
edges of the disparity map before projection, as in
Shih et al. [61], using a weighted median filter [62]
with parameters r = 7 and ϵ = 10−6. Omit-
ting this step causes inaccurate estimates around
strong depth edges. The result is not very sensi-
tive to parameters r and ϵ since most settings will
target the error-prone strong edges.

4.3 Angular Inpainting

After depth reprojection, we must deal with the
two problems highlighted in the overview: inpaint-
ing holes, and accounting for occluding surfaces
in off-center sub-aperture views. We tackle this
by using our multi-view edges to guide a dense
diffusion process. Moreover, we ensure view con-
sistency by performing diffusion in EPI space.

The multi-view edges constitute a set L of
cross-view edge features (Section 3.1) that are
robust to occlusions in a single view as they exist
in EPI space. As such, L provides occlusion-aware
sparse depth labels to guide dense diffusion in
EPI space. Diffusion in EPI space has the added
advantage of ensuring view consistency.

Let Do represent an angular slice of the dispar-
ity maps with values reprojected from the center

12

view and with propagation guides (Figure 8).
Again, we formulate diffusion as a constrained
quadratic optimization problem:

D̂ = argmin
D

∑
p∈D

Ed(p) +
∑

(p,q)∈S

Es(p, q), (22)

where D̂ is the optimal depth labeling of the EPI,
and S is the set of four-connected neighboring pix-
els. The data Ed(p) and smoothness terms Es(p, q)
are defined as:

Ed(p) = λd(p)
∥∥D(p)−Do(p)

∥∥2
2
, (23)

Es(p, q) = λs(p, q)
∥∥D(p)−D(q)

∥∥2
2
, (24)

We take the weight for the smoothness term from
the EPI intensity image I:

λs(p, q) =
c

∥∇I(p)∥+ ϵ
, (25)

where c = 0.1. We define the weight for the data
term as:

λd(p) =

 15 if p ∈ C,
λe(p) if p ∈ L,
0 otherwise,

(26)

where λe(p) is the edge-importance weight from
Equation 21, and C and L are the set of pixels
coming from the reprojected center view disparity
map and EPI line guides, respectively.

Equation (22) defines the optimal disparity
map D̂ as one that minimizes divergence from
the labeled data (Equation. (23)) while being
as smooth as possible. Equation (24) measures
smoothness as the similarity between dispari-
ties of neighboring pixels. We wish to relax the
smoothness constraint for edges, so smoothness
weight is chosen as the inverse of the image gra-
dient (Equation (25)). This allows pixels across
edges to have a disparity difference without being
penalized. The data weight (Equation (26)) is
determined empirically and works for all datasets.

Equation (22) is again a standard Poisson
optimization. We solve this using the LAHBPCG
solver [55] by posing the data and smoothness
constraints in the gradient domain [56].

4.4 Non-cross-hair View
Reprojection

We now have view-consistent disparity estimates
for every pixel in the central cross-hair of light
field views: (uc, ·), and (·, vc). As noted, this set
is usually large enough to cover every visible sur-
face in the scene. Hence, all target views (ui, vi)
outside the cross-hair can be computed as the
mean of the reprojection of the closest horizontal
and vertical cross-hair view ((uc, vi) and (ui, vc),
respectively). The result is a view-consistent dense
depth reconstruction for each light field view.

5 Evaluating the
Reconstruction

At this point, we evaluate our approach for recov-
ering the multi-view edge model and for recon-
structing depth from this model (Figure 9).

Datasets

For our evaluation, we used both synthetic and
real-world light fields with a variety of disparity
ranges. For the synthetic light fields, we used the
HCI Light Field Benchmark Dataset [64]. This
dataset consists of a set of four 9 × 9, 512 × 512
pixels light fields: Dino, Sideboard, Cotton, and
Boxes. Each has a high-resolution ground-truth
disparity map for the central view only.

For real-world light field data, we use the
EPFL MMSPG Light-Field Image Dataset [65]
and the New Stanford Light Field Archive [66].
The EPFL light fields are captured with a Lytro
Illum and consist of 15×15 views of 434×625 pix-
els each. As edge views tend to be noisy, we only
use the central 7× 7 views. The Stanford Archive
scenes are captured with a moving camera and
have a larger baseline than the Lytro and syn-
thetic scenes. Each scene consists of 17× 17 views
with varying spatial resolution. We use all views
from the Lego and Bunny scenes, scaled down to
a spatial resolution of 512× 512 pixels.

Baselines

We compare ours to three non-learning-based
methods: the defocus and correspondence cues
methods by Jeon et al. [57] and Wang et al. [33],
and the spinning parallelogram operator of Zhang

13

Fig. 9: Occlusion edges in disparity maps. Top: Stanford dataset light field captured with a camera rig.
Bottom: EPFL light field from a Lytro Illum. Left to right: Jeon et al. [57], Zhang et al [34], Jiang et
al. [35], Shi et al. [63], and ours.

et al. [34]. We also compare with the learning-
based methods of Jiang et al.. [35], Shi et al.. [63],
and Li et al. [59]. Both Shi et al. and Jiang et
al. use the deep-learning-based Flownet 2.0 [67]
network to estimate optical flow between the four
corner views of a light field, then use the result
to warp a set of anchor views. In addition, Shi et
al. further refine the edges of their depth maps
using a second neural network trained on synthetic
light fields. While Shi et al.’s method generates
high-quality depth maps for each sub-aperture
view, they do not have any explicit cross-view
consistency constraint. We do not compare to
Holynski and Kopf [9]: this uses COLMAP, which
fails on typical skew-projected light field data.

5.1 Quantitative Metrics

Occlusion Edge Accuracy

Qualitatively, our method produces sharper and
more accurate occlusion edges than state-of-the-
art light field depth estimation methods.

Figure 10 visualizes occlusion boundaries as
depth gradients. The learning-based methods of

Shi et al. and Li et al. generate spurious bound-
aries in textureless regions, and the approach
of Yucer et al. [54] fails without thousands of
views. We also evaluate our edges quantitatively
on four scenes from the synthetic HCI Dataset [64]
via ground truth disparity for the central view
(Figure 11 and Table 2). Although our Q25 error is
higher, our method has high boundary-recall pre-
cision and a lower average MSE than all baselines.

Our method works on 2D slices of a 4D light
field. While jointly considering the 4D structure
may improve accuracy, edge detection and diffu-
sion become computationally expensive. In prin-
ciple, the accuracy of our edge detection can be
improved by entropy-based refinement of labels
(Section 3.2) in both vertical and horizontal EPIs.
In practice, we found no advantage of doing so.

Diffusion Gradients as Self-supervision

One way to think about bidirectional diffusion
gradients is as a self-supervised loss function for
depth edge localization. With this view, we com-
pare its performance to multi-view reprojection

14

Fig. 10: Visualizing occlusion edges as gradients of disparity maps. Left to right: Shi et al. [63], Li et
al [59], Yucer et al. [54], and ours. Bottom row, red circle: the learning-based methods hallucinate a strong
depth edge on the plow even though it is in contact with the black ground cloth at the same depth. Yucer
et al.’s method fails in the absence of many views.

Table 1: Evaluating disparity maps with
depth edges identified via reprojection error
and via our approach of diffusion gradients
on the synthetic HCI dataset. MSE is the
mean squared error; Q25 is the 25th per-
centile of absolute error.

Light
Field

MSE × 100 Q25

Reproj. Ours Reproj. Ours

Sideboard 1.39 1.03 1.20 1.22
Dino 0.64 0.45 0.81 0.85
Cotton 1.04 0.70 0.68 0.74
Boxes 9.32 7.52 1.65 1.41

Average 3.10 2.43 1.08 1.05

error—a commonly used self-supervised loss in
disparity optimization. We use the dense disparity
maps D̂[Pf] and D̂[Pb] to warp all light field views
onto the central view through an occlusion-aware
inverse projection. A reprojection error map is cal-
culated as the mean per-pixel L1 intensity error
between the warped views and the central view.
The offset direction at each point p ∈ P is then
determined based on the disparity map that min-
imizes the reprojection error at the pixel location
of p. Table 1 evaluates the result of calculating
Q = {p ± ∇I(p) ∀ p ∈ P} based on the repro-
jection error maps instead of our bidirectional
diffusion gradients. Our method has consistently
lower MSE, indicating better edge performance.

Fig. 11: Average precision-recall curves of
depth boundaries for all baselines (HCI dataset).
Learning-based methods are shown as dotted
lines. Our approach consistently outperforms tra-
ditional algorithms [33, 34, 57] and the learning-
based method of Jiang et al. [35], while out-
performing Shi et al. [63] and Li et al. [59] at
medium-to-low recall rates. Area under curve is
highest for both our method and Shi et al., at 0.63.

Accuracy

Table 2 presents quantitative results for the cen-
tral view of all light fields in accuracy comparisons
against ground truth depth. Our method is com-
petitive or better on the MSE metric against the
baseline methods, reducing error on average by
20% across the four light fields. However, our
method produces more erroneous pixels than the
baseline methods as given by the Q25 error. For
baseline techniques to have higher MSE but fewer

15

Table 2: Quantitative comparison of our method and the baselines on the synthetic HCI light fields. The
top three results are highlighted in gold , silver and bronze . MSE is mean squared error; Q25 is 25th
percentile of the absolute error.

Light
Field

MSE × 100 Q25 Run time (s)

[57] [34] [35] [63] [59] [33] Ours [57] [34] [35] [63] [59] [33] Ours [57] [34] [35] [63] [59] [33] Ours

Sideboard 3.21 1.02 1.96 1.12 1.89 13.3 1.03 0.61 1.15 0.37 0.48 0.66 2.46 1.22 754 537 507 72.3 77.1 635 35.5

Dino 1.73 0.36 0.47 0.43 3.28 4.19 0.45 1.07 1.40 0.25 0.31 0.50 2.02 0.85 805 531 500 59.3 76.8 609 37.7

Cotton 12.5 1.81 0.97 0.88 1.95 9.56 0.70 0.50 1.01 0.21 0.36 0.59 2.30 0.74 748 530 500 79.8 76.9 612 34.0

Boxes 16.0 7.90 11.6 8.48 4.67 12.5 7.52 0.75 1.64 0.42 0.69 0.78 2.21 1.41 736 541 491 56.2 78.0 667 34.3

Average 8.37 2.77 3.75 2.72 2.94 9.91 2.43 0.73 1.3 0.31 0.46 0.63 2.25 1.05 761 535 500 66.9 77.2 631 35.4

bad pixels means they must have larger outliers.
This is confirmed by the error plots in Figure A5.

View Consistency

Figure 12 presents results for view consistency
across all three datasets. The box plots at the top
show that our method has competitive or better
view consistency than the baseline methods. As
expected, Shi et al.’s method without an explicit
view consistency term has a significantly larger
consistency error. At the bottom of the figure,
we visualize how this error is distributed spatially
across the views in the light field. Both our method
and Jiang et al.’s method produce relatively even
distributions of error across views.

Computational Resources

Figure 13 plots runtime versus view consistency
across our three datasets. Our method produces
comparable or better consistency and is quicker,
being 2–4× faster than Jiang et al.’s methods per
view for equivalent error.

