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Abstract

The quad-Bayer patterned image sensor has made signifi-
cant improvements in spatial resolution over recent years
due to advancements in image sensor technology. This
has enabled single-shot high-dynamic-range (HDR) imag-
ing using spatially varying multiple exposures. Popular
methods for multi-exposure array sensors involve varying
the gain of each exposure, but this does not effectively
change the photoelectronic energy in each exposure. Con-
sequently, HDR images produced using gain-based expo-
sure variation may suffer from noise and details being sat-
urated. To address this problem, we intend to use time-
varying exposures in quad-Bayer patterned sensors. This
approach allows long-exposure pixels to receive more pho-
ton energy than short- or middle-exposure pixels, resulting
in higher-quality HDR images. However, time-varying ex-
posures are not ideal for dynamic scenes and require an ad-
ditional deghosting method. To tackle this issue, we propose
a single-shot HDR demosaicing method that takes time-
varying multiple exposures as input and jointly solves both
the demosaicing and deghosting problems. Our method
uses a feature-extraction module to handle mosaiced multi-
ple exposures and a multiscale transformer module to regis-
ter spatial displacements of multiple exposures and colors.
We also created a dataset of quad-Bayer sensor input with
time-varying exposures and trained our network using this
dataset. Results demonstrate that our method outperforms
baseline HDR reconstruction methods with both synthetic
and real datasets. With our method, we can achieve high-
quality HDR images in challenging lighting conditions.

1. Introduction
Recent advancements in image sensor technology, such as
interlaced and quad-Bayer patterned image sensors, have fa-
cilitated the development of multi-exposure color filter ar-
rays, which enable single-shot high-dynamic-range (HDR)
imaging. Single-shot HDR imaging takes only one image
to generate an HDR image as input. This imaging tech-
nology has successfully expanded the dynamic range of
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Figure 1. (a) Input quad-Bayer patterned RAW image with differ-
ent exposure times and colors. (b) Three multi-exposure images.
(c) Our method result. We jointly solve demosaicing and deblur-
ring problems to achieve a high-quality single-shot HDR image
from the quad-Bayer pattern.

captured images beyond conventional low-dynamic-range
(LDR) images. However, multi-exposure color filter array
sensors must share pixel budgets to capture not only differ-
ent colors but also different exposures, which can result in
severe degradation of spatial resolution. The reconstructed
HDR images may experience a reduction in spatial reso-
lution by half due to the use of color filters and multiple
exposures. Current single-shot methods have focused on
enhancing spatial resolution by addressing multi-exposure
sampling artifacts, such as mosaicing [1, 17, 37] or inter-
lacing artifacts [12, 10, 35, 4].

Current single-shot HDR imaging techniques use gain-
based exposure variation to capture different levels of ex-
posures simultaneously, but this approach provides only a
minor improvement in dynamic range compared to tradi-
tional static HDR imaging. Gain-based exposure variation
does not capture different amounts of photo energy, even
with a long exposure input, which limits the dynamic range
of reconstructed HDR images. Traditional HDR imaging
captures time-varying multi-exposures, which allows for a
wider range of photon energy and high signal-to-noise ra-
tio in reconstructed HDR images. However, this approach
is not applicable to single-shot HDR imaging of dynamic
scenes or camera motions due to motion blur. Recent HDR



deghosting methods [18, 40, 42, 43, 32, 28, 25] have ad-
dressed the motion blur problem in HDR video input, but
they rarely consider the varying amounts of motion blur
with time-varying multiple exposures.

Two main challenges must be addressed to achieve high-
quality demosaicing of time-varying multiple exposures in
single-shot HDR imaging. The first challenge is the dou-
ble mosaicing architecture of multiple exposure times and
color filters, which results in sparse input pixel observations
that severely degrade the spatial resolution in reconstructed
HDR images. The second challenge arises from spatially-
varying motion blur, which is particularly prevalent in long-
exposure pixels on the array. This leads to spatially incon-
sistent ghost artifacts that degrade the edge details of mov-
ing objects or scenes in the resulting images.

In this work, we propose a novel single-shot HDR imag-
ing technique that tackles the demosaicing and deghost-
ing challenges of time-varying multiple exposures captured
by quad-Bayer patterned sensors (Figure 1). To accom-
plish this, we created a dataset of time-varying quad-Bayer
patterned HDR sensor inputs from existing HDR video
datasets. Our demosaicing network comprises feature-
extraction and U-net style multi-scale transformer modules.
For each exposure level observation, we use a residual ar-
chitecture to convert them into channel-wise attention fea-
tures with a doubled spatial resolution. We also address
spatial misalignment and motion blur in longer exposure
channels through the transformer architecture by acquiring
query, key, and value vectors from various sources in the
transformer block. In contrast to gain-based single-shot ap-
proaches, our method takes into account the physical dif-
ferences in exposure times in the quad-Bayer array, which
helps mitigate the varying degrees of motion blur in in-
put images. Our approach learns the spatial relationship
among differently-blurred multiple exposures and registers
them with high precision to prevent ghosting artifacts. We
also design the transformer block to be configured coarse-
to-fine, taking into account pixel displacement that ranges
from the nearest neighboring pixels to further ones.

