
View-consistent 4D Light Field Superpixel Segmentation

Numair Khan Qian Zhang Lucas Kasser Henry Stone Min H. Kim∗ James Tompkin
Brown University ∗KAIST

Abstract

Many 4D light field processing methods and applications
rely on superpixel segmentation, for which occlusion-aware view
consistency is important. Yet, existing methods often enforce
consistency by propagating clusters from a central view only,
which can lead to inconsistent superpixels for non-central views.
Our proposed approach combines an occlusion-aware angular
segmentation in horizontal and vertical epipolar plane image
(EPI) spaces with a clustering and propagation step across all
views. Qualitative video demonstrations show that this helps
to remove flickering and inconsistent boundary shapes versus
the state-of-the-art light field superpixel approach (LFSP [25]),
and quantitative metrics reflect these findings with greater self
similarity and fewer numbers of labels per view-dependent pixel.

1. Introduction
Superpixel segmentation attempts to simplify a 2D image into

small regions to lessen future computation, e.g., for later graph
inference in interactive object selection. Desirable superpixel
qualities vary between applications [18], but generally we wish
for them to be accurate, i.e., to adhere to image edges; to
otherwise be compact in shape, and to be efficient to compute
(see Stutz et al. for a review [17]).

Light fields represent small view changes onto a scene, e.g.,
an array of 9×9 2D image views (‘4D’). Processing light fields
is computationally harder due to the increased number of pixels,
but many of these pixels are similar because the view change is
small. As such, we have much to gain from simplifying light field
images into superpixels. This introduces a new desirable property
for our light field superpixels: we wish them to be view consistent,
e.g., they do not drift, swim, or flicker as the view changes, and
we wish superpixels to include all similar pixels across views
such that they respect occlusions. This is particularly important
for applications which will use every light field view, such as
editing a light field photograph for output to a light field display.

It is difficult to achieve the four properties of accuracy, com-
pactness, efficiency, and view consistency. Existing approaches of-
ten propagate superpixel labels into other views via a central-view
disparity map. However, this can cause inconsistency for regions
occluded in the central view, e.g., the recent light field superpixel
(LFSP) method [25] does not always maintain view consistency.

Figure 1: Light field superpixel comparison for the central view.
Top left: Input scene. Top right: Our method. Bottom left: k-means
on (x, y, d, L∗, a∗, b∗) with disparity maps computed by Wang
et al. [20, 21]. Bottom right: LFSP [25] computed with Wang et
al. disparity map. Please refer to our supplemental material for
high-quality video results animating through all light field views.

We can attempt to estimate per-view disparity maps, but this can
be difficult for small occluded regions in off-central views.

We propose a method for accurate and view-consistent super-
pixel segmentation on 4D light fields which implicitly computes
disparity per view and explicitly handles occlusion (Fig. 2). First,
we robustly segment horizontal and vertical epipolar plane images
(EPIs) of the 4D light field. This provides view consistency in an
occlusion-aware way by explicit line estimation, depth ordering,
and bipartite graph matching. Then, we combine the angular seg-
mentations in horizontal and vertical EPIs via a view-consistent
clustering step. Qualitative results (Fig. 1) show that this reduces
flickering from inconsistent boundary shapes when compared to
the state-of-the-art LFSP approach [25], and quantitative metrics
reflect these findings with improved view consistency scores.

Code: https://github.com/brownvc/lightfieldsuperpixels.

1

https://github.com/brownvc/lightfieldsuperpixels

Figure 2: Overview of our algorithm. Step 1: We find lines within EPIs extracted from the central horizontal and vertical views of a 4D
light field. Step 2: Then, we use an occlusion-aware bipartite patching to pair these lines into regions with explicit depth ordering. Step 3:
We cluster these segments and propagate labels into a view-consistent superpixel segmentation.

2. Related Work
Light Field Depth Estimation Tošić and Berkner [19] use
an oriented scale-space of ray Gaussian filters to compute depth;
we take a related filtering approach. Given this idea, Wang
et al. [20, 21] proposed a photo-consistency measure which
accounts for occlusion. This method computes depth maps with
sharp transitions at occlusion edges, but only produces depth for
the central light field view. Chuchwara et al. [5] presented a fast
and accurate depth estimation method for light fields captured
with wide baseline camera arrays, and showed the use of over-
segmentation for higher level vision tasks. Their method relies
on a per view superpixel segmentation. Huang et al. [9] provided
a learning-based solution to the multi-view depth reconstruction
problem. This applies to an arbitrary number of unstructured
camera views and produces a disparity map for a single reference
view. Simiarly, Jiang et al. [10] learn to fuse individual stereo
disparity estimates for dense and sparse light fields. Finally, Chen
et al. use central-view 2D superpixels to regularize light field
depth estimation for accurate occlusion boundaries [4].