Qualitative

Figures A5 and A6 present qualitative single-
view depth map results. Overall, all methods
produce broadly comparable results, though each
method has different characteristics. The learning-
based methods tend to produce smoother depths
across flat regions. All methods struggle with thin
features. On the Bunny scene, our approach intro-
duces fewer background errors and shows fewer
‘edging’ artifacts than Jiang et al. Shi et al. pro-
duces a cleaner depth map appearance for Lego,
but is view inconsistent. Jiang et al. is view consis-
tent, but introduces artifacts on Lego. On Sphynx,
a distant scene and narrow baseline cause noise in
our EPI line reconstruction.

Fig. 12: Quantitative view consistency compari-
son of our method and Jiang et al. [35] and Shi et
al. [63]. While the method of Jiang et al. enforces
cross-view consistency, Shi et al. operates on each
view individually and has no explicit consistency
constraint. (a) For each light field, we plot sum-
mary statistics over C(u,v) for all views (u, v) in the
light field (Equation (3)). (b) The angular distri-
bution of the error over all views.

While these results do seem to indicate
that our edge model encodes all relevant infor-
mation required for generating accurate and
view-consistent depth reconstructions with strong
occlusion edges, the accuracy criterion is not
always satisfied. In particular, as we estimate
depth explicitly only around potential occlusion
boundaries our method has lower accuracy in non-
edge regions, reflected by the Q25 error. In the
next section, we describe a differentiable variant
of our model that addresses this shortcoming.

16

Fig. 13: Average depth consistency error and run-
times for the three assessed datasets. Our method
runs consistently faster than the baselines while
having comparative or better consistency. The
errors across datasets are shown in absolute terms.

6 A Differentiable Model
Implementation

Even with our efforts, it can be difficult to iden-
tify and filter out noisy or erroneous points from
a sparse edge set, and diffusion from noisy points
produces results with lower accuracy. However,
with correct noise-free constraints, Section 2.3
showed that our edge model and reconstruction
produce extremely low error and are significantly
better than current dense processing methods.

So, how can we handle noisy edges? We present
a method to optimize edge constraints through a
set of linear equations representing the solution to
the standard Poisson problem of depth diffusion
(Figure 14). For this, we develop a differentiable
and occlusion-aware image-space representation
for a sparse set of scene edges that allows us to
solve the inverse problem efficiently using gradi-
ent descent. This section expands upon EPI edges
to consider unstructured multi-view images too in
which only sparse points in correspondence are
easily discovered: we treat each point as a Gaus-
sian to be splatted into the camera, then we use
the setting of radiative energy transfer through
participating media to model the occlusion inter-
action between Gaussians. This lets us optimize
over point position, depth, and weight parameters
via reprojection error from RGB images.

In Section 7, we show that this method reduces
diffusion errors caused by noisy or spurious points,

and allows us to optimize a sparse point set.
Further, we discuss why edges are difficult to opti-
mize via reprojection from depth maps. Finally,
in comparison to both image processing and deep
learning baselines, our method shows competitive
performance, especially in reducing bad pixels.

6.1 Depth via Differentiable
Diffusion

Given a set I = {I0, I1, ..., In} of n multi-view
images and a sparse set of noisy scene points
P ∈ R3, our goal is to generate a dense depth map
for central view Ic. We achieve this by optimizing
the set of scene points so that their diffused image
minimizes a reprojection error across I.

We begin by restating the task of reconstruc-
tion via diffusion within the context of a sparse set
of 3D scene points P and a camera. Let S ∈ R2

denote the sparse depth labels obtained by pro-
jecting P onto the image plane of some I ∈ I. That
is, for a given scene point x = (Xx, Yx, Zx) ∈ P
and camera projection matrix K, S(Kx) = Zx. We
want a dense depth map Do by penalizing the dif-
ference from the sparse labels S while promoting
smoothness by minimizing the gradient ∇D:

Do = argmin
D

∫∫
Ω

λ(x, y) (D(x, y)− S(x, y))
2

+ϑ(x, y)∥∇D(x, y)∥ dx dy,
(27)

where λ(x, y) =
∑

x∈P δ((x, y) − Kx) is a sum of
point masses centered at the projection of P—
the splatting function. The second term enforces
smoothness; ϑ is low around depth edges where
it is desirable to have high gradients. Solving
Equation (27) in 3D is expensive and complex,
needing for example voxels or a mesh. More prac-
tically, the energy in Equation (27) is minimized
over a discrete pixel grid with indices x, y:

Do = argmin
D

∑
(x,y)

(
λZ(x, y)

(
D(x, y)− SZ(x, y)

)2
+

∑
(u,v)∈N (x,y)

ϑZ(x, y)∥D(u, v)−D(x, y)∥
)
,

(28)

where N (x, y) defines a four-pixel neighborhood
around (x, y), and λZ, ϑZ and SZ are, respectively,

17

Fig. 14: From a set of noisy sparse depth samples, our method uses differentiable splatting and diffusion
to produce a dense depth map. Then, we optimize point position, disparity, and weight against an RGB
reprojection loss. This reduces errors in the initial set of points.

the discrete counterparts of the splatting function
λ, the local smoothness weight ϑ, and the depth
label in R2, S.

Deciding how to perform this discretization
has important consequences for the quality of
results and is not easy. For instance, λ and S are
defined as point masses and hence are impossi-
ble to sample. The simplest solution is to round
our projected point Kx to the nearest pixel. How-
ever, quite apart from the aliasing that this is
liable to cause, it is unsuitable for optimization
as the underlying representation of λZ and SZ

remains non-differentiable. As Figure 15 shows, we
require a representation that is differentiable and
has the appropriate compactness for correctly rep-
resenting the weight and depth value of each point
on the raster grid: points projected to the raster
grid should ‘spread’ their influence only where
necessary for differentiability.

6.2 Differentiable Image-space
Representation

A common smooth representation is to model the
density x at a three-dimensional scene point as
a sum of scaled isotropic Gaussians [68, 69]. The
problem with this approach is that rendering all
such points x ∈ P requires either ray-marching
through the scene, or representing the viewing-
frustum as a voxel grid. The former is computa-
tionally expensive and the latter limits rendering
resolution. Moreover, with points defined in scene
space, it becomes difficult to ensure depth values
are accurately splatted onto discrete pixels. This
is demonstrated in Figure 15(e) where the scene

point projecting onto a sub-pixel location ends up
with zero pixel weight—effectively vanishing.

Our proposed representation overcomes these
problems by modeling depth labels as scaled Gaus-
sians centered at the 2D projection Kx of points
x ∈ P, and using a higher-order Gaussian (or
super-Gaussian) for the label weight to ensure
non-zero pixel contribution from all points. A
higher-order Gaussian is useful for representing
weight as it has a flatter top, and falls off rapidly.
Thus, its behavior is closer to that of a delta func-
tion, and it minimizes the “leakage” of weight
onto neighboring pixels (Figure 15c). But unlike a
delta, it is differentiable and can be sized to match
some pixel extent so that points do not vanish
(Figures 15d & 15e). Thus, we define the discrete
functions:

SZ(x, y) =
∑
x∈P

αx(x, y)S
Z
x(x, y), (29)

where αx(x, y) is a function that will merge pro-
jected labels in screen space (we will define αx

in Sec. 6.3), and SZx declares the label contri-
bution at pixel (x, y) from a single scene point
x = (Xx, Yx, Zx) with projection Kx = (xx, yx).
We define SZx as:

SZx(x, y) = Zx exp

(
− (x− xx)

2 + (y − yx)
2

2σ2
S

)
.

(30)

18

Depth Label
Sℤ (𝑥, 𝑦)

Dense Diffusion D𝑜 𝑥, 𝑦

Label weight
λ ℤ (𝑥, 𝑦)

1D

2D

Depth Label
Sℤ (𝑥, 𝑦)

Dense Diffusion D𝑜 𝑥, 𝑦

Label weight
λ ℤ (𝑥, 𝑦)

Depth Label
Sℤ (𝑥, 𝑦)

Dense Diffusion D𝑜 𝑥, 𝑦

Label weight
λ ℤ (𝑥, 𝑦)

Depth Label
Sℤ (𝑥, 𝑦)

Dense Diffusion D𝑜 𝑥, 𝑦

Label weight
λ ℤ (𝑥, 𝑦)

(b) (c) (d) (e)

Depth Label
S 𝑥, 𝑦 in ℝ

Points in ℝ2

Label weight
𝜆 𝑥, 𝑦 in ℝ

(a)

Fig. 15: Depth diffusion happens in image space, so how we splat a set of scene points in R3 onto a
pixel grid in Z2 has a significant impact on the results. (a) The image-space projection of scene points
are Dirac delta functions which cannot be represented in discrete pixels. (b) Rounding the projected
position to the closest pixel provides the most accurate splatting of depth labels for diffusion, even if it
introduces position error. Unfortunately, the functional representation of the splatted point remains a
non-differentiable Dirac delta. (c) Image-space Gaussians provide a differentiable representation, but the
depth labels are not accurate. Since the label weights λZ are no longer point masses, non-zero weight is
assigned to off-center depth labels. (d) Attempting to make λZ more similar to a point mass by reducing
the Gaussian σ results in sub-pixel points vanishing: the Gaussian on the left no longer has extent over
any of the sampled grid locations. (e) Our higher-order Gaussian representation provides dense diffusion
results closest to (a) while also being differentiable.

Similarly, the discrete label weights are defined as:

λZ(x, y) =
∑
x∈P

αx(x, y)λ
Z
x(x, y), (31)

with λZ
x taking the higher-order Gaussian form:

λZ
x(x, y) = wxexp

(
− (x− xx)

2 + (y − yx)
2

2σ2
λ

)p

,

(32)

for some scaling factor wx.

Discussion

One might ask why we do not use higher-order
Gaussians for the depth label, too. Depth labels
require handling occlusion (unlike their weights),
and we model this using radiance attenuation
in the next section (Section 6.3). Using higher-
order Gaussians for depth requires differentiating
a transmission integral (upcoming Equation (33)),

Fig. 16: Left: The image-space projection Kx
of scene points x ∈ P plotted in white. Mid-
dle: Our differentiable labeling function SZ accu-
rately splats depth labels while handling occlu-
sion. Right: A higher-order Gaussian representa-
tion of λZ is differentiable, and provides weights
that are close to point masses without any points
vanishing during discretization.

yet no analytic form exists for higher-order Gaus-
sians (with an isotropic Gaussian, a representation
in terms of the lower incomplete gamma function
γ is possible, but the derivative is still notoriously
difficult to estimate).

19

Fig. 17: We estimate depth labels at points
overlapping in xy using a radiative transfer for-
mulation with Gaussians in orthographic space. If
σZ is small, the influence of the points u and v in
scene space is restricted to small windows around
Zu and Zv. As σZ −→ 0, we assume the density
contribution at any point s along a ray comes from
a single Gaussian. This allows the attenuation
effect of each Gaussian to be calculated indepen-
dently. The global attenuation function at s can
be calculated as the product of local attenuation
for all points with z < s.

6.3 Rendering and Occlusion
Handling

While a Gaussian has infinite extent, the value of
the depth label function SZx and the label weight
function λZ

x at non-local pixels will be small and
can be safely ignored. However, we need the opera-
tor αx from Equations (29) and (31) to accumulate
values at any local pixel (x, y) that receives signif-
icant density contribution from multiple SZ

x . This
accumulation must maintain the differentiability
of SZ and must ensure correct occlusion order-
ing so that an accurate depth label is splatted
at (x, y). Using a Z-buffer to handle occlusion by
overwriting depth labels and weights from back to
front makes SZ non-differentiable.