The proposed method overcomes the degradation of
spatial resolution caused by the mosaiced exposure and
color Bayer patterns and successfully reconstructs high-
resolution HDR images from time-varying multiple expo-
sure inputs in single-shot HDR imaging. Results from vari-
ous real and synthetic scenes demonstrate the superiority of
our method over baseline HDR reconstruction methods.

2. Related Work

Multi-shot HDR reconstruction. Traditional HDR imag-
ing methods capture input through exposure bracketing [6].
However, when objects or scenes move during exposure
bracketing, ghosting artifacts occur. They mitigate these

artifacts by estimating object or camera motion or measure-
ment outliers. Jacobs et al. [16] estimate object movement
with weighted variance. Pece et al. [31] reject moving pixel
of exposure sequence using median threshold bitmap. Heo
et al. [13] estimate ghost regions with joint probability den-
sity functions between the reference image and other im-
ages. Grosch et al. [9] align multiple images with median
threshold bitmap and remove moving pixel with error map
of color difference. Oh et al. [29] align LDR images and
detect outliers exploiting the rank minimization algorithm.

Also, the flow-based approach has been extended to
HDR video reconstruction. Optical flow is used by Bogoni
et al. [3] and Kang et al. [19] to estimate motion between
frames using affine transformation and gradient-based opti-
cal flow. Hu et al. [14] proposed a patch-based image align-
ment algorithm.

Recently, deep learning-based approaches have tackled
the HDR registration problem. Kalantari et al. [18] exploit
optical flow for frame alignment and merge images using
CNN. Wu et al. [40] introduce CNN-based encoder-decoder
architecture without optical flows. Yan et al. [42] propose
a light-weight method that directly gets a global attention
map for coarse alignment and increased receptive field with
dilated convolution. Yan et al. [43] extract various local fea-
ture vectors via three different size of CNN kernel and get
a global weight matrix with the non-local module [38]. For
high-resolution HDR imaging, Prabhakar et al. [32] gen-
erate a coarse guide HDR image in low resolution and re-
construct the final HDR image with bilateral guided upsam-
pling. Niu et al. [28] adopt the GAN framework and intro-
duce a CNN-based multi-scale generator with the residual
connection of the reference frame. Liu et al. [25] propose a
transformer-based approach that extracts local context fea-
tures through channel attention and captures global infor-
mation with multi-head self-attention. However, as shown
in the previous studies, the flow-based deghosting algorithm
is necessary to reconstruct an HDR image. Also, these
multi-shot input images differ from Bayer-patterned or in-
terlaced single-shot HDR input.

Single-shot HDR reconstruction. Nayar et al. [27] pro-
pose capturing multiple exposures at a single shot with a
spatially-varying image sensor and then interpolating multi-
ple exposures to reconstruct HDR images. Heide et al. [12]
propose a computational imaging system that jointly per-
forms several image processing steps: demosaicing, denois-
ing, and deconvolution. For optimization, they introduce
several regularization terms for better optimization. Ha-
jisharif et al. [10] predict each pixel value with a local noise-
aware polynomial model and adaptive filter kernel. From a
single-shot coded-exposure input, Serrano et al. [35] recon-
struct HDR images utilizing convolutional sparse coding.
Gain-interlaced readout-based methods [4, 1] are also pro-
posed to capture HDR videos. Choi et al. [4] apply sparse



representation for denoising and deinterlacing. Also, they
propose temporal denoising by applying a multi-scale ho-
mography flow method.

Recently, Akyuz et al. [1] proposed a deep learning-
based method for single-shot mosaic HDR imaging. They
first restore two raw images with different exposures us-
ing a neural network of denoising and demosaicing, and
then they reconstruct HDR images analytically in a con-
ventional way. Jiang et al. [17] proposed an end-to-end
deep neural network for HDR video reconstruction with
triple-exposure quad-Bayer input. Suda et al. [37] also in-
troduced an HDR reconstruction method that infers HDR
images from the multi-exposure color filter array. These
methods focus on the spatial-resolution degradation prob-
lem from the mosaiced input in HDR imaging. In contrast,
we jointly solve both demosaicing and deghosting problems
from quad-Bayer patterned input with motion blur.
HDR hallucination. Many works that hallucinate an HDR
image from a single LDR image have been proposed in the
recent decade. Banterle et al. [2] restore the original HDR
image from the tone-mapped output, so-called inverse tone-
mapping. Rempel et al. [33] use a Gaussian filter and edge-
stopping function for a clear boundary between dark and
bright areas. By means of deep learning, Endo et al. [7]
predict bracketed images with multiple exposures by using
an auto-encoder, then merge them into the HDR image. Lee
et al. [21] exploit the conditional generative adversarial net-
work (GAN) structure to infer the relation between expo-
sure values. Liu et al. [23] approach this task by reversing
the LDR image formation pipeline. Santos et al. [34] pro-
posed variable feature masking to avoid artifacts and adopt
image inpainting tasks for the saturated region. However,
our method differs from HDR image hallucination because
we reconstruct HDR images explicitly from the captured
multiple-exposure input.