Light Field Segmentation One application requires the user
to provide label annotations marking objects to be segmented.
Wanner et al. [23] used a Markov random field (MRF) to assign
per-pixel labels to the central view of a light field. Mihara et
al. [13] extended Wanner’s work by segmenting using an MRF-
based graph-cut algorithm which produces labels for all views
of the light field. Hog et al.’s work [6] improves the running time
of a naive MRF graph-cut by bundling rays according to depth.
Campbell et al. [2] presented a method without user input for auto-
matic foreground-background segmentation in multi-view images.
This uses color-based appearance models and silhouette coher-
ence; as such, their method is more effective for larger baselines
with larger change in object silhouettes. All these methods seek
to calculate object-level labels; however, we wish to automatically
produce superpixel segmentations as a preprocess for other tasks.

Light Field Superpixel Segmentation Given the familiar 2D
simple linear iterative clustering algorithm (SLIC) for superpixel
segmentation [1], Hog et al. [12] propose an approach for light
fields which is focused on speed, computing in 80s on CPU and
4s on GPU on the HCI dataset [22]. Then, the authors extend
this work to handle video processing [7]. However, with their
focus on fast processing, the results are not view consistent.

Given a disparity map for the central view, Zhu et al. [25]
posed the oversegmentation problem in a variational framework,
and solved it efficiently using the Block Coordinate Descent
algorithm. While their method generates compact superpixels,
these sometimes flicker as shape changes across views (Fig. 1).
Our approach specifically enforces view consistency, which is
desirable for many light field applications.

3. View-consistent Superpixel Segmentation
Definitions Given a 4D light fieldLF(x,y,u,v), we define the
central horizontal row of viewsH=LF(x,y,u,vc) and central
vertical column of views V=LF(x,y,uc,v). Each view I∈H
contains a set of EPIsEi(x,u)=I(x,yi,u), with corresponding
I∈V containingEj(y,v)=I(xj,y,v).

With a Lambertian reflectance assumption, a 3D scene point
corresponds to a straight line l in an EPI, where the depth of
the point determines the slope of the line. By extension, a
region of neighboring 3D surface points with similar depth and
visual appearance is topologically bound in each EPI by a set
L of two lines (l1, l2) on the boundary of R. Either one or
both of l1 and l2 may be occluded in any particular Ei. Our
goal is to identify the boundaries L= {(l1,l2)} for all visible
regions {R} across all EPIs in an accurate, occlusion-aware, and
spatio-angularly-consistent way and as efficiently as possible.

Overview Our algorithm has three major steps (Fig. 2).
Step 1: Line Detection (Sec. 3.1): Providing view-consistent

and occlusion-aware segmentation relies critically on accurate
edge line detection (i.e., disparity estimation at edges). As such,
we begin by creating two slices of the light field as EPIs, one each
for the central horizontal and vertical directions. Then, we robustly
fit lines with the specific goal of later handling occlusion cases.

Step 2: Occlusion-aware EPI Segmentation (Sec. 3.2): Next,
we must reason about the scene order of detected lines to pair
them into segments. This is solved via a bipartite graph matching
process, which allows us to strictly enforce occlusion awareness.
It produces per-EPI view-consistent regions in horizontal and
vertical dimensions, which must be merged spatially.

Step 3: Spatio-angular Segmentation via Clustering (Sec. 3.3):
Finally, we merge EPI regions into a consistent segmentation
via a segment clustering, which uses our estimated disparity to
regularize the process. Remaining unlabeled off-central-directions
occluded pixels are labeled via a simple propagation step.

Algorithm 1: EPI edge detection
FindEdgesEPI (E,F)

Input: E: A w×h EPI
F : A set of 60 2h×2h directional filters.