We diffuse projected points in 2D; however, to
motivate and illustrate the derivation of αx, we
will temporarily elevate our differentiable screen-
space representation to R3 and use an ortho-
graphic projection—this provides the simplest 3D

representation of our ‘2.5D’ data labels, and allows
us to formulate αx using the setting of radiative
energy transfer through participating media [68].

Thus, we model the density at every 3D scene
point as a sum of scaled Gaussians of magni-
tude ρ centered at the orthographic reprojection
u = (xx, yx, Zx) of each x ∈ P. Then, for a ray
originating at pixel (x, y) and traveling along z,
the attenuation factor T at distance s from the
image plane is defined as:

T(x, y, s) = exp

(
−
∫ s

0

ρ
∑
x∈P

exp

(
−
((x− xx)

2

2σ2
S

+
(y − yx)

2

2σ2
S

+
(z − Zx)

2

2σ2
Z

))
dz

)
.

(33)

As σZ −→ 0, the density contribution at any
point s along the ray will come from only a sin-
gle Gaussian. Furthermore, as the contribution of
each Gaussian is extremely small beyond a cer-
tain distance, and as the attenuation along a ray
in empty space does not change, we can redefine
the bounds of the integral in a local frame of refer-
ence. Thus, we consider each Gaussian as centered
at µz in its local coordinate frame with non-zero
density only on [0, t] (Figure 17). The indepen-
dence of Gaussians lets us split the integral over
[0, s] into a sum of integrals, each over [0, t] (please
see supplemental document for detailed deriva-
tion). Using the product rule of exponents, we can
rewrite Equation (33) as:

T(x, y, s) =
∏
x

exp

(
−
∫ t

0

ρ
SZx(x, y)

Zx
·

exp

(
− (z − µz)

2

2σ2
Z

)
dz

)
(34)

=
∏
x

Tx(x, y),

where the product is over all x ∈ P | Zx < s. By
looking again at Equation (30), we can see that
SZx(x, y)/Zx is simply the normalized Gaussian
density in xy.

20

Each Tx is independent, allowing parallel cal-
culation:

Tx(x, y) = exp

(√
π

2

σZ ρ SZx(x, y)

Zx(
− erf

(
µz

σZ

√
2

)
− erf

(
t− µz

σZ

√
2

)))
(35)

= exp

(
c
SZx(x, y)

Zx

)
,

where erf is the error function. We can now define
the label contribution of each x at pixel (x, y). For
this, we use the radiative transfer equation which
describes the behavior of light passing through a
participating medium [68]:

SZ(x, y) =

∫ ∞

0

T(s, x, y)a(s, x, y)P(s, x, y) ds, (36)

where T, a, and P are the transmittance, albedo,
and density, respectively, at a distance s along
a ray originating at (x, y). Albedo represents the
proportion of light reflected towards (x, y), and
intuitively, we may think of it as the color of the
point seen on the image plane in the absence of
any occlusion or shadows. In our case, we want the
pixel value to be the depth label Zx. Making this
substitution, and plugging in our transmittance
and Gaussian density function, we obtain:

SZ(x, y) =

∫ ∞

0

T(x, y, s)
∑
x∈P

Zx ρ exp

(

− (x− xx)
2

2σ2
S

+
(y − yx)

2

2σ2
S

+
(s− Zx)

2

2σ2
Z

)
ds. (37)

Again, with σZ −→ 0, the density contribution at a
given smay be assumed to come from only a single
Gaussian. This lets us remove the summation over
x, and estimate the integral by sampling s at step
length ds over a small intervalNx around each Zx:

SZ(x, y) =
∑
x∈P

∑
s∈Nx

dsT(x, y, s) ρ SZx(x, y)·

exp

(
− (s− Zx)

2

2σ2
Z

)

=
∑
x∈P

SZx(x, y)
∑
s∈Nx

dsT(x, y, s) ρ ·

exp

(
− (s− Zx)

2

2σ2
Z

)
=
∑
x∈P

αx(x, y) S
Z
x(x, y). (38)

This allows us to arrive at a differentiable form of
our screen-space aggregation function αx:

αx(x, y) =
ρds

Zx

∑
s∈Nx

T(s, x, y) ρ ·

exp

(
− (s− Zx)

2

2σ2
Z

)
. (39)

6.4 Optimization by Gradient
Descent

To restate our goal, we want to optimize the
parameters Θ = {SZ, λZ, ϑZ} for dense depth
diffusion (Equation (28)). The function SZ(x, y)
proposes a depth label at pixel (x, y), λZ(x, y)
determines how strictly this label is applied to
the pixel, and ϑZ(x, y) controls the smoothness of
the output depth map at (x, y). We find Θ by
using gradient descent to minimize a loss function
L(Θ). Using our differentiable representation, we
can express SZ and λZ in terms of the image-space
projection of the sparse point set P. This pro-
vides strong constraints on both the initial value
of these functions and on how they are updated
at each step of the optimization, leading to faster
convergence.

Supervised Loss

To validate our image-space representation and
optimization, we first use ground truth depth to
supervise the optimization of the different parame-
ters in Θ. This generates high-quality depth maps,
and shows the potential of our differentiable sparse
point optimization and diffusion method. Please
see the appendix for details.

Self-supervised Loss

Working with a set of multi-view images I =
{I0, I1, ..., In} allows us to define a self-supervised
loss function for the optimization. Given a dense
depth map DΘ generated by diffusion with param-
eters Θ, we define the warping operator WΘ to

21

Fig. 18: Our everyday intuition says that depth
edges should be sharp, but a limited sampling
rate blurs them in the RGB input (a). This can
cause unintended high error during optimization
via losses computed on RGB reprojections. In (b),
the depth edge is sharp, but reprojecting it into
other views via warping causes high error as the
edge in the RGB image is blurred. Counterintu-
itively, in (c), the depth edge is soft and less
accurate, but leads to a lower reprojection error.
If sharp edges are desired, we can reward high gra-
dient edges in the error (Equation (41)).

Fig. 19: Over optimization iterations, mean
squared error reduces and ‘bad pixels’ are signifi-
cantly suppressed. Most remaining errors lie along
edges, where depth is not well defined (Figure 18).

reproject each view Ii onto Ic; where Ic is the view
we want to compute dense depth for. The warping
error is then calculated as:

EΘ(x, y) =
1∑

i M
i
Θ(x, y) + ϵ

·

∑
i

(
|I(x, y)−WΘ[I

i](x, y)| Mi
Θ(x, y)

)
, (40)

where Mi
Θ(x, y) is the binary occlusion mask for

view i, computed dynamically at each iteration.
We observe that EΘ is non-zero even if we

use the ground truth depth map because small

pixel errors are inevitable during the sub-pixel
interpolation for warping. However, the more sig-
nificant errors come from an unexpected source:
the sharpness of depth edges. Depth labels are
ambiguous at pixels lying on RGB edges, and lim-
ited sampling frequency blurs these edges within
pixels (Figure 18). By assigning a fixed label to
these pixels, sharp depth edges cause large errors.
Consequently, the optimization process smooths
all edges. While doing so minimizes the reprojec-
tion error, it may be desirable to have sharp depth
edges for aesthetic and practical purposes, even if
the edge location is slightly incorrect.

Therefore, we add a loss term to reward high
gradients in EΘ, effectively allowing the optimiza-
tion to ignore errors caused by sharp depth edges.
In addition, we include a smoothness term ES

similar to Ranjan et al. [70] to encourage depth
to be guided by image edges, and a structural
self-similarity error [71] ESSIM which is used to
regularize warping error. Our final loss function is:

L(Θ) =
∑
(x,y)

(
EΘ(x, y) + ES+

ESSIM −∇EΘ(x, y)

)
. (41)

7 Evaluating the
Differentiable Approach

Additional Datasets

Along with the previous scenes (Section 5), we
add new synthetic Living Room and Piano scenes
with more realistic lighting, materials, and depth
ranges. We path trace these with Arnold in Maya
at 512×512 pixels. Each light field has 9×9 views,
and each multi-view image set has five unstruc-
tured views with a mean baseline of ≈ 25 cm.

7.1 Light Fields

While learning-based methods [35, 59, 63] tend
to do well on the HCI dataset, their quantitative
performance degrades on the more difficult Piano
and Living Room scenes (Table 4). A similar qual-
itative trend shows the learning-based methods
performing worse than diffusion on the real-world
light fields (Figure 21). Our method provides more

22

Fig. 20: Depth results on the synthetic Piano-MVS scene. Left to right: Ground truth, dense reconstruc-
tion from COLMAP [23, 72], DeepMVS [36], our method using 702 sparse points in P, and our method
with 2, 808 sparse points from dense COLMAP output.

Table 3: Quantitative results for wider-baseline
unstructured five-camera cases, as the Living
Room-MVS and Piano-MVS scenes.

MVS
MSE Q25

D-MVS C-Map Ours Ours-C D-MVS C-Map Ours Ours-C

Living Room 1.99 1.37 0.30 0.17 64.9 4.44 14.8 4.22

Piano 1.51 2.56 0.81 0.69 6.87 42.6 2.15 1.37

Average 1.75 1.97 0.56 0.43 35.9 23.5 8.48 2.80

consistent overall performance on all datasets.
Moreover, our non-differentiable diffusion-based
method has few pixels with very large errors but
many pixels with small errors, producing consis-
tently low MSE but more bad pixels. In contrast,
our differentiable method consistently places in
the top three on the bad pixel metrics.

For breadth of comparison, we also com-
pare to Jin and Hou’s learning-based self-
supervised method [73] and a state-of-the-art
supervised learning approach in Wang et al.’s cost-
constructor method [74]. Like our method, Jin
and Hou also do not need any labels, but unlike
our method, it is trained on data. MSE perfor-
mance is slightly worse than our non-differentiable
approach and comparable to our differentiable
approach, but with more extreme outliers as
shown by the BP(0.07) metric. Wang et al.’s
method provides superior performance on the HCI
dataset, but must be re-trained for each new
dataset to account for different disparity ranges
and dilation rates in their cost construction step.

Finally, as is common, it is possible to post-
process our results with a weighted median filter
to reduce MSE (e.g., Dino 0.54 vs. 0.86) at the
expense of increased bad pixels (BP(0.01) of 39.6
vs. 25.6). We report results with this filter.

7.2 Multi-view Stereo

Baselines and Metrics

We compare to dense reconstruction from
COLMAP [23] and to DeepMVS [36]. Our method
uses the sparse output of COLMAP as the initial
point set, which is considerably sparser than the
initial set for light fields (500 vs. 50k). To increase
the number of points, we diffuse a preliminary
depth map and optimize the smoothness parame-
ter for 50 iterations. Then, we sample this result at
RGB edges. Using this augmented set, we optimize
all parameters in turns of 25 iterations, repeated
5 times. In addition, we also evaluate a variant of
our method, Ours-C, with sparse labels initialized
from the dense COLMAP output at RGB edges.

For metrics, we use MSE and also report the
25th percentile of absolute error as Q25. As the
depth output of each method is ambiguous up to
a scale, we estimate a scale factor for each result
using the least squares fit the ground truth at 500
randomly sampled valid depth pixels.

Results

To account for the error in the least squares,
Table 3 presents the minimum of ten differ-
ent fits for each method. Both DeepMVS and
COLMAP generate results with many invalid pix-
els. We assign such pixels the mean GT depth.
Our method outperforms the baselines with a
sparse point set (only ≈ 700 points) and generates
smooth results that qualitatively have fewer arti-
facts (Figure 20). Using 4× as many initial points
(≈ 2, 800 points) in the Our-C variant leads to
additional improvements.