3. Joint Demosaicing and Deghosting

Our method initiates from a single quad-Bayer im-
age, where each color filter covers four pixels with
short/mid/mid/long exposure times. Our reconstruction
comprises of three main components: (1) pre-processing
stage, which involves exposure normalization and subsam-
pling of the input, (2) HDR feature extraction utilized for
demosaicing, and (3) HDR feature registration employed
for deblurring purposes.

3.1. Preprocessing

Exposure normalization. Our network reconstructs an
HDR image IHDR from the quad-Bayer patterned RAW im-
age IRAW with different exposures and colors. Color fil-
ters are allocated to follow the traditional R/G/G/B patterns,
while the multiple exposures are designed to have 0/2/2/4

stops in the different Bayer patterns.
To weight the middle exposure more, we double the sam-

ple number of the middle exposure against lower/higher
exposures, analogous to double green samples in the con-
ventional Bayer color patterns. To estimate the scene radi-
ance level at different levels of exposure, we generate a new
RAW image IRAW

Norm normalized by the exposure time of each
pixel:

IRAW
Norm =

IRAW
i

ti
, i = 1, 2, 3, (1)

where IRAW
i is a set of pixels that has i-th exposure level

and ti is the amount of i-th exposure time. Since the pixel
value of our RAW image IRAW is on a linear domain, we are
free from the gamma correction. We then concatenate the
RAW image IRAW and the normalized RAW image IRAW

Norm
into two-channel tensor X and pass them to the network as
input, following Kalantari et al. [18]:

IHDR = f(X; θ), (2)

where f(·) is our network and θ is the network parameter.
Subsampling. We formulate the demosaicing problem as
a super-resolution problem from low-resolution input. We
first subsample the multi-exposure color filter array image
into three Bayer-pattern sub-images of each exposure level
in half resolution of the original:

Xi = subsample(X), i = 1, 2, 3, (3)

where subsample(·) denotes a subsampling function, which
has X with the size of 2 × H × W , and Xi has the size
of 2×H/2×W/2 when i is 1 and 3. Otherwise, since we
have twice the number of pixels for the middle exposure, the
second Xi has the size of 4 ×H/2 ×W/2 by concatenate
two 2×H/2×W/2-size images.

Moreover, the spatial resolution of each color of Xi at
each exposure level i is four-time smaller in total than that
of the original pixel resolution of IRAW.

After subsampling, we reshape the subsampled color
Bayer patterns as X̂i before converting them into latent neu-
ral features. The height and width dimensions are halved
while the channel number is multiplied by four. Refer to
the left-top part of Figure 2.

3.2. HDR Feature Extraction

We design a feature extraction model that can demosaic
and upscale each exposure level effectively. Since our task
is to mitigate the degradation of the spatial resolution in
HDR images later, we adopt the latent features of the resid-
ual channel-based representation from a widely used super-
resolution method [45] that consists of multiple residual
channel attention blocks through skip connections. See Fig-
ure 2(a). We convert the reordered color patterns of each
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Figure 2. Network architecture. Input is a quad-Bayer RAW image with double mosaic patterns of different exposures and colors. We first
subsample the input RAW image to three different exposure layers and then subsample the Bayer patterns of each exposure to each color
channel. Then, the HDR feature extraction module (§ 3.2) produces the upscaled and enhanced features from the low-resolution RGB
images with three different exposure levels. The HDR feature registration module (§ 3.3) recovers each exposure level feature, aligning
pixel-wise displacements of the quad-Bayer patterns and removing motion blur. Lastly, we combine the aligned features into a single
feature vector. After upscaling, our network finally produces an HDR image with three color channels in the original RAW resolution.

exposure level into intermediate features as follows:

Fi = Eextract(X̂i), i = 1, 2, 3, (4)

where Eextract(·) denotes the denoising module and the fea-
ture vector Fi has the size of C × H/2 × W/2, where C
is set to 32. Note that we share the weight of the feature
extraction module for every exposure level.

The first convolutional layer extracts the RGB channel-
wise feature. To design this module, we adopt the chan-
nel attention and residual learning approach that consists of
the aforementioned channel-attention (CA) block. Chan-
nel attention helps the network to represent rich features
well, and residual learning enlarges the receptive field of
the network. Practically, channel attention provides rep-
resentations suitable for super-resolution and demosaicing
problems [45, 41]. In this module, we regard the connec-
tion of two channel-attention blocks in a series as a single
group and obtain features by connecting three groups in a
series. See Figure 2(a). Since a relatively large number
of parameters are required, recent super-resolution methods
mainly use the post-upscaling method. To save memory,
we also upscale the feature vectors using the deconvolution
layer with stride number 2 at the end of the network.