Output: An edge slope map Z with confidences C.

foreach fi∈F do
ri←E~fi;

end
foreach pixel location(u,v)∈I do

Z(u,v)←argmax
i

ri(u,v) ;

C(u,v)←max
i
ri(u,v) ;

V (u,v)←StdDev(I(N(u,v))) for neighborhood
N(u,v) around (u,v) ;

end
C←NonMaxSuppress(C) � V ;
return Z, C

end

3.1. Line Detection
For robust occlusion handing, we must accurately detect the

intersections of lines in EPIs (Fig. 3). However, classical edge
detectors like Canny [3] and Compass [15] often generate curved
or noisy responses at line intersections, which makes later line
fitting and occlusion localization difficult. Instead, we propose
an EPI-specific method. Note: We describe line detection for the
central horizontal views; central vertical views follow similarly.

EPI Edge Detection We take all EPIs Ei(x,u) (size w×h)
from the horizontal central view images I ∈H. We convolve
them with a set of 60 oriented Prewitt edge filters with each
representing a particular disparity. We filter only the central views
for efficiency, and later on will propagate their edges across all
light field views. To detect small occluded lines, we use 2h×2h
filters and convolve the entire (x,u) space. This effectively
extends occluded edge response to span the height of the EPI.

From this, we pick the filter with maximal response per pixel,
which is a disparity map Z at edges, and we take the value
of the filter response as an edge confidence map C. Then, we
perform non-maximal suppression per EPI. To suppress false
response in regions of uniform color, we modulate edge response
by the standard deviation of a 3×3 window around each pixel
in the original EPI [11]. Our final C map has clean intersections
(Fig. 3). Algorithm 1 summarizes our approach.

Line Fitting To create a parametric line set L, we form lines
li from each pixel in C in confidence order, with line slopes from
Z. As we add lines, any pixels in C which lie within an λ-pixel
perpendicular distance of the line li are discarded. λ determines
the minimum feature size that our algorithm can detect. In all
our experiments, we set λ= 0.2h. We proceed until we have
considered all pixels in C. For efficiency, we detect edges and
form line sets in a parallel computation per EPI.

Figure 3: Our method can detect edge intersections more accu-
rately than the Canny or Compass methods. These intersections
provide valuable occlusion information.

Outlier Rejection We wish to exploit information from across
the spatio-angular light field. As such, we defer outlier rejection
until after we have discovered L for each EPI in each horizontal
view, and then project all discovered lines into the central view.
Given this, we wish to keep both (a) high confidence lines,
and (b) low confidence lines which have similar spatio-angular
neighbors, and reject faint lines caused by noise.

Given a line li ∈L with confidence ci and disparity zi, we
count the number of lines within a p×q pixel spatial neighbor-
hoodN (li), and weight this number by the confidence ci:

A(li)={lk∈N (li) | zk=zi}. (1)

Then, we discard a line li∈L if:

ci|A(li)|
pq

<τ, (2)

where p and q are 1/15th of the width and height of the light
field, and τ = 8× 10−5. This is similar to Canny’s use of a
double threshold to robustly estimate strong edges: strong lines
must have a confidence greater than τpq, and weak lines must
have τpq/ci neighbors at the same disparity.

Spatial Multi-scale Processing To detect broader lines and
improve consistency between neighboring EPIs, we compute
coarse-to-fine edge confidence across a multi-scale pyramid with
2× scaling in the spatial dimensions only. At each scale and
after the outlier removal processes, we double the x location of
detected lines intercepts, and repeat each line twice along u. We
replace any lines in a coarser scale which are close to lines in
a finer scale. That is, we replace a coarse line only if both of
its end points are within λ pixels of the fine line. Thus, broader
spatial lines which are not detected at a finer scale are still kept.

With this, we have now discovered a line set L for each EPI
of the central horizontal and vertical views of our light field.

(a) Two intersecting line segments represent an occlusion in the light
field. The occluding line, shown in color, makes a larger angle with
the x-axis. The arrows represent the direction opposite to the one in
which occlusion occurs.

(b) The direction of occlusion can be found by considering a small
region of the edge image around the point of intersection. The side of
the foreground line on which the background line is visible defines
the direction of occlusion.

(c) An occluding line can only match with other lines in the matching
direction. However, it can not match with any line that lies beyond
other occluding lines.

(d) A background line can match twice: once each to its left and right.

Figure 4: Illustrating the rules which govern line coupling.

3.2. Occlusion-aware EPI Segmentation

Given a set of lines L, we wish to match lines into
pairs to define an EPI segmentation. One simple ap-
proach is to match every line twice: once each to its left
and right neighbors. However, as per the inset diagram,
this fails when lines intersect
at occlusions as it produces an
under-constrained problem in
which segment order cannot be
uniquely determined.