23

Fig. 21: Top: Disparity results on the synthetic Living Room light field. Bottom: Disparity results on
a real light field. Left to right : Zhang et al. [34], Jiang et al. [35], Shi et al. [63], Li et al. [59], our non-
differentiable approach as ‘Khan20’ (Sections 3 & 4), a baseline diffusion result without any optimization,
our differentiable constraint results. The top synthetic light field also adds ground truth to the far left.

Table 4: Quantitative comparison on synthetic HCI light fields. The top three results are highlighted in
gold , silver and bronze . BP(x) is the number of bad pixels which fall above threshold x in error. ‘Ours†’
denotes our non-differentiable method, ‘Ours∇’ denotes our differentiable method with an unsupervised
loss. Note: [73] do not report BP(0.01) nor BP(0.03). (Best viewed in color.)

Light Field
[34] [59] [35] [63] [73] [74] Ours† Ours∇ [34] [59] [35] [63] [73] [74] Ours† Ours∇

MSE * 100 BP(0.01)

Sideboard 1.02 1.89 1.96 1.12 1.79 0.54 0.89 2.23 78.0 62.3 47.4 53.0 - - 73.8 43.0

Dino 0.41 3.28 0.47 0.43 0.69 0.08 0.45 0.86 81.2 52.7 29.8 43.0 - - 69.4 25.6

Cotton 1.81 1.95 0.97 0.88 0.80 0.16 0.68 3.07 75.4 58.8 25.4 38.6 - - 56.2 31.1

Boxes 7.90 4.67 11.6 8.48 7.45 2.89 6.69 9.17 84.7 68.3 51.8 66.5 - - 76.8 60.3

BP(0.03) BP(0.07)

Sideboard 42.0 18.0 18.3 20.4 - - 37.4 16.5 14.4 6.50 9.31 9.02 14.2 3.35 16.2 8.35

Dino 48.9 12.8 8.81 13.1 - - 30.9 7.69 7.52 5.82 3.59 4.32 8.25 1.00 10.4 4.06

Cotton 34.8 14.0 6.30 9.60 - - 18.0 7.82 4.35 4.11 2.02 2.74 8.46 0.31 4.86 4.06

Boxes 55.3 28.0 27.0 37.2 - - 47.9 32.7 18.9 13.4 18.3 21.9 26.2 10.7 28.3 20.5

24

Table 5: Quantitative comparison on more realistic synthetic light fields. The top three results are
highlighted in gold , silver and bronze . BP(x) is the number of bad pixels which fall above threshold
x in error. Higher BP thresholds are used for Living Room and Piano as their average error is larger for
all methods: they contain specular surfaces, larger depth ranges, and path tracing noise. ‘Ours†’ denotes
our non-differentiable method, and ‘Ours∇’ denotes our differentiable method with an unsupervised loss.

Light Field
[34] [59] [35] [63] Ours† Ours∇ [34] [59] [35] [63] Ours† Ours∇

MSE * 100 BP(0.1)

Living Room 0.67 0.57 0.23 0.25 0.25 0.20 59.5 58.5 37.2 48.0 47.2 30.3

Piano 26.7 13.7 14.4 8.66 12.7 8.71 36.7 27.5 24.7 27.0 37.6 17.0

BP(0.3) BP(0.7)

Living Room 43.3 42.7 23.7 26.5 25.0 17.5 17.0 16.6 11.4 10.8 11.5 9.23

Piano 25.0 17.6 13.6 11.4 20.0 7.93 5.33 4.13 5.88 4.29 4.95 3.49

7.3 Sparsity Evaluation

We use the differentiable model to extract a min-
imal set of points that satisfies our completeness
criterion, thereby achieving compactness of repre-
sentation as well. This is accomplished by opti-
mizing the projected data weight λZ to be high for
points that have a high contribution to the result,
and low for less important points and outliers. To
achieve such a gradation, we run the optimization
by selecting at each step only those points with a
weight larger than one to use for dense depth dif-
fusion. To prevent points from being trapped in a
discarded state, and thus receiving no gradients,
we add a random jitter to the weights at each iter-
ation. Moreover, this forces the optimization to
push the weight of important points higher so that
they can never be randomly discarded, and vice
versa for outliers and superfluous points.

We demonstrate the results of our sparsifica-
tion approach using a supervised loss optimized
on the light fields of the HCI dataset. We run
the optimization for 2500 steps for each light field
and only optimize the data weight parameter. We
evaluate two variants of our approach:
OursN∇ selects the N points with the high-

est weight, allowing us to generate a point
set with a fixed size budget (e.g., for storage
cost). For a fair comparison to other sparsi-
fication methods that cannot set proportional
weights, we do not use our optimized weight
values (Figure 22); using them leads to a slight
performance increase.

OursT∇ selects all points with weight greater
than a threshold of one during optimization,

and also uses the optimized weight values of
those selected points instead of ignoring them.
Rather than a controller for a size budget like
OursN∇, this can be thought of as a strategy
to produce a controller for quality.
We also compare our approach to three naive

methods: sparsification by random sampling, by
stratified sampling in screen space (2D), and by
bucketing and averaging points into voxels on a
regular 3D grid (3D).

Table 6 shows the percentage improvement in
each metric over the baseline from Section 3, and
Table 7 shows the number of points used per
scene. In general, all methods yield some improve-
ment, indicating the presence of outliers and
superfluous points in the baseline. However, sam-
pling using our differentiable diffusion approach
produces a lower mean-squared error and bad
pixel metrics than the other methods for the
same number of points (Figure 22). Further, the
naive sparsification baselines sometimes decrease
performance, while our approaches empirically
always improve performance. Comparing our two
methods, OursT∇ leads to greater improvement
than OursN∇, e.g., an average MSE decrease of
38.4% rather than 33.72%, though more points are
retained on average (15,975 vs. a fixed 7,500).

8 Discussion

When we consider the maximal possible perfor-
mance achievable of our method, when considering
the results in Figure 2, we see a considerably min-
imized error, but not a perfect reconstruction.

25

N∇

#Points#Points

#Points████████ ████████#Points #Points

████████████████

Q25

BP(0.01)████████MSE BP(0.03)

BP(0.07)

% Pixels % Pixels % Pixels

% Pixels % Pixels

Fig. 22: Our sparsification approach achieves better performance than naive baselines. Evaluating the
quality of the depth reconstruction from edge sets obtained using four sparsification methods on the four
light fields of the HCI dataset. The error is along the y-axis. The x-axis labels show both the number of
edge samples (bottom) and the percentage of total pixels in a single light field view (top).

Table 6: Sparsification improves performance by removing redundant confounding points. The percentage
change in each metric over the baseline presented in Section 3, using 25–85k points per scene (Table 7). We
evaluate uniform random sampling Rnd, 2D tile-based stratified sampling StrS, 3D voxel-based sampling
VoxS, and two variants of our differentiable diffusion-based approach: OursN∇ selects the N points with
highest confidence, whereas OursT∇ selects all points with confidence greater than a threshold of one.
We use N = 7500 for OursN∇ and Rnd where we have direct control over the output set size, and aim for
a roughly similar number of points in StrS and VoxS through hyper-parameter adjustment. The exact
number of points in the sparse set output by each method is provided in Table 7. (Best viewed in color.)

Light Field
MSE * 100 BP(0.01) BP(0.03) BP(0.07)

Rnd StrS VoxS OursN∇OursT∇ Rnd StrS VoxS OursN∇OursT∇ Rnd StrS VoxS OursN∇OursT∇ Rnd StrS VoxS OursN∇OursT∇

Sideboard -13.6 -16.7 -2.11 -52.1 -53.6 -4.59 -5.12 -0.34 -24.3 -25.3 -11.0 -12.8 0.22 -42.9 -45.7 -15.0 -16.6 2.12 -57.5 -60.8

Dino -7.99 -11.6 -17.9 -45.7 -49.9 -3.38 -2.82 -4.23 -9.90 -14.0 -7.74 -7.61 -8.77 -26.8 -30.2 -17.2 -19.2 -16.3 -45.2 -44.1

Cotton 9.16 0.40 6.11 -2.48 -15.1 -21.9 -19.2 -5.43 -21.7 -27.4 -44.5 -43.1 -6.85 -43.0 -52.6 -28.4 -32.2 40.4 -26.1 -43.0

Boxes 1.75 -1.90 -6.22 -34.6 -35.0 -0.35 -0.27 2.43 -8.88 -9.15 0.12 -1.51 5.01 -13.7 -14.3 6.90 0.74 5.14 -16.5 -17.6

26

Table 7: Edge set size can be significantly reduced without reducing performance through sparsification.
The size of the edge set generated by each sparsification method. Base is the original sparse set generated
by the first-principles method described in Section 3. We present the percentage relative to the number of
pixels in a single 512×512 view of the light field. However, it should be noted that our sparse multi-view
edge set is complete for reconstructing the geometric information contained in all the views. Hence, the
actual compactness achieved by our model is much higher.

Light Field
Number of multi-view edge samples / Percentage of total pixels in single view

RndSamp 2DStratSamp VoxelSamp OursN∇ OursT∇ Base

Sideboard 7500/2.86% 7552/2.88% 14178/5.41% 7500/2.86% 9382/3.58% 50623/19.3%

Dino 7500/2.86% 7544/2.88% 10759/4.10% 7500/2.86% 28195/10.8% 85807/32.7%

Cotton 7500/2.86% 7551/2.88% 10749/4.10% 7500/2.86% 19653/7.46% 60921/23.2%

Boxes 7500/2.86% 7238/2.76% 8453/3.22% 7500/2.86% 6670/2.54% 25332/9.66%

Random 2D stratified Voxel stratified OursT∇ Ground truth

Fig. 23: Qualitative comparison of the depth maps obtained using different sparse sampling methods.
Our approach to sparsification maintains smooth surfaces and sharp edges better than naive methods.

27

This can be attributed to certain implementa-
tional constraints that limit the model’s ability to
encode and reconstruct all depth features: while
the optimization process proposed in Section 6.4
can discard noisy labels, it cannot add new labels
to the original edge set P. Such errors are some-
what mitigated by starting with many points and
sparsifying them. However, our evaluation is ulti-
mately limited by our original edge set: a good set
of edges will be more complete than a bad one;
the empty set will never be complete.

Another source of errors is the so-called “island
problem” where a value must be propagated across
depth boundaries [75]. This can be observed in our
results for the boxes scene in the grill (Figure A5).
However, this failure does not imply that our
model is incomplete. The depth of a featureless
“island” cannot be ambiguously determined by
any method, and our estimate is as inaccurate as
any other. Imagine looking at a textureless surface
through a small hole: it is impossible to uniquely
determine the depth of the textureless surface
using stereo cues alone. Since the depth informa-
tion of such an “island” region is not encoded in
the input, it cannot be retrieved without using
some prior on surface configurations.

Furthermore, as stated, our model assumes
Lambertian surfaces. However, since non-
Lambertian surfaces violate EPI linearity, our
multi-view edge estimation pipeline can reliably
discard them as outliers. Such a surface is then
assigned a depth value diffused from the closest
non-refractive edge, leading to a fronto-parallel
surface reconstruction. Thus, diffusion allows
our method to fall back on a piece-wise planar
reconstruction for refractive surfaces.