3.3. HDR Feature Registration

We reconstruct a final HDR image with an HDR feature
registration module. Since our synthesized image sensor
adjusts different exposure levels with exposure time, the
amount of motion blur is different for each exposure level.
Later, we design a feature alignment module Rregist by ar-
ranging multiple transformer blocks:

IHDR = Rregist(F1, F2, F3) = f(X), (5)

where Rregist(·) takes three HDR feature vectors from the
feature extraction module with each vector size of C ×
H/2×W/2. See Figure 2(b).

The transformer, originating from natural language pro-
cessing, can solve many vision problems by dividing an

input image into a sequence of small patches and exploit-
ing the transformer as an encoder network. It can capture a
global attention map with a purpose [38, 15]. It also over-
comes other CNN-based methods with large-scale com-
puter vision datasets. Recently, Zamir et al. [44] apply self-
attention along feature dimension, and Liang et al. [22] ex-
tract key, value, and query vectors from different frames for
video restoration. To mitigate the different amounts of mo-
tion blur in the quad-Bayer array, we adopt the transformer
based on a U-net shape multi-scale architecture [44, 22] that
helps extract valuable information and large motions from
the different sizes of patches. For each scale, a transformer
block restores feature vectors of each exposure level with
exposure alignment. See Figure 2(b).
Multi-exposure feature alignment. Our goal is to restore
all feature vectors F1, F2, F3 in a single transformer block.
Meanwhile, the attention layer in the general transformer
receives the key, query, and value vectors as input, calcu-
lates the similarity between the key and query vector, and
multiplies it by the value vector. We obtain the key and
value vectors from the other feature vector and the query
vector from itself for exposure alignment. We first define
the key Ki, value Vi, and query Qi of Fi as:

Ki = FiP
K
i , Vi = FiP

V
i , Qi = FiP

Q
i , i = 1, 2, 3, (6)

where PK
i , PV

i , PQ
i ∈ RC×D are the projection matrices of

Fi, and D is the channel number of the projected features,
and C and D are set to be the same, and i indicates the
exposure level. The attention layer is formulated as:

att(Fi, Fj) = SoftMax(Qi(Kj)
⊺/

√
D)Vj , i ̸= j, (7)

where SoftMax (·) means the row softmax operation and
j indicates the remaining exposure level except i. The mul-
tiplication between the transpose of the key and query re-
flects the similarity between elements in the i-th feature and
the j-th feature. While the similarity matrix multiplies by
the value vector of j-th feature, the result of this attention



layer becomes a feature alignment of j-th feature to the i-th
feature based on the similarity we calculate.

The exposure alignment (EA) shown in Figure 2 is for-
mulated as:

EA(Fi) = concat(att(Fi, Fj), att(Fi, Fk)), i = 1, 2, 3,
(8)

where F{i,j,k} is the input feature vector of multiple expo-
sures, and i, j, k are not the same with each other, i.e., we
permute (i, j, k) as (1, 2, 3), (2, 1, 3), and (3, 1, 2). Through
the exposure alignment, the structure of the j, k-th features
follows the i-th feature, which leads to the restoration of
each exposure level. By employing this explicit permuta-
tion, each feature vector of the exposure level effectively
addresses spatial misalignment and motion blur.

As a result, the whole process of each transformer block
can be formulated as:

Fi = MLP(EA(LN(Fi))), i = 1, 2, 3,

F = Concat(F1, F2, F3) + F,

F1, F2, F3 = Split(MLP(LN(F )) + F ),

(9)

where F represents the concatenation of three features in
the channel dimension: F1, F2, and F3. This F is then
passed into the network using the residual skip connection
mechanism. LN(·) is layer normalization and MLP(·) is a
multi-layer perceptron. Following the feed-forward layer,
the result is once again split into F1, F2, and F3 based on
the channel dimension. Here Split(·) is a feature-channel
splitter. However, since the time complexity of the trans-
former operation is proportional to the square of the number
of elements, it is expensive to perform the transformer oper-
ation for the entire patch. Therefore, following the existing
transformer-based methods [22, 24], we divide the H ×W -
sized patch into the number of HW/M2 non-overlapping
M ×M -sized spatial windows in the EA.

3.4. Training Loss

We compute the HDR loss through the following tone-
mapping function T (·) based on the µ-law [18]:

T (ĪHDR) =
log(1 + µĪHDR)

log(1 + µ)
, (10)

where ĪHDR denotes the normalized HDR image in the
range of [0, 1], µ denotes parameter deciding the amount of
compression, and µ is set to 5,000 in our experiments. Here,
our network is optimized by minimizing the L1 loss func-
tion after going through the tone mapping process of both
the HDR image result and the ground-truth HDR image:

L1 =
∥∥∥T (ÎHDR)− T (IHDR)

∥∥∥
1
. (11)

4. Experimental Results
4.1. Dataset Generation

HDR video dataset. For creating the training and testing
dataset, we use the Stuttgart HDR Video Database [8]. The
dataset consists of 22 HDR videos, and each frame is an
HDR image. We select 321 HDR images with different
scenes and viewpoints for creating our ground-truth HDR
image set. For the test dataset, we randomly choose 3 HDR
videos (40 HDR images), and we train our network with the
remainder. Exploiting this HDR image dataset, we created
a set of RAW images by simulating the quad-Bayer sensor.