We solve it by considering a small region around the point of
intersection in the edge imageE, which allows us to constrain the
occlusion direction and determine the correct matching (Fig. 4b).
The occlusion direction is given by the side of the foreground line
in which the background line is visible. The foreground line is
determined by the relative slope of the two lines.

The sequence of steps to narrow down the potential matches
for each line is shown in Figure 4. Once we have omitted any line
pairings which violate the occlusion order, we pose line matching
as a two-step maximum value bipartite matching problem on a
complete bipartite graphG(L,L,E) an solve it using Dulmage-
Mendelsohn decomposition. In the first step, we match only
intersecting lines to resolve occlusions. In the second step, all

Algorithm 2: EPI line segment matching.
SegmentEPI (L)

Input: L: An ordered list of line segments bounded
by the top and bottom edges of EPI I.

Output: A setM∈L×L of line couplings.

Create the complete bipartite graphG=(L,L,Ef) for
matching all occluding lines ;
S←OccludingLines(L) ;
foreach e=(li,lj)∈Ef do

if li /∈S and lj /∈S then
w(e)←−∞ ;

else if lj does not lie to the left of li then
w(e)←−∞ ;

else if ∃k∈S to the left of li |
Distance(li,k)<Distance(li,lj) then

w(e)←−∞ ;
else

w(e)←Distance(li,lj) ;
end

end
A←MaxBipartiteMatching(G) ;
U←{l∈L | (∃k)[k∈L∧(l,k)∈A]} ;
V ←{k∈L | (∃l)[l∈L∧(l,k)∈A]} ;
Create the complete bipartite graph
H=(L\U,L\V,E) for matching all other lines;

foreach e=(lj,lk)∈E do
if lk does not lie to the left of lj then

w(e)←−∞ ;
else

w(e)←Distance(lj,lk)
end

end
B←MaxBipartiteMatching(H) ;
returnA∪B

end

remaining lines are matched. We compute line distance as:

Distance(li,lk)=(ωd|ti−tk−bi+bk|
+(1−ωd)|ti+bi−tk−bk|)−1, (3)

where ti and bi are the line intercepts li at the top and bottom of
the EPI image. ωd is a constant which determines the relative
importance of disparity similarity over spatial proximity of lines.

Finally, to prevent forming large superpixels in uniform regions,
we recursively split any segment that has a width larger than 15
pixels by adding new lines. To regularize segments across the
vertical and horizontal EPI directions—especially in textureless
regions—the slope of new lines is always set to match the disparity
of the vertical segment covering that spatial region.

The procedure is given in Algorithm 2. Figure 5 shows an
example EPI result after the computations of Sections 3.1 and 3.2.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: From top to bottom: (a) Input EPI. (b) Edge confidence
map C from Sec. 3.1. (c) Parametric lines L fit to C. As we do
not threshold, faint edge lines are visible along with some outliers.
(d) Outliers are robustly removed via spatial neighbor statistics,
depth, and edge confidence weights. Note: remaining overlapping
lines represent occlusions. (e) & (f) Line pairs are matched in an
occlusion-aware manner to form angular segments. Note: The
EPIs have been stretched vertically for viewing; input is 9 views.

3.3. Spatio-angular Segmentation via Clustering

Our occlusion-aware segmentation per EPI must now be com-
bined across different EPIs as, currently, we have no correspon-
dence between the horizontal and vertical EPI segments (other
than the large-region split lines added in the previous step). We ad-
dress this by jointly clustering the segments in the central view of
the light field using k-means in (x,y,d,L∗,a∗,b∗) space (Fig. 6).

This clustering approach with disparity dmight seems similar
to methods which exploit a central depth map for propagation,
like LFSP [25]. However, our method is view consistent: our EPI
segment-based computation allows us to estimate d for every light
field view, including those segments occluded from the central
view. These are all considered within the clustering.

For each segment, we compute the average pixel value in
the CIELAB color space: L∗,a∗,b∗. We define the disparity
d from the larger (deeper) slope of the two segment lines. For
segments in horizontal EPIs, y equals the EPI index and we
determine x to be the midpoint of the segment lines in the central
view. For vertical EPIs, we reverse this relation. The number of
clusters is user specified and determines superpixel size. We seed
clusters at uniformly-distributed spatial locations [1], and assign
x,y,d,L∗,a∗,b∗ from the segment center closest in image space.