Finally, the baseline of a camera system affects
multi-view edge recovery. We have shown our
approach on narrow and wide baseline light fields
(synthetic, Lytro, and Stanford), and on front-
facing multi-view stereo scenes, but larger base-
lines from sparse setups may cause trouble in
reliably finding and propagating edges. While
our approach is occlusion-aware, reliably finding
occluded elements in very sparse point sets in wide
multi-view stereo setups is difficult. As such, we
did not test our method on sparse wide baseline
setup datasets as might be found in the Tanks and
Temples [76], DTU [77], or ETH3D [78] datasets.
For example, our existing multi-view point sets use
700–2800 points, as compared to 7,500 minimally

for light fields. On these additional datasets, point
sparseness would only increase.

9 Conclusion

Multi-view edges encode all relevant informa-
tion for supporting higher-level tasks that rely
on depth reconstruction. Inspired by the work of
Elder [27], this was demonstrated by proposing
a representation for multi-view depth as a sparse
model based on multi-view edges that satisfies the
criteria of explicitness, concision, and complete-
ness. The proposed representation has explicitness
in that it provides more useful information than
the multi-view RGB input. This includes edges,
occlusion surfaces, and depth boundaries. The rep-
resentation has concision as it stores depth labels
for each edge pixel only once, and exploits a
smoothness assumption to deal with traditionally
noise-prone areas such as specular and texture-free
regions. The completeness of the representation—
its ability to capture all relevant information
for higher-level tasks—was demonstrated through
estimating representation parameters—an edge
code—from a structured light field and by a recon-
struction method that inverts the edge code to
retrieve a dense 2D depth map. Given that dif-
ferent applications are variously dependent on
the quality dimensions of depth reconstruction,
we defined completeness for computational pho-
tography tasks using occlusion edges and view
consistency in addition to the more commonly
used accuracy metric.

However, practical use can still be limited
by the inaccuracy of the representation param-
eters, leading to errors in the diffusion process.
As such, we created a differentiable variant of the
representation that redefines multi-view edges as
Gaussians in 3D space that can be splatted to
a camera in an occlusion-aware way via radia-
tive transport. Then, representation parameters
can be optimized via gradient descent guided by
a multi-view reprojection loss. This loosens the
requirement on estimating multi-view edges from
structured light field and additionally allows opti-
mizing point clouds recovered from unstructured
multi-view images. Further, the differentiable form
of the reconstruction can also optimize the conci-
sion of the representation via sparsity.

In comparative evaluation, we observe that
the reconstructed dense depth is comparable to

28

existing methods on each of the three metrics:
accuracy, occlusion-edge localization, and view-
consistency, and is comparatively good at reducing
bad pixels via its reprojection loss. First, these
findings provide strong evidence that multi-view
depth edges are indeed complete. Second, they
suggest that compact, efficient, and well-defined
edge codes have value amid deep learning. Third,
they provide evidence that this value is derived
from the underlying structural information con-
tained within images—that of high-confidence
depth estimates from well-defined multi-view
edges—and not contained within images—where
we must make assumptions in regions of low confi-
dence (be they data-driven or otherwise). As a way
of handling low confidence regions through spar-
sity, diffusion-based methods are still a reasonable
smoothing approach to take, and that careful
constraint estimation and optimization ultimately
determines the final quality.

Acknowledgements

Numair Khan thanks an Andy van Dam
PhD Fellowship at Brown University, Min
H. Kim acknowledges the MSIT/IITP of Korea
(RS-2022-00155620, 2022-0-00058, and 2017-0-
00072), the Samsung Research Funding Center
(SRFC-IT2001-04), and the NIRCH of Korea
(2021A02P02-001), and James Tompkin thanks
Cognex and US NSF CAREER-2144956.

References

[1] Gortler, S.J., Grzeszczuk, R., Szeliski, R.,
Cohen, M.F.: The Lumigraph. In: Proceed-
ings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques,
pp. 43–54 (1996)

[2] Choi, I., Gallo, O., Troccoli, A., Kim, M.H.,
Kautz, J.: Extreme view synthesis. In: Pro-
ceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 7781–
7790 (2019)

[3] Riegler, G., Koltun, V.: Free view synthe-
sis. In: European Conference on Computer
Vision, pp. 623–640 (2020). Springer

[4] Riegler, G., Koltun, V.: Stable view syn-
thesis. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, pp. 12216–12225 (2021)

[5] Jarabo, A., Masia, B., Bousseau, A., Pel-
lacini, F., Gutierrez, D.: How do people edit
light fields? ACM Transactions on Graphics
(SIGGRAPH 2014) 33(4) (2014)

[6] Mihara, H., Funatomi, T., Tanaka, K.,
Kubo, H., Mukaigawa, Y., Nagahara, H.:
4d light field segmentation with spatial and
angular consistencies. In: Proceedings of the
International Conference on Computational
Photography (ICCP) (2016)

[7] Luo, X., Huang, J.-B., Szeliski, R., Matzen,
K., Kopf, J.: Consistent video depth estima-
tion. ACM Transactions on Graphics (TOG)
39(4), 71–1 (2020)

[8] Ha, H., Baek, S.-H., Nam, G., Kim,
M.H.: Progressive acquisition of svbrdf and
shape in motion. Computer Graphics Forum
(2020). https://doi.org/10.1111/cgf.14087

[9] Holynski, A., Kopf, J.: Fast depth densifica-
tion for occlusion-aware augmented reality
37(6) (2018)

[10] Xu, Z., Bi, S., Sunkavalli, K., Hadap, S.,
Su, H., Ramamoorthi, R.: Deep view synthe-
sis from sparse photometric images. ACM
Transactions on Graphics (TOG) 38(4), 1–
13 (2019)

[11] Zhang, R., Tsai, P.-S., Cryer, J.E., Shah, M.:
Shape-from-shading: a survey. IEEE trans-
actions on pattern analysis and machine
intelligence 21(8), 690–706 (1999)

[12] Subbarao, M., Surya, G.: Depth from defo-
cus: A spatial domain approach. Interna-
tional Journal of Computer Vision 13(3),
271–294 (1994)

[13] Ikoma, H., Nguyen, C.M., Metzler, C.A.,
Peng, Y., Wetzstein, G.: Depth from defo-
cus with learned optics for imaging and
occlusion-aware depth estimation. IEEE
International Conference on Computational

29

https://doi.org/10.1111/cgf.14087

Photography (ICCP) (2021)

[14] Bi, S., Xu, Z., Sunkavalli, K., Kriegman, D.,
Ramamoorthi, R.: Deep 3d capture: Geom-
etry and reflectance from sparse multi-view
images. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recogni-
tion (2020)

[15] Debevec, P., Hawkins, T., Tchou, C.,
Duiker, H.-P., Sarokin, W., Sagar, M.:
Acquiring the reflectance field of a human
face. In: Proceedings of the 27th Annual
Conference on Computer Graphics and
Interactive Techniques, pp. 145–156 (2000)

[16] Meka, A., Haene, C., Pandey, R., Zoll-
hoefer, M., Fanello, S., Fyffe, G., Kow-
dle, A., Yu, X., Busch, J., Dourgarian,
J., Denny, P., Bouaziz, S., Lincoln, P.,
Whalen, M., Harvey, G., Taylor, J., Izadi, S.,
Tagliasacchi, A., Debevec, P., Theobalt, C.,
Valentin, J., Rhemann, C.: Deep reflectance
fields - high-quality facial reflectance field
inference from color gradient illumina-
tion, vol. 38 (2019). https://doi.org/10.
1145/3306346.3323027. http://gvv.mpi-inf.
mpg.de/projects/DeepReflectanceFields/

[17] Nam, G., Lee, J.H., Wu, H., Gutier-
rez, D., Kim, M.H.: Simultaneous acquisi-
tion of microscale reflectance and normals.
ACM Transactions on Graphics (Proc. SIG-
GRAPH Asia 2016) 35(6) (2016). https://
doi.org/10.1145/2980179.2980220

[18] Chen, W., Fu, Z., Yang, D., Deng, J.:
Single-image depth perception in the wild.
Advances in neural information processing
systems 29, 730–738 (2016)

[19] Li, Z., Dekel, T., Cole, F., Tucker, R.,
Snavely, N., Liu, C., Freeman, W.T.: Learn-
ing the depths of moving people by watch-
ing frozen people. In: Proceedings of the
IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4521–4530
(2019)

[20] Ranftl, R., Lasinger, K., Hafner, D.,
Schindler, K., Koltun, V.: Towards robust
monocular depth estimation: Mixing

datasets for zero-shot cross-dataset trans-
fer. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI) (2020)

[21] Ranftl, R., Bochkovskiy, A., Koltun, V.:
Vision transformers for dense prediction.
ArXiv preprint (2021)

[22] Seitz, S.M., Curless, B., Diebel, J.,
Scharstein, D., Szeliski, R.: A compari-
son and evaluation of multi-view stereo
reconstruction algorithms. In: 2006 IEEE
Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06),
vol. 1, pp. 519–528 (2006). IEEE

[23] Schönberger, J.L., Zheng, E., Pollefeys,
M., Frahm, J.-M.: Pixelwise view selec-
tion for unstructured multi-view stereo. In:
European Conference on Computer Vision
(ECCV) (2016)

[24] Joshi, N., Zitnick, C.L.: Micro-baseline
stereo. Technical Report MSR-TR-2014–73,
8 (2014)

[25] Mildenhall, B., Srinivasan, P.P., Ortiz-
Cayon, R., Kalantari, N.K., Ramamoorthi,
R., Ng, R., Kar, A.: Local light field fusion:
Practical view synthesis with prescriptive
sampling guidelines. ACM Transactions on
Graphics (TOG) (2019)

[26] Jarabo, A., Masia, B., Gutierrez, D.: Effi-
cient propagation of light field edits. In: In
Proc. of SIACG’11, pp. 75–80 (2011)

[27] Elder, J.H.: Are edges incomplete? Interna-
tional Journal of Computer Vision 34(2-3),
97–122 (1999)

[28] Adelson, E.H., Bergen, J.R.: The Plenop-
tic Function and the Elements of Early
Vision vol. 2. Vision and Modeling Group,
Media Laboratory, Massachusetts Institute
of Technology, ??? (1991)

[29] Hog, M., Sabater, N., Guillemot, C.: Light
field segmentation using a ray-based graph
structure. In: ECCV (2016)

[30] Barlow, H.B., et al.: Possible principles

30

https://doi.org/10.1145/3306346.3323027
https://doi.org/10.1145/3306346.3323027
http://gvv.mpi-inf.mpg.de/projects/DeepReflectanceFields/
http://gvv.mpi-inf.mpg.de/projects/DeepReflectanceFields/
https://doi.org/10.1145/2980179.2980220
https://doi.org/10.1145/2980179.2980220

underlying the transformation of sensory
messages. Sensory communication 1(01)
(1961)

[31] Wanner, S., Goldluecke, B.: Globally con-
sistent depth labeling of 4d light fields.
In: IEEE Conference on Computer Vision
and Pattern Recognition, pp. 41–48 (2012).
IEEE

[32] Wang, T.-C., Efros, A.A., Ramamoorthi,
R.: Occlusion-aware depth estimation using
light-field cameras. In: Proceedings of the
IEEE International Conference on Com-
puter Vision, pp. 3487–3495 (2015)

[33] Wang, T.-C., Efros, A.A., Ramamoorthi, R.:
Depth estimation with occlusion modeling
using light-field cameras. IEEE transactions
on pattern analysis and machine intelligence
38(11), 2170–2181 (2016)

[34] Zhang, S., Sheng, H., Li, C., Zhang, J.,
Xiong, Z.: Robust depth estimation for light
field via spinning parallelogram operator.
Computer Vision and Image Understanding
145, 148–159 (2016)