Noise simulation. To make the synthetic sensor response
more realistic, we also simulate a pixel measurement model
which converts scene brightness to the sensor value, follow-
ing Hasinoff et al. [11]:

I = min{Φt/g + I0 + η, Imax}, (12)

where I denotes a 14-bit integer number of the measured
pixel value, Φ is the scene brightness, t is the exposure time,
g is the sensor gain energy, I0 is the dark current, η is overall
noise, and Imax is the saturation level.

The noise η is an essential part in the real world. Hasi-
noff et al. treat noise as the zero-mean random variable,
which has three different independent factors. For the pixels
below the saturation level, the variance σ2 of η is:

σ2 = Φt/g2 + σ2
read/g

2 + σ2
ADC, (13)

where σread denotes the variance of read noise, and σADC
is the variance of ADC and quantization noise. The first
term is a photon noise which is signal and gain dependent.
The second term is a gain-dependent readout noise. At high
signal levels, noise per pixel is dominated by photon noise,
and at the lowest, other sources contribute. Since the pixel
measurement in Equation (12) is a linear function, we can
consider Φt/g + η as a real camera sensor value.
Synthetic dataset generation. Each pixel value from the
ground-truth HDR image can be regarded as the scene ra-
diance value. As a result, following Hasinoff et al. [11],
we can obtain raw Bayer image values with multiple expo-
sure times from a single HDR image by adding consecutive
frames. We generate a multi-level exposure image set with
three exposure times, with an adjacent exposure time ratio
of 4. Note that we first normalize the ground-truth HDR
image to [0, 1] and obtain the camera sensor values of the
other two exposure levels by summing the following num-
ber of frames and clipping to [0, 1] (1, 4, and 16 frames, re-
spectively). See Equation (12) and Figure 3 for an example.
This sum operation is actually the same as how the cam-
era does for the different exposure times. Next, we add our
simulated camera noise to each pixel value independently,
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Figure 3. Closeup examples of the input Bayer images and cropped
multi-exposure images. The four darkest R/G/G/B pixels in the
inset represent a 1-level exposure, and the four brightest ones rep-
resent a 3-level exposure. We can observe that the 1-level expo-
sure Bayer (the one with the lowest exposure time) in this dynamic
scene produces the least motion blur. All images in this figure are
gamma-corrected for visualization. Top row: synthetic dataset [8].
Bottom row: real-world dataset captured by ourselves.

based on an experimental measurement of noise [5]. Lastly,
we discretize the normalized pixel value to a 14-bit integer
number to simulate a real RAW pixel value. Let IHDR

f as
HDR image at frame number f . The i-level exposure image
Iti at frame t is:

Iti = pre

(∑t+k

n=t
IHDR
n

)
, i = 1, 2, 3, (14)

where pre (·) denotes the preprocessing steps that include
pixel measurement, clipping, and adding simulated noise,
and k is 22(i−1) − 1 which means two-step intervals. We
generate the desired dataset by sampling the pixel values of
these four images as a 4 × 4 Bayer-pattern image (2 × 2 for
color and another 2 × 2 for exposures). See Figure 3.
Real-world dataset generation. Currently, we do not have
a time-varying exposure image sensor on the market yet.
However, to validate the performance of our network in the
real-world scenario, we create a real-world test dataset com-
bining burst-shot images with different numbers by a DSLR
camera (Canon EOS 5 Mark III) to mimic time-varying ex-
posures in an HDR image sensor. Note that there is no
ground-truth image for the real-world test dataset. We pro-
duce the real-world test dataset in the same way that we cre-
ate the synthetic one, except that raw images captured by the
DSLR burst shot are used instead of continuous HDR video
frames. Since the actual camera already contains noise, we
do not add simulated noise in the preprocessing step. An
example of the real-world dataset is shown in Figure 3.
Implementation details. Our network is implemented with
PyTorch [30]. For training, we use the Adam optimizer [20]
with β1 = 0.9, β2 = 0.999, and ϵ = 10−8. We set the batch
size and learning rate as 6 and 1 × 10−4, respectively. For
the training dataset, we randomly crop 256 × 256 patches.
We conduct data augmentation by randomly rotating 90◦,

Table 1. Quantitative comparison of our method with three base-
line HDR reconstruction methods. The bold numbers indicate the
highest image quality.

Method HDR-VDP-2 ↑ PSNR ↑ PSNR-µ ↑ SSIM-µ ↑
Suda et al. 64.66 40.00 28.46 0.8133
Yan et al. 73.41 45.50 38.99 0.9548
Liu et al. 72.78 45.53 39.89 0.9604

Ours 75.57 47.89 40.10 0.9619

180◦, 270◦ and flipping horizontally. The noise level is also
augmented by randomly selecting different standard devi-
ations σ = [0.9σ0, 1.1σ0]. σ0 is the standard deviation
value obtained by using Equation (13) for the actual camera
[5]. Our model takes 0.017s to produce an HDR image of
the 256 × 256 resolution from a RAW image with a single
NVIDIA TITAN RTX GPU and Intel CPU i9-12900k. We
have trained our model with 100 epochs. It takes about 72
hours on the machine. We set channel number C as 32 and
the attention window size of the transformer block as 8× 8.
For the HDR feature registration module, from the smallest
scale to the highest scale, the numbers of transformer blocks
are [2,4,2], attention heads are [2,4,8], and channel numbers
are [32,64,128]. Also, we use the Pixelshuffle method [36]
for downscaling and upscaling.