Within the feature vector, x,y have weight 1 and L∗,a∗,b∗
have weight 3. We normalize d given our current scene estimates
then weight it by 120. This larger weight helps the method not to
cluster across occlusions, which usually have different disparities.

Clustering within the central view allows us to correspond
and jointly label the horizontal and vertical EPI segments, and to
provide spatial coherence. However, the boundaries from these
two EPI segmentations do not always align. Thus, after projecting
these segments into all light field views, we discard labels for
pixels where the two segmentations disagree.

3.3.1 Label Propagation

At this point, our only unlabeled pixels are those either occluded
from or in disagreement between both central sets of views in the
vertical and horizontal directions. We note that 1) the set U of
unlabeled pixels is sparse even within a local neighborhood; and
that 2) at this stage, we know the disparity of each labeled pixel
in the light field. As such, we minimize a cost with color, spatial,
and disparity terms to label the remaining pixels.

Given an unlabeled pixel (x,y)∈U in light field view Iu,v, let
L(x,y) define the set of labeled pixels in a spatial neighborhood
around (x,y). For every pixel (p,q)∈L(x,y), let `(p,q) denote
its label, and d(p,q) its disparity. Moreover, let Is,r(·,·) represent
the color of any pixel, labeled or unlabeled, in light field view
Is,r. We define the cost of assigning (x,y) label `(p,q) as:

E(x,y)(`(p,q))=ωc(Iu,v(x,y)−Iu,v(p,q))
2

+ωs
(
(x−p)2+(y−q)2

)
+ωd

(∑
s

∑
r

Iu,v(x,y)−Is,r(x+d(p,q),y+d(p,q))

)
.

(4)

We set weights empirically: wc=1, ws=1, wd=1e−5.
Label assignment total cost is E =

∑
(x,y)∈UE(x,y). We

efficiently compute this by minimizingE(x,y) per pixel. Along
with finding `(x,y), we set d(x,y) equal to d(argminE(x,y)),
which allows us to project newly-assigned labels to any unlabeled
pixels in other views. In practice, this strategy only requires
minimization over the central row and column of light field views,
with the few remaining pixels in off-center views after projection
labeled by nearest neighbor assignment.

4. Experiments
4.1. Setting
Datasets We use synthetic light fields with both ground truth
disparity maps and semantic segmentation maps. From the HCI
Light Field Benchmark Dataset [22], we use the four scenes with
ground truth: papillon, buddha, horses, and still life. Each light
field image has 9×9 views of 768×768 pixels, except horses
with 1024×576 pixels. For real-world scenes, we use the EPFL
MMSPG Light-Field Image Dataset [26]. These images were
captured with a Lytro Illum camera (15×15 at 434×625). Please
refer to our supplementary materials for more results.

Baselines We compare to the state-of-the-art LFSP (light field
superpixel segmentation) approach of Zhu et al. [25]. This method
takes as input a disparity map for the central light field view. We
apply their method on the disparity estimates from Wang et
al. [20, 21] as originally used in the Zhu et al. paper, and on
ground truth disparity. Comparing these two results shows the
errors which are introduced from inaccurate disparity estimation.

We also compute a k-means clustering baseline, which is
similar in spirit to RGBD superpixel methods like DASP [24]
methods. Given a disparity map for the central light field view,
we convert the input images to CIELAB color space and form a

Segment centers
as points

Joint k-means
clustering

Common
segmentation labels

Labeled vertical and horizontal
angular segments

Label propagation

Segmentation from central
row and column of views

V
ie

w
 0

Project
to all
views

V
ie

w
 +

1
V

ie
w

 -1
...

...

Figure 6: Vertical and horizontal view-consistent segments are clustered in the central light field view to obtain spatio-angularly consistent
labels. Pixel labels which are not consistent across the vertical and horizontal segmentations are recalculated in the label propagation step.

vector f=(x,y,d,L∗,a∗,b∗) for each pixel in the central view of
the light field. Then, from uniformly-distributed seed locations,
we cluster using the desired number of output superpixels, and
project these labels into other views. For any pixels in non-central
views which remain unlabelled, we assign the label of the nearest
neighbor based on f=(x,y,L∗,a∗,b∗). For each feature, we use
the same weight parameters as in our method. As for LFSP, we
compute results using ground truth disparity maps and with the
estimation method of Wang et al. [20, 21].