[35] Jiang, X., Le Pendu, M., Guillemot, C.:
Depth estimation with occlusion handling
from a sparse set of light field views. In:
2018 25th IEEE International Conference
on Image Processing (ICIP), pp. 634–638
(2018). IEEE

[36] Huang, P.-H., Matzen, K., Kopf, J., Ahuja,
N., Huang, J.-B.: DeepMVS: Learning
multi-view stereopsis. In: Proceedings of the
IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2821–2830 (2018)

[37] Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.:
Mvsnet: Depth inference for unstructured
multi-view stereo. European Conference on
Computer Vision (ECCV) (2018)

[38] Yao, Y., Luo, Z., Li, S., Shen, T., Fang,
T., Quan, L.: Recurrent mvsnet for high-
resolution multi-view stereo depth inference.
Computer Vision and Pattern Recognition
(CVPR) (2019)

[39] Zhou, T., Tucker, R., Flynn, J., Fyffe, G.,
Snavely, N.: Stereo magnification: Learn-
ing view synthesis using multiplane images.
ACM Trans. Graph. 37(4) (2018)

[40] Wang, T.-C., Chandraker, M., Efros, A.A.,
Ramamoorthi, R.: Svbrdf-invariant shape
and reflectance estimation from light-field
cameras. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern
Recognition (CVPR) (2016)

[41] Park, J.J., Newcombe, R., Seitz, S.: Sur-
face light field fusion. In: 2018 International
Conference on 3D Vision (3DV), pp. 12–21
(2018). IEEE

[42] Scharstein, D., Szeliski, R.: A taxonomy and
evaluation of dense two-frame stereo corre-
spondence algorithms. International journal
of computer vision 47(1), 7–42 (2002)

[43] Vision.middlebury.edu: Middlebury Stereo
Evaluation. https://vision.middlebury.edu/
stereo/

[44] Geiger, A., Lenz, P., Urtasun, R.: Are we
ready for autonomous driving? the kitti
vision benchmark suite. In: Conference on
Computer Vision and Pattern Recognition
(CVPR) (2012)

[45] Menze, M., Geiger, A.: Object scene flow
for autonomous vehicles. In: Conference on
Computer Vision and Pattern Recognition
(CVPR) (2015)

[46] Tompkin, J., Muff, S., McCann, J., Pfis-
ter, H., Kautz, J., Alexa, M., Matusik, W.:
Joint 5d pen input for light field displays.
In: The 28th Annual ACM Symposium on
User Interface. Software and Technology,
UIST’15 (2015)

[47] Elder, J.H., Goldberg, R.M.: Image editing
in the contour domain. IEEE Trans. Pattern
Anal. Mach. Intell. 23(3), 291–296 (2001).
https://doi.org/10.1109/34.910881

[48] Khan, N., Zhang, Q., Kasser, L., Stone, H.,
Kim, M.H., Tompkin, J.: View-consistent 4d

31

https://vision.middlebury.edu/stereo/
https://vision.middlebury.edu/stereo/
https://doi.org/10.1109/34.910881

light field superpixel segmentation. In: Inter-
national Conference on Computer Vision
(ICCV) 2019 (2019). IEEE

[49] Levin, A., Lischinski, D., Weiss, Y.: Col-
orization using optimization. In: ACM SIG-
GRAPH 2004 Papers, pp. 689–694 (2004)

[50] Xie, Y., Takikawa, T., Saito, S., Litany, O.,
Yan, S., Khan, N., Tombari, F., Tompkin,
J., Sitzmann, V., Sridhar, S.: Neural fields
in visual computing and beyond. Computer
Graphics Forum (2022). https://doi.org/10.
1111/cgf.14505

[51] Canny, J.: A computational approach to
edge detection. IEEE Trans. Pattern Anal.
Mach. Intell. 8(6), 679–698 (1986). https:
//doi.org/10.1109/TPAMI.1986.4767851

[52] Ruzon, M.A., Tomasi, C.: Color edge detec-
tion with the compass operator. In: Com-
puter Vision and Pattern Recognition, 1999.
IEEE Computer Society Conference On.,
vol. 2, pp. 160–166 (1999). IEEE

[53] Kim, C., Zimmer, H., Pritch, Y., Sorkine-
Hornung, A., Gross, M.H.: Scene recon-
struction from high spatio-angular resolu-
tion light fields. ACM Trans. Graph. 32(4),
73–1 (2013)

[54] Yucer, K., Kim, C., Sorkine-Hornung, A.,
Sorkine-Hornung, O.: Depth from gradients
in dense light fields for object reconstruc-
tion. In: 2016 Fourth International Con-
ference on 3D Vision (3DV), pp. 249–257
(2016). IEEE

[55] Szeliski, R.: Locally adapted hierarchical
basis preconditioning. In: ACM SIGGRAPH
2006 Papers, pp. 1135–1143 (2006)

[56] Bhat, P., Zitnick, L., Cohen, M., Curless, B.:
Gradientshop: A gradient-domain optimiza-
tion framework for image and video filtering.
In: ACM Transactions on Graphics (TOG)
(2009)

[57] Jeon, H.-G., Park, J., Choe, G., Park, J.,
Bok, Y., Tai, Y.-W., So Kweon, I.: Accurate
depth map estimation from a lenslet light

field camera. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 1547–1555 (2015)

[58] Jiang, X., Shi, J., Guillemot, C.: A learn-
ing based depth estimation framework for
4d densely and sparsely sampled light fields.
In: Proceedings of the 44th International
Conference on Acoustics, Speech, and Signal
Processing (ICASSP) (2019)

[59] Li, K., Zhang, J., Sun, R., Zhang, X., Gao,
J.: Epi-based oriented relation networks for
light field depth estimation. British Machine
Vision Conference (2020)

[60] Wanner, S., Straehle, C., Goldluecke, B.:
Globally consistent multi-label assignment
on the ray space of 4d light fields. In: IEEE
Conference on Computer Vision and Pattern
Recognition (2013)

[61] Shih, M.-L., Su, S.-Y., Kopf, J., Huang,
J.-B.: 3d photography using context-aware
layered depth inpainting. In: IEEE Con-
ference on Computer Vision and Pattern
Recognition (CVPR) (2020)

[62] Ma, Z., He, K., Wei, Y., Sun, J., Wu, E.:
Constant time weighted median filtering for
stereo matching and beyond. In: Proceed-
ings of the IEEE International Conference
on Computer Vision, pp. 49–56 (2013)

[63] Shi, J., Jiang, X., Guillemot, C.: A frame-
work for learning depth from a flexible sub-
set of dense and sparse light field views.
IEEE Transactions on Image Processing
28(12), 5867–5880 (2019)

[64] Honauer, K., Johannsen, O., Kondermann,
D., Goldluecke, B.: A dataset and evalua-
tion methodology for depth estimation on 4d
light fields. In: Asian Conference on Com-
puter Vision, pp. 19–34 (2016). Springer

[65] Rerabek, M., Ebrahimi, T.: New light field
image dataset. In: 8th International Confer-
ence on Quality of Multimedia Experience
(QoMEX) (2016)

32

https://doi.org/10.1111/cgf.14505
https://doi.org/10.1111/cgf.14505
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851

[66] Laboratory, S.G.: The New Stan-
ford Light Field Archive (2008).
http://lightfield.stanford.edu/

[67] Ilg, E., Mayer, N., Saikia, T., Keuper,
M., Dosovitskiy, A., Brox, T.: Flownet 2.0:
Evolution of optical flow estimation with
deep networks. In: IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR), pp. 2462–2470 (2017)

[68] Rhodin, H., Robertini, N., Richardt, C., Sei-
del, H.-P., Theobalt, C.: A versatile scene
model with differentiable visibility applied
to generative pose estimation. In: Proceed-
ings of the IEEE International Conference
on Computer Vision, pp. 765–773 (2015)

[69] Stoll, C., Hasler, N., Gall, J., Seidel, H.-
P., Theobalt, C.: Fast articulated motion
tracking using a sums of gaussians body
model. In: 2011 International Conference
on Computer Vision, pp. 951–958 (2011).
IEEE

[70] Ranjan, A., Jampani, V., Balles, L., Kim,
K., Sun, D., Wulff, J., Black, M.J.: Com-
petitive collaboration: Joint unsupervised
learning of depth, camera motion, optical
flow and motion segmentation. In: Proceed-
ings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp.
12240–12249 (2019)

[71] Wang, Z., Bovik, A.C., Sheikh, H.R., Simon-
celli, E.P.: Image quality assessment: from
error visibility to structural similarity. IEEE
transactions on image processing 13(4),
600–612 (2004)

[72] Schönberger, J.L., Frahm, J.-M.: Structure-
from-motion revisited. In: Conference on
Computer Vision and Pattern Recognition
(CVPR) (2016)

[73] Jin, J., Hou, J.: Occlusion-aware unsuper-
vised learning of depth from 4-d light fields.
IEEE Transactions on Image Processing 31,
2216–2228 (2022)

[74] Wang, Y., Wang, L., Liang, Z., Yang, J., An,

W., Guo, Y.: Occlusion-aware cost construc-
tor for light field depth estimation. In: Pro-
ceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition,
pp. 19809–19818 (2022)

[75] Kim, I., Kim, M.H.: Non-local haze prop-
agation with an iso-depth prior. In: Inter-
national Joint Conference on Computer
Vision, Imaging and Computer Graphics,
pp. 213–238 (2017). Springer

[76] Knapitsch, A., Park, J., Zhou, Q.-Y.,
Koltun, V.: Tanks and temples: Benchmark-
ing large-scale scene reconstruction. ACM
Transactions on Graphics (ToG) 36(4), 1–13
(2017)

[77] Aanæs, H., Jensen, R.R., Vogiatzis, G.,
Tola, E., Dahl, A.B.: Large-scale data for
multiple-view stereopsis. International Jour-
nal of Computer Vision, 1–16 (2016)

[78] Schops, T., Schonberger, J.L., Galliani, S.,
Sattler, T., Schindler, K., Pollefeys, M.,
Geiger, A.: A multi-view stereo bench-
mark with high-resolution images and multi-
camera videos. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 3260–3269 (2017)

[79] Khan, N., Kim, M.H., Tompkin, J.: View-
consistent 4d light field depth estimation.
British Machine Vision Conference (2020)

[80] Kingma, D.P., Ba, J.: Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

[81] Park, I.K., Lee, K.M., et al.: Robust light
field depth estimation using occlusion-noise
aware data costs. IEEE transactions on
pattern analysis and machine intelligence
40(10), 2484–2497 (2017)

[82] Diebold, M., Goldluecke, B.: Epipolar plane
image refocusing for improved depth estima-
tion and occlusion handling (2013)

[83] Tosic, I., Berkner, K.: Light field scale-depth
space transform for dense depth estimation.
In: Proceedings of the IEEE Conference on

33

http://lightfield.stanford.edu/

Computer Vision and Pattern Recognition
Workshops, pp. 435–442 (2014)

[84] Tao, M.W., Hadap, S., Malik, J.,
Ramamoorthi, R.: Depth from combining
defocus and correspondence using light-field
cameras. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision,
pp. 673–680 (2013)

[85] Kolmogorov, V., Zabih, R.: Multi-camera
scene reconstruction via graph cuts. In:
European Conference on Computer Vision,
pp. 82–96 (2002). Springer