4.2. Baseline Comparison

We evaluate our proposed method compared with other
baseline HDR reconstruction methods. Suda et al. [37] use
the multi-exposure color filter array, which has similar pat-
terns but different orders of colors and exposures. We use
their pre-trained model, which is trained with Kalantari et
al.’s HDR dataset [18]. We generate a new input color fil-
ter array same as the original quad-Bayer patterns [37] by
sampling color pixels differently for a fair comparison. The
HDR deghosting task has been continuously researched and
has many aspects in common with our problem. As we aim
to eliminate the ghosting artifacts caused by combining ex-
posure levels with different motion blur, the HDR deghost-
ing task also targets eliminating ghost artifacts. Moreover,
both methods reconstruct HDR images with three differ-
ent exposure levels. Therefore, we perform a compari-
son between two state-of-the-art HDR deghosting methods
(an attention-based method [42] and a transformer-based
method [25]) and our model. For a fair comparison, we re-
train their network based on their official source code using
the same hyperparameters as our network. We subsample
our input into three images according to the exposure lev-
els, put them into their network, and upscale the result to
restore the original resolution in the same manner.

Table 1 quantitatively compares the accuracy of the re-
constructed HDR images by four methods. 40 HDR images
reconstructed by each method are compared with ground-
truth HDR images in the test dataset (Figure 5). The accu-
racy of the results is evaluated with four standard HDR im-
age quality evaluation metrics: HDR-VDP-2 [26], PSNR,
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Figure 4. Synthetic dataset comparison. Qualitative comparison of our method with three baseline methods using our synthetic dataset.
Two test scenes are presented in this figure. All HDR images in this paper are tone-mapped adaptively by the µ-law for visualization. Our
model outperforms baseline methods in terms of color reconstruction and denoising, particularly in the area with strong motion blur.

Training and test dataset [8] examples

Figure 5. Examples of the training quad-Bayer HDR RAW image
dataset (left group) and test dataset (right group), created using [8].

PSNR-µ [18], and SSIM-µ [39] based on the µ-law [18]
(µ is set to 5000 in our experiments). In all four metrics,
our method outperforms the baseline methods. In partic-
ular, our method’s performance is significantly better than
others in terms of HDR-VDP-2 and PSNR. It validates that
our HDR demosaicing method is effective in achieving fine
details and robust against motion blur.

Figure 4 compares the reconstruction results of the HDR
test dataset qualitatively. Suda et al. [37]’s method takes a
multi-exposure filter array as input. They perform HDR re-
construction well in the region without motion. Since the
method assumes that multiple exposures have the same in-
tegration time, their method does not account for spatially
varying motion blur when solving a demosaicing problem.
And thus, their method cannot avoid mosaic artifacts due
to the motion blur. Yan et al. [42]’s method is less affected
by motion blur than the other two methods. However, this
method does not recover color well (see the red sleeve in
the top row). Also, we can observe that the image structure
is destroyed and does not perform denoising well by look-
ing at the white car license plate and the tire wheel in the
second scene. Liu et al. [25]’s method shows overall high-

quality reconstruction results compared to the previous two
methods. However, if we look at the arms of the first scene
and the letters of the second scene, we can observe that this
method cannot eliminate the motion blur well. In contrast,
our model effectively removes artifacts from different mo-
tion blur in bright and dark regions within the input image
and performs well in demosaicing and debluring.

4.3. Real Camera-based Comparison

Figure 6 compares the reconstruction results of the real-
world dataset qualitatively. In the real-world test dataset,
Suda et al.’s HDR reconstruction results suffer from severe
mosaic artifacts due to the large motion of the objects. Yan
et al.’s method still produces HDR images with overall color
degradation as a synthetic dataset. Liu et al.’s HDR recon-
struction results are vulnerable to the motion of bright ob-
jects. Especially when a car’s headlight moves, the grid-
shaped ghost artifact remains. Our method generates HDR
images with consistently high quality compared to other
methods.

4.4. Ablation Study

We conduct an ablation study by adding each component
module or method to the base module one by one. Ta-
ble 2 compares the reconstruction performance for each
case. The base model means the backbone network that in-
cludes only the single-scale HDR feature registration mod-
ule, which performs self-attention (SA) instead of exposure
alignment (EA) in the transformer block. Refer to Fig-
ure 2(b). For self-attention, to obtain a direct dependency
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Figure 6. Real-world dataset comparison. We qualitatively compare our method with three baseline methods on our real-world dataset.
Even in these extreme environments, our approach successfully minimizes motion blur artifacts.