4.2. Metrics

We use two view-consistency-specific metrics: self similarity
error [25] and number of labels per pixel; explained below. We
also use three familiar 2D boundary metrics: achievable accuracy,
boundary recall, and undersegmentation error; we explain these
in our supplemental material. Achievable accuracy, self similarity,
and number of labels per pixel describe overall accuracy and
consistency across views. Boundary recall and undersegmentation
error describe characteristics of over segmentation [14]. As a
measure of superpixel shape, we use the compactness metric
from Schick et al. [16]. We compute each metric across average
superpixel sizes of 15–40 square (225–1600 pixels each).

Self Similarity Error As defined in Zhu et al. [25], we project
the center of superpixels from each view into the center view,
and compute the average deviation versus ground truth disparity.
Smaller errors indicate better consistency across views.

Number of Labels Per View-dependent Pixel We compute
the mean number of labels per pixel in the central view as pro-
jected into all other views via the ground truth disparity map. This
gives a sense of the number of inconsistent views on average
(cf. HCI dataset with 81 input views). For ease of computation,
we discard pixels which are occluded in the central view.

4.3. Results

Figure 7 shows all metrics averaged over all four scenes; our
supplementary material includes per-scene metrics. For qualitative
results, please see our supplemental video.

View Consistency Our method outperforms both LFSP and
the k-means baselines using estimated disparity maps (Fig. 7(a)).
These findings are reflected in qualitative evaluation where we
reduce view inconsistencies such as flickering from superpixel
shape change over views (Fig. 8). Using ground truth disparity
maps, our method outperforms LFPS on both metrics, but only
outperforms k-means on self similarity error: k-means with
ground truth disparity produces fewer numbers of labels per pixel
than our method. As a reference for interpretation, the small
baselines cause occlusion in∼3–5% of light field pixels.

Achievable Accuracy, Boundary Recall, and Undersegmen-
tation Error Our method outperforms LFSP for all three met-
rics on both estimated and ground truth disparity for all superpixel
sizes (Fig. 7(c)). For smaller superpixel sizes (15–25), we are com-
petitive in accuracy and undersegmentation error with k-means
using ground truth disparity; at larger sizes k-means is better. Our
method recalls fewer boundaries than k-means: we occasionally
miss an edge section during step 1, which defers these regions to
our less robust final propagation step for unlabeled pixels instead.
However, k-means can create very small regions (Fig. 8) which
are broadly undesirable.

Compactness Our method is competitive with LFSP at smaller
superpixel sizes (15–25), and better at larger sizes (Fig. 7(b)). The
k-means baseline generates the least compact superpixels of the
tested methods, even with ground truth disparity. As we just saw,
this shape freedom helps it recall more boundaries.

Computation Time We use an Intel i7-5930 6-core CPU and
MATLAB for our implementation. We report times on the 9×9
view light fields with images of 768×768 pixels. Disparity map
computation for Wang et al. takes ∼8 minutes, which is a pre-
process to both the k-means baseline and LFSP. LFSP itself takes
∼2 minutes, with k-means taking∼2.5 minutes. Our approach
implicitly computes a disparity map and takes∼3.3 minutes total.

5. Discussion and Limitations
Our approach attempts to compute a view-consistent super-

pixel segmentation and produces competitive results; however,

(a) View consistency: Self-similarity error and number of labels per pixel. (b) Shape quality: Superpixel compactness.

(c) Boundary accuracy: Achievable segmentation accuracy, boundary recall, and undersegmentation error.

Figure 7: Quantitative evaluation metrics for light field oversegmentation.

some issues still remain as not every pixel in the light field is
view consistent. First, our occlusion-aware EPI segmentation is
explicitly enforced by matching rules; however, the clustering step
in Section 3.3 does not explicitly handle occlusion—this is only
softly considered within the clustering by a high disparity weight.
Further, for efficiency, we rely on only the central horizontal
and vertical views. When segment boundary estimates do not
align between these two sources, or when pixels are occluded
from both of these sets of views, we rely on our less robust label
propagation (Section 3.3.1) which is not occlusion aware and uses
no explicit spatial smoothing, e.g., via a more expensive pairwise
optimization scheme. Both of these issues can cause minor label
‘speckling’ at superpixel boundaries. We hope to improve these
aspects of our method in future work.