[86] Chuchvara, A., Barsi, A., Gotchev, A.: Fast
and accurate depth estimation from sparse
light fields. IEEE Transactions on Image
Processing 29, 2492–2506 (2020)

[87] Barnes, C., Shechtman, E., Finkelstein, A.,
Goldman, D.B.: PatchMatch: A random-
ized correspondence algorithm for structural
image editing. ACM Transactions on Graph-
ics (Proc. SIGGRAPH) 28(3) (2009)

[88] Chen, J., Hou, J., Ni, Y., Chau, L.-P.: Accu-
rate light field depth estimation with super-
pixel regularization over partially occluded
regions. IEEE Transactions on Image Pro-
cessing 27(10), 4889–4900 (2018)

[89] Wang, T.-H., Wang, F.-E., Lin, J.-T.,
Tsai, Y.-H., Chiu, W.-C., Sun, M.: Plug-
and-play: Improve depth estimation via
sparse data propagation. arXiv preprint
arXiv:1812.08350 (2018)

[90] Cheng, X., Wang, P., Yang, R.: Depth
estimation via affinity learned with con-
volutional spatial propagation network. In:
Proceedings of the European Conference
on Computer Vision (ECCV), pp. 103–119
(2018)

[91] Alperovich, A., Johannsen, O., Goldluecke,
B.: Intrinsic light field decomposition and
disparity estimation with a deep encoder-
decoder network. In: European Signal Pro-
cessing Conference (EUSIPCO) (2018)

[92] Rahaman, N., Baratin, A., Arpit, D.,

Draxler, F., Lin, M., Hamprecht, F., Ben-
gio, Y., Courville, A.: On the spectral bias
of neural networks. In: International Con-
ference on Machine Learning, pp. 5301–5310
(2019). PMLR

[93] Basri, R., Galun, M., Geifman, A., Jacobs,
D., Kasten, Y., Kritchman, S.: Frequency
bias in neural networks for input of non-
uniform density. In: International Confer-
ence on Machine Learning, pp. 685–694
(2020). PMLR

[94] Mildenhall, B., Srinivasan, P.P., Tancik, M.,
Barron, J.T., Ramamoorthi, R., Ng, R.:
Nerf: Representing scenes as neural radiance
fields for view synthesis. In: European Con-
ference on Computer Vision, pp. 405–421
(2020). Springer

[95] Zhang, K., Riegler, G., Snavely, N.,
Koltun, V.: Nerf++: Analyzing and improv-
ing neural radiance fields. arXiv preprint
arXiv:2010.07492 (2020)

[96] Tancik, M., Srinivasan, P.P., Mildenhall,
B., Fridovich-Keil, S., Raghavan, N., Sing-
hal, U., Ramamoorthi, R., Barron, J.T.,
Ng, R.: Fourier features let networks learn
high frequency functions in low dimensional
domains. arXiv preprint arXiv:2006.10739
(2020)

[97] Sitzmann, V., Martel, J., Bergman, A.,
Lindell, D., Wetzstein, G.: Implicit neu-
ral representations with periodic activation
functions. Advances in Neural Information
Processing Systems 33 (2020)

[98] Weder, S., Schonberger, J., Pollefeys, M.,
Oswald, M.R.: Routedfusion: Learning real-
time depth map fusion. In: Proceedings of
the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR)
(2020)

[99] Choe, J., Im, S., Rameau, F., Kang, M.,
Kweon, I.S.: Volumefusion: Deep depth
fusion for 3d scene reconstruction. In: Pro-
ceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 16086–
16095 (2021)

34

[100] Curless, B., Levoy, M.: A volumetric method
for building complex models from range
images. In: Proceedings of the 23rd Annual
Conference on Computer Graphics and
Interactive Techniques, pp. 303–312 (1996)

[101] Izadi, S., Newcombe, R.A., Kim, D.,
Hilliges, O., Molyneaux, D., Hodges, S.,
Kohli, P., Shotton, J., Davison, A.J.,
Fitzgibbon, A.: Kinectfusion: real-time
dynamic 3d surface reconstruction and
interaction. In: ACM SIGGRAPH 2011
Talks, pp. 1–1 (2011)

[102] Kopf, J., Matzen, K., Alsisan, S., Quigley,
O., Ge, F., Chong, Y., Patterson, J., Frahm,
J.-M., Wu, S., Yu, M., Zhang, P., He, Z.,
Vajda, P., Saraf, A., Cohen, M.: One shot
3d photography 39(4) (2020)

[103] Richardt, C., Stoll, C., Dodgson, N.A., Sei-
del, H.-P., Theobalt, C.: Coherent spatio-
temporal filtering, upsampling and render-
ing of RGBZ videos. Computer Graph-
ics Forum (Proceedings of Eurograph-
ics) 31(2) (2012). https://doi.org/10.1111/
j.1467-8659.2012.03003.x

[104] Chen, Z., Badrinarayanan, V., Drozdov, G.,
Rabinovich, A.: Estimating depth from rgb
and sparse sensing. In: Proceedings of the
European Conference on Computer Vision
(ECCV), pp. 167–182 (2018)

[105] Imran, S., Long, Y., Liu, X., Morris, D.:
Depth coefficients for depth completion. In:
2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR),
pp. 12438–12447 (2019). IEEE

[106] Ku, J., Harakeh, A., Waslander, S.L.: In
defense of classical image processing: Fast
depth completion on the cpu. In: 2018 15th
Conference on Computer and Robot Vision
(CRV), pp. 16–22 (2018). https://doi.org/
10.1109/CRV.2018.00013

Appendix A

A.1 Variable Table

Please reference Table A1 at the back of this doc-
ument for a list of all variables used within the
paper and their meaning, definition, and values
where appropriate.

A.2 Implementation Software and
Hardware

Our non-differentiable method was implemented
in MATLAB (except the C++ Poisson solver), as
were the three non-data-driven comparison algo-
rithms and parts of Jiang et al. All networks
were implemented in TensorFlow. Our differen-
tiable method was implemented in PyTorch. For
diffusion, we implement a differentiable version of
Szeliski’s LAHBPCG solver [55]. All CPU code
was run on an AMD Ryzen Threadripper 2950X
16-Core Processor, and GPU code on an NVIDIA
GeForce RTX 2080Ti.

A.3 Supervised Loss

In the main paper, we describe a validation of our
differentiable rendering and diffusion approach
using a supervised loss against ground truth data.
In Figure A3, we present MSE and bad pixel met-
rics over iterations of the optimization for both
the HCI dataset and our new living room and
piano realistic scenes. For comparison, we also
mark the performance of five existing methods.
In Figure A4, this experiment shows that our
approach can produce errors close to zero, and val-
idates the potential of such an approach in the
best case.

Still, why do the errors not reduce to zero? As
Figure A4 shows, the presence of outliers in the
original point set and the lack of labels in regions
with fine detail prevents the diffusion from entirely
eliminating errors. Such sources of error occur in
all six light fields to varying degrees.

A.4 Differentiable Implementation
Details

Our proposed framing of the diffusion problem
allows us to express SZ and λZ as differentiable
functions of the points set P, and thus, to calcu-
late ∂ L/∂ x. Since P provides strong constraints

35

https://doi.org/10.1111/j.1467-8659.2012.03003.x
https://doi.org/10.1111/j.1467-8659.2012.03003.x
https://doi.org/10.1109/CRV.2018.00013
https://doi.org/10.1109/CRV.2018.00013

Fig. A1: Evaluation metrics plotted over all iterations of the optimization with supervised loss
(HCI Dataset). The top row shows results on individual light fields in the dataset. The bottom row
compares the average performance over the dataset with the baseline methods of Zhang et al. [34],
Khan et al. [79], Li et al. [59], Shi et al. [63] and Jiang et al. [35]. The bumps in the curve occur
where we switch optimization parameters.

Fig. A2: Evaluation metrics for the Piano and Living Room light fields with supervised loss.

Fig. A3: We validate our image-space representation and optimization using ground truth depth to
supervise the optimization using the same routine as Section 6.4. This generates high-quality results on
all four evaluation metrics (MSE is plotted on a logarithmic scale). This confirms the potential of our
differentiable sparse point optimization and diffusion method.

36

Fig. A4: Disparity maps generated by our method using supervised loss. (a)–(f): Boxes, Dino, Sideboard,
Cotton, Living Room and Piano. The presence of outliers in the original point set (green boxes), and
the lack of labels in regions with fine detail (blue boxes) prevents the diffusion from entirely eliminating
errors. Such sources of error occur in all six light fields to varying degrees.

on the shape of these functions, we optimize over
the parameters Zx, Kx, wx, and ϑZ instead of
directly over Θ (wx is the scaling factor from
Equation (32)). To regularize the smoothness
and data weights, we further define ϑZ(x, y) =
exp(−Q(x, y)) and wx = exp(−R(x)), for some
unconstrained R and Q that are optimized. Thus,
our final parameter set is Θ̄ = {Zx,Kx, R,Q}. We
initialize R(x) to zero for all x, and Q(x, y) to the
magnitude of the image gradient ∥∇I∥.

Distance

Both RGB and VGG16 features can be used as
distances for a warping loss EΘ; we found VGG16
features to outperform RGB. VGG loss has a bet-
ter notion of space from a larger receptive field
and handles textureless regions better. Thus, we
take each warped image in Equation (40), run a
forward pass through VGG16, then compute an
L1 distance between the 64 convolution activation
maps of the first two layers. ∇EΘ is computed
using the 2D channel-wise mean of EΘ; ES and
ESSIM are calculated in RGB space.

Hyperparameters

This requires a trade-off between resource use
and accuracy. The parameter σS in Equation (29)
determines the pixel area of a splatted depth label
Zx. Ideally, we want the label to be Zx over all
pixels where λZ

x > ϵ. The case where the label
falls off while the weight is much larger than zero
is illustrated in Figure 15(c) and leads to incor-
rect diffusion results. However, ensuring a uniform
weight requires having a large value of σS, and this
may cause the labels of neighboring points to be
occluded. We found that using σS = 1.3 provides
a good balance between accuracy and compact-
ness. This spreads the label density over three
pixels in each direction before it vanishes, so we
use a Gaussian kernel size of 7×7.

For σZ , we want the spread to be as small as
possible. However, if the value is very small then
we must use a large number of samples in Nx

when calculating the quadrature in Equation (39).
An insufficient number of samples causes aliasing
when calculating αx at different pixel locations
(x, y). A value of σZ = 1.0 and 8 samples in each
Nx works well in practice.

37

We use a Gaussian of order p = 2 to represent
λZ
x (Eq. (31)). As the order is increased, the Gaus-

sian becomes more similar to a box function and
leaks less weight onto neighboring pixels. How-
ever, its gradients become smaller, and the loss
takes longer to converge. With p = 2, we calcu-
late σλ = 0.71 to provide the necessary density
to prevent points from vanishing (Fig. 15(d)).

Routine

We use Adam [80]. We observe a lower loss when
a single parameter is optimized at once. Thus,
we optimize each parameter separately for 13
iterations, and repeat for 5 passes.

Efficiency

The set of edge pixels require to represent a
high-resolution image can run into the tens of
thousands, and naively optimizing for this many
points is expensive. This is true both of com-
putation time and of memory. Calculating SZ in
Equation (29) by summing over all points x is
impossibly slow for any scene of reasonable com-
plexity. Fortunately, in practice, we only need
to sum the contribution from a few points x at
each pixel and, so, the computation of αx(x, y) in
Equation (39) is serialized by depth only for points
in a local neighborhood. By splitting the image
plane into overlapping tiles, non-local points Kx
can be rendered in parallel. The amount of over-
lap equals the kernel size in xy, and is needed to
account for points that may lie close to the bound-
ary in neighboring tiles. Using this parallelization
scheme, we can render more than 50k points in
correct depth order, solve the diffusion problem
of Equation (28), and back-propagate gradients
through the solver and renderer in five seconds.