Table 2. Ablation study of our model. We begin with the base
model by gradually adding each component module (SA: self-
attention, EA: exposure alignment, FE: feature extraction, MS:
multi-scale). The overall model provides the best results in all
metrics. The best results are highlighted as bold.

Method HDR-VDP-2 ↑ PSNR ↑ PSNR-µ ↑ SSIM-µ ↑
Baseline (SA) 70.89 43.98 36.99 0.9446

SA + MS 71.31 44.26 37.61 0.9484
SA + FE 72.73 44.91 38.29 0.9529

SA + MS + FE 74.28 46.54 38.62 0.9581
EA 74.47 46.81 39.08 0.9553

EA + MS 75.53 47.57 39.85 0.9604
EA + FE 74.87 46.74 39.93 0.9604
Overall 75.57 47.89 40.10 0.9619

between exposures, we concatenate three feature vectors
into a single one after the feature extraction module. In
addition, in the transformer block, we divide the patch into
3×M×M -sized windows as input to the transformer. First,
the overall performance increases when we change attention
operation SA to EA of the transformer block. This shows
the highest metric increment among three options: EA,
MS, and FE. When we adopt the transformer block’s multi-
scale (MS) arrangement, HDR-VDP-2 and PSNR highly in-
crease. On the other hand, when we add the feature extrac-
tion (FE) module, PSNR-µ and SSIM-µ mainly increase.
The full model that includes all the tested modules shows
the best performance in this study.

5. Discussion and Conclusion
We have presented a learning-based demosaicing method of
a time-varying exposures array for single-shot HDR imag-
ing. Our method demosaics quad-Bayer RAW images, re-
moving spatially-varying motion blur. It yields high-quality
HDR images with high resolution. Our method leverages

the transformer model with changing source of the query,
key, and value vectors of the transformer block. Our ab-
lation study evaluates the impact of each module on per-
formance. Our complete model presents the best perfor-
mance with all the designed components. Lastly, the results
validate that the complete model outperforms the baseline
HDR reconstruction methods. We anticipate that the pro-
posed method can reconstruct consistent single-shot HDR
images for the dynamic scene without compromising the
dynamic range when enabling single-shot HDR imaging
with the quad-Bayer sensor architecture.

Both the synthetic and real-world datasets we gener-
ate have limitations compared to the data from the actual
exposure-time varying image sensor. In the case of scenes
with motion blur, we obtain a long exposure time pixel
value by summing each burst-shot frame with a short ex-
posure time, but the fast motion often appears to be cut off
(Figure 4).

We use the integrated burst shots as input to create
synchronously triggered multiple exposures on the time-
varying image sensor. However, each burst-shot image has
a too-short exposure time, having dominant dark current
noise. Also, each shot has read noise. This read noise level
increases when we create each level of multi-exposure pro-
portionally to the number of input burst shots.
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[11] Samuel W Hasinoff, Frédo Durand, and William T Freeman.
Noise-optimal capture for high dynamic range photography.
In 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 553–560. IEEE, 2010.
5

[12] Felix Heide, Markus Steinberger, Yun-Ta Tsai, Mushfiqur
Rouf, Dawid Pajkak, Dikpal Reddy, Orazio Gallo, Jing Liu,
Wolfgang Heidrich, Karen Egiazarian, et al. Flexisp: A flexi-
ble camera image processing framework. ACM Transactions
on Graphics (ToG), 33(6):1–13, 2014. 1, 2

[13] Yong Seok Heo, Kyoung Mu Lee, Sang Uk Lee, Youngsu
Moon, and Joonhyuk Cha. Ghost-free high dynamic range
imaging. In Asian Conference on Computer Vision, pages
486–500. Springer, 2010. 2

[14] Jun Hu, Orazio Gallo, Kari Pulli, and Xiaobai Sun. Hdr
deghosting: How to deal with saturation? In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 1163–1170, 2013. 2

[15] Zilong Huang, Xinggang Wang, Lichao Huang, Chang
Huang, Yunchao Wei, and Wenyu Liu. Ccnet: Criss-cross
attention for semantic segmentation. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 603–612, 2019. 4

[16] Katrien Jacobs, Celine Loscos, and Greg Ward. Automatic
high-dynamic range image generation for dynamic scenes.
IEEE Computer Graphics and Applications, 28(2):84–93,
2008. 2

[17] Yitong Jiang, Inchang Choi, Jun Jiang, and Jinwei Gu. Hdr
video reconstruction with tri-exposure quad-bayer sensors.
arXiv preprint arXiv:2103.10982, 2021. 1, 3

[18] Nima Khademi Kalantari, Ravi Ramamoorthi, et al. Deep
high dynamic range imaging of dynamic scenes. ACM Trans.
Graph., 36(4):144–1, 2017. 2, 3, 5, 6, 7

[19] Sing Bing Kang, Matthew Uyttendaele, Simon Winder, and
Richard Szeliski. High dynamic range video. ACM Transac-
tions on Graphics (TOG), 22(3):319–325, 2003. 2