A.5 Additional Results for
Non-differentiable Approach

Please see Figures A5 and A6 for additional
qualitative results.

A.6 Additional Related Work

Many researchers and their work have inspired our
approach. We describe in greater detail how these
works address depth estimation.

Light Field Depth Estimation

Light field depth estimation methods typically
seek to exploit the regular structure of an EPI [81].
Wanner and Goldluecke’s [31] work was among
the earliest widely-applicable method to use EPI
lines for local depth estimates. They use a struc-
ture tensor to estimate depth as the gradient in
EPI space. The estimate is refined in a varia-
tional framework—first in the angular dimension
to enforce visibility constraints, and then in the
spatial dimension. Many subsequent methods have
adopted a similar approach by posing depth esti-
mation as an energy-minimization problem in EPI
space. However, the latter optimization does not
include any cross-view consistency constraints.
Thus, while capable of generating depth maps
for off-center views, their results are not consis-
tent. Moreover, the variational approach turns out
to be computationally untenable when generating
results for each view. Due to the local nature of
the structure tensors, Wanner and Goldluecke’s
method can only reliably detect pixels with a dis-
parity no larger than two pixels. This limits its
application to light fields with larger baselines.

Diebold and Goldluecke [82] address this by
refocusing each EPI to several virtual depth layers
before local disparity estimation. In addition, they
present a method for handling incoherent depth
estimates around occlusion boundaries. While this
generates sharper edges in the resultant depth
map, it requires the integration of estimates over
all views and so restricts the output to a disparity
map for the central view only. Zhang et al.’s [34]
spinning parallelogram operator works in a simi-
lar fashion on EPIs, but has larger support than
the 3 × 3 Scharr filters used by Wanner and Gold-
luecke [31] and Diebold and Goldluecke [82], and
provides more accurate estimates. This approach
is similar to Tošić and Berkner’s [83] convolu-
tion with a set of specially adapted kernels to
create light field scale-depth spaces. Wang et
al. [32] [33] build on this by proposing a photo-
consistency measure to address occlusion. Their
method computes depth maps with sharp transi-
tions at occlusion edges but only produces depth
for the central light field view. Tao et al.’s [84]
work considers higher dimensional representations
of EPIs that allows them to use both correspon-
dence and defocus for depth estimation. These

38

Fig. A5: HCI dataset. Top to bottom: light field central view, Shi et al. [63], Jiang et al. [35], our non-
differentiable method, ground truth depth, error maps in clockwise order (Shi, Jiang, Ours). In general,
our method has a lower mean squared error (MSE) with fewer large outliers (please zoom into error
maps), captures thin features better, and generates more view-consistent depth maps. However, their
depth maps are more geometrically accurate more often (lower bad pixel percentages) and less sensitive
to texture variations.

39

Fig. A6: Real-world light fields from the Stanford (left pair) and EPFL (right pair) datasets. Top to
bottom: central RGB view, Shi et al. [63], Jiang et al. [35], and our non-differentiable method. While our
method has more bad pixels and can be sensitive in narrow baseline cases (far right: limitation Sphynx
case), in general, our method has equivalent or lower view consistency error, runs faster, and has no
training data or pre-trained network dependency.

latter two works use graph cuts [85] to minimize
an NP-hard energy function.

The relation between defocus and depth is
also exploited by the sub-pixel cost volume of
Jeon et al. [57] who also present a method for
dealing with the distortion induced by micro-
lens arrays. An efficient and accurate method for
wide-baseline light fields was proposed by Chuch-
wara et al. [86]. They use an over-segmentation of
each view to get initial depth proposals that are
then iteratively improved using PatchMatch [87].

Their work demonstrates the use of superpix-
els for higher-level vision tasks. Closely related
to our method of edge-aware bidirectional diffu-
sion is the work of Holynski and Kopf [9] who
present an efficient method for depth densification
from a sparse set of points for augmented reality
applications. Similar to our smooth reconstruction
method, Yucer et al. [54] present a diffusion-based
method that uses image gradients to estimate a
sparse label set. However, their method is designed
to work only for light fields with thousands of

40

views. Chen et al. [88] estimate accurate occlu-
sion boundaries by using superpixels in the central
view to regularize the depth estimation process. In
general, densification methods [10, 89, 90] largely
seek to recover accurate metric depth without
considering occlusion boundaries.

In recent years, many methods have sought
to use data-driven methods to learn priors to
avoid the cost of dealing with a large number
of images, and to overcome the loss of spa-
tial information induced by the spatio-angular
tradeoff in lenslet images. Alperovich et al. [91]
use an encoder-decoder architecture to perform
an intrinsic decomposition of a light field, and
also recover disparity for the central cross-hair
of views. Huang et al. [36] provide a network-
based solution that handles an arbitrary number
of uncalibrated views. Jiang et al. [35, 58] fuse the
disparity estimates at four corner views estimated
using a deep-learning optical-flow method. Shi et
al. [63] build on this by adding a refinement net-
work to the fusion pipeline. Finally, self-supervised
approaches using learning also exist, for instance,
that of Jin and Hou [73].

Depth Occlusion Edge Estimation

High-accuracy depth edges are vital for image
editing tasks; however, correctly localizing depth
edges proves difficult. CNNs trained on a mean
loss over all pixels fail to capture high frequen-
cies (also due in part to spectral bias [92, 93]
and the averaging effect implicit in convolution).
Methods such as Neural Radiance Fields [94]
also inherently have a smoothness bias that lets
them avoid degenerate solutions that may result
from the shape-radiance ambiguity [95] and can
require positional encoding for high-frequency
details [96, 97]. Similar smoothing artifacts can
be observed in depth fusion approaches [98, 99],
especially those based on averaging signed dis-
tance functions [100, 101]. Many depth estimation
methods, including top performers on the Middle-
bury Stereo Dataset [43], mitigate the blurriness
of depth edges by using a discrete range of depth
values. Others enforce strong occlusion edges with
a weighted median filter on depth [61, 62, 102].

Sparse Depth Reconstruction

Early work in the field of depth densification and
completion from sparse inputs used cross-bilateral

filters to complete missing depth samples [103].
Chen et al. learn to upsample low-resolution depth
camera input and regularize it from paired RGB
data [104]. Imran et al. consider the problem of
depth pixels being interpolated across disconti-
nuities, and compensate by learning inter-depth
object mixing [105]. Efficient computation is also
addressed by Holynski and Kopf [9], who estimate
disparity maps for augmented reality. With accu-
rate depth samples, such as from LIDAR, simple
image processing-based methods are competitive
with more complex learning-based methods [106].
Our method considers the problem of when depth
samples themselves may not be accurate, and
any resulting densification without correcting the
samples will lead to error.

41

Table A1: Reference table for all variables used throughout the manuscript.

Variable Interpretation Type, specification, or value

Light field parameterization
LF Light field.
x, y, u, v Light field ray intersections in two-plane model.
H Central row of views in light field. LF (x, y, uc, v)
V Central column of views in light field. LF (x, y, u, vc)
I An image sampled from a light field. RGB 8-bit
I A 2D perspective image in 3rd column

and 5th row of light field.
LF (x, y, 2, 4)

Ei Epipolar image in light field; horizontal. Ei(x, u) = I(x, yi, u)
Ej Epipolar image in light field; vertical. Ej(y, v) = I(xj , y, v)

Model parameterization—all parameters shared across all scenes.
Line fitting
w, h Epipolar image (EPI) width and height. Per light field, e.g., h = 9.
l Parametric model of a line within an EPI.
λ Perpendicular distance in confidence map

within which to discard other lines.

h/5

k Number of samples that a line must lie across to be included. h/4
τf Line filtering threshold. π/13
τv Line visibility threshold. π/10
Entropy refinement
t Line visibility threshold. 0.88
α Line visibility threshold. 0.15

Number of iterations. 10
Disparity trilateral filtering
σs Spatial filter bandwidth. 10
σd Disparity filter bandwidth. 0.1
σc Color filter bandwidth (Lab). 0.5

Diffusion—all parameters shared across all scenes.
p Point in set.
A Point set.
λd Bi-directional solve data term. 106 if p ∈ A; 0 otherwise.
λs Bi-directional solve smoothness term. 1/∥∇I(p)+ϵ∥

r, ϵ Weighted median filter parameters 7, 10−6

Ed(·) Data term in optimization defined over discrete pixels
Es(·, ·) Smoothness term in optimization defined over pairs of pixels

Differential optimization
I Set of n multi-view images I = {I0, I1, ..., In}
P Noisy scene points in R3

S(·, ·) Sparse depth labels in continuous image space S : R2 → R
λ(·, ·) Splatting function in continuous image space λ : R2 → R
ϑ(·, ·) Local smoothness weight in continuous image space ϑ : R2 → R
SZ(·, ·) Sparse depth labels in discrete pixel space S : Z2 → R
λ(·, ·)Z Splatting function in discrete pixel space λ : Z2 → R
ϑ(·, ·)Z Local smoothness weight in discrete pixel space ϑ : Z2 → R
σs The spatial spread of the Gaussian label 1.3
σλ The spatial spread of the super-Gaussian weight 0.71
σZ The spatial spread of a 3D Gaussian in the depth dimension, 1.0

used for modeling occlusion of point labels
p Order of higher-order Gaussian (super -Gaussian) labeling funciton 2

42

	Introduction
	Defining a Representation
	Criteria
	Explicitness
	Concision
	Completeness

	Measurement
	Accuracy
	Occlusion Edge Accuracy
	View-Consistency
	Discussion

	A Complete Multi-view Edge Representation for Depth
	Demonstration of Completeness
	Why an Image-space Representation?
	Limitations of Scope

	Recovering Model Parameters for Light Fields
	Finding Multi-view Edges
	Multi-view Edge Refinement
	Line Fitting
	Noise & Occlusion Filtering
	Entropy-based Disparity Refinement

	Surface Vectors
	Depth Edge Confidence

	Occlusion-aware 4D Depth Reconstruction
	Challenges
	Approach

	Central View Depth Estimation
	Cross-hair View Projection
	Angular Inpainting
	Non-cross-hair View Reprojection

	Evaluating the Reconstruction
	Datasets
	Baselines

	Quantitative Metrics
	Occlusion Edge Accuracy
	Diffusion Gradients as Self-supervision
	Accuracy
	View Consistency
	Computational Resources
	Qualitative

	A Differentiable Model Implementation
	Depth via Differentiable Diffusion
	Differentiable Image-space Representation
	Discussion

	Rendering and Occlusion Handling
	Optimization by Gradient Descent

	Evaluating the Differentiable Approach
	Additional Datasets
	Light Fields
	Multi-view Stereo
	Baselines and Metrics
	Results

	Sparsity Evaluation

	Discussion
	Conclusion
	
	Variable Table
	Implementation Software and Hardware
	Supervised Loss
	Differentiable Implementation Details
	Distance
	Hyperparameters
	Routine
	Efficiency

	Additional Results for Non-differentiable Approach
	Additional Related Work
	Light Field Depth Estimation
	Depth Occlusion Edge Estimation
	Sparse Depth Reconstruction