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[21] Siyeong Lee, Gwon Hwan An, and Suk-Ju Kang. Deep re-
cursive hdri: Inverse tone mapping using generative adver-
sarial networks. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 596–611, 2018. 3

[22] Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang,
Rakesh Ranjan, Yawei Li, Radu Timofte, and Luc Van Gool.
Vrt: A video restoration transformer. arXiv preprint
arXiv:2201.12288, 2022. 4, 5

[23] Yu-Lun Liu, Wei-Sheng Lai, Yu-Sheng Chen, Yi-Lung Kao,
Ming-Hsuan Yang, Yung-Yu Chuang, and Jia-Bin Huang.
Single-image hdr reconstruction by learning to reverse the
camera pipeline. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
1651–1660, 2020. 3

[24] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 5

[25] Zhen Liu, Yinglong Wang, Bing Zeng, and Shuaicheng Liu.
Ghost-free high dynamic range imaging with context-aware
transformer. arXiv preprint arXiv:2208.05114, 2022. 2, 6, 7

[26] Rafał Mantiuk, Kil Joong Kim, Allan G Rempel, and Wolf-
gang Heidrich. Hdr-vdp-2: A calibrated visual metric for
visibility and quality predictions in all luminance conditions.
ACM Transactions on graphics (TOG), 30(4):1–14, 2011. 6

[27] Shree K Nayar and Tomoo Mitsunaga. High dynamic range
imaging: Spatially varying pixel exposures. In Proceedings
IEEE Conference on Computer Vision and Pattern Recogni-
tion. CVPR 2000 (Cat. No. PR00662), volume 1, pages 472–
479. IEEE, 2000. 2

[28] Yuzhen Niu, Jianbin Wu, Wenxi Liu, Wenzhong Guo, and
Rynson WH Lau. Hdr-gan: Hdr image reconstruction from
multi-exposed ldr images with large motions. IEEE Trans-
actions on Image Processing, 30:3885–3896, 2021. 2



[29] Tae-Hyun Oh, Joon-Young Lee, Yu-Wing Tai, and In So
Kweon. Robust high dynamic range imaging by rank min-
imization. IEEE transactions on pattern analysis and ma-
chine intelligence, 37(6):1219–1232, 2014. 2

[30] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 6

[31] Fabrizio Pece and Jan Kautz. Bitmap movement detection:
Hdr for dynamic scenes. In 2010 Conference on Visual Me-
dia Production, pages 1–8. IEEE, 2010. 2

[32] K Ram Prabhakar, Susmit Agrawal, Durgesh Kumar Singh,
Balraj Ashwath, and R Venkatesh Babu. Towards practical
and efficient high-resolution hdr deghosting with cnn. In
European Conference on Computer Vision, pages 497–513.
Springer, 2020. 2

[33] Allan G Rempel, Matthew Trentacoste, Helge Seetzen,
H David Young, Wolfgang Heidrich, Lorne Whitehead, and
Greg Ward. Ldr2hdr: on-the-fly reverse tone mapping of
legacy video and photographs. ACM transactions on graph-
ics (TOG), 26(3):39–es, 2007. 3

[34] Marcel Santana Santos, Tsang Ing Ren, and Nima Khademi
Kalantari. Single image hdr reconstruction using a cnn with
masked features and perceptual loss. ACM Transactions on
Graphics, 39(4), Aug 2020. 3

[35] Ana Serrano, Felix Heide, Diego Gutierrez, Gordon Wet-
zstein, and Belen Masia. Convolutional sparse coding for
high dynamic range imaging. In Computer Graphics Forum,
volume 35, pages 153–163. Wiley Online Library, 2016. 1,
2

[36] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1874–1883, 2016. 6

[37] Takeru Suda, Masayuki Tanaka, Yusuke Monno, and
Masatoshi Okutomi. Deep snapshot hdr imaging using multi-
exposure color filter array. In Proceedings of the Asian Con-
ference on Computer Vision, 2020. 1, 3, 6, 7

[38] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7794–7803, 2018. 2, 4

[39] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 7

[40] Shangzhe Wu, Jiarui Xu, Yu-Wing Tai, and Chi-Keung Tang.
Deep high dynamic range imaging with large foreground
motions. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 117–132, 2018. 2

[41] Wenzhu Xing and Karen Egiazarian. End-to-end learning
for joint image demosaicing, denoising and super-resolution.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3507–3516, 2021. 4

[42] Qingsen Yan, Dong Gong, Qinfeng Shi, Anton van den Hen-
gel, Chunhua Shen, Ian Reid, and Yanning Zhang. Attention-
guided network for ghost-free high dynamic range imaging.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1751–1760, 2019. 2,
6, 7

[43] Qingsen Yan, Lei Zhang, Yu Liu, Yu Zhu, Jinqiu Sun, Qin-
feng Shi, and Yanning Zhang. Deep hdr imaging via a non-
local network. IEEE Transactions on Image Processing,
29:4308–4322, 2020. 2

[44] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5728–
5739, 2022. 4

[45] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very
deep residual channel attention networks. In Proceedings of
the European conference on computer vision (ECCV), pages
286–301, 2018. 3, 4