While a valued resource for its labels, the HCI dataset [22]
has minor artifacts in its ground truth disparity, such as jagged
artifacts on the wooden plank in the ‘buddha’ scene. It is no longer
supported and a replacement exists [8]; however, this does not
include object segmentation labels for non-central views, which
makes evaluating view consistency with it difficult.

Our Lambertian assumption makes it difficult to handle spec-
ular objects: view-dependent effects break the assumption that
a 3D scene point maps to a line in EPI space, e.g., in the HCI
dataset ‘horses’ scene where all methods have trouble. Further, as
the normalized ratio of area to perimeter, compactness is only a
measure of average shape across the superpixel, and sometimes
our superpixel boundaries have higher curvature than LFSP.

6. Conclusion
We present a view-consistent 4D light field superpixel seg-

mentation method. It proceeds with an occlusion-aware EPI
segmentation method which provides view consistency by explicit
line estimation, depth ordering constraints, and bipartite graph
matching. Then, we cluster and propagate labels to produce per-
pixel 4D labels. The method outperforms the LFSP method on
view consistency and boundary accuracy metrics even when LFSP
is provided ground truth disparity maps, yet still provides similar
shape compactness. Our method also outperforms a depth-based
k-means clustering baseline on view consistency and compactness
metrics, and is competitive in boundary accuracy measures. Our
qualitative results in supplemental video show the overall benefits
of view consistency for light field superpixel segmentation.

Acknowledgements
We thank Kai Wang for proofreading, and a Brown OVPR

Salomon Faculty Research Award and an NVIDIA GPU Award
for funding this research. Min H. Kim acknowledges support by
Korea NRF grants (2019R1A2C3007229, 2013M3A6A6073718)
and Cross-Ministry Giga KOREA Project (GK17P0200).

Figure 8: Superpixel segmentation boundaries and view consistency for the k-means baseline, LFSP [25], and our method. Disparity
maps for LFSP and k-means were calculated using the algorithm of Wang et al. [20, 21]. Top two rows: HCI dataset [22]; we highlight
superpixels which either change shape or vanish completely across views. Bottom two rows: EPFL Lytro dataset [26]. Our superpixels
tend to remain more consistent over view space, which can be easily seen as reduced flickering in our supplementary video. Note: Small
solid white/black regions appear when superpixels are enveloped by the boundary rendering width. k-means tends to have more of these
regions which helps it increase boundary recall, but this behavior is not useful for a superpixel segmentation method.

References
[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi,

Pascal Fua, and Sabine Süsstrunk. SLIC superpixels compared to
state-of-the-art superpixel methods. IEEE transactions on pattern
analysis and machine intelligence, 34(11):2274–2282, 2012. 2, 5

[2] Neill D. F. Campbell, George Vogiatzis, Carlos Hernandez, and
Roberto Cipolla. Automatic object segmentation from calibrated
images. In Proceedings of the Conference for Visual Media Pro-
duction, CVMP, pages 126–137. IEEE Computer Society, 2011.
2

[3] J Canny. A computational approach to edge detection. IEEE Trans.
Pattern Anal. Mach. Intell., 8(6):679–698, June 1986. 3

[4] Jie Chen, Junhui Hou, Yun Ni, and Lap-Pui Chau. Accurate
light field depth estimation with superpixel regularization over par-
tially occluded regions. IEEE Transactions on Image Processing,
27(10):4889–4900, 2018. 2

[5] Aleksandra Chuchvara, Attila Barsi, and Atanas Gotchev. Fast and
accurate depth estimation from sparse light fields. arXiv preprint
arXiv:1812.06856, 2018. 2

[6] Matthieu Hog, Neus Sabater, and Christine Guillemot. Light field
segmentation using a ray-based graph structure. In ECCV, 2016. 2

[7] Matthieu Hog, Neus Sabater, and Christine Guillemot. Dynamic
super-rays for efficient light field video processing. In BMVC,
2018. 2

[8] Katrin Honauer, Ole Johannsen, Daniel Kondermann, and Bastian
Goldluecke. A dataset and evaluation methodology for depth
estimation on 4d light fields. In Asian Conference on Computer
Vision, pages 19–34. Springer, 2016. 7

[9] Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra Ahuja,
and Jia-Bin Huang. DeepMVS: Learning multi-view stereopsis.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2821–2830, 2018. 2

[10] Xiaoran Jiang, Jinglei Shi, and Christine Guillemot. A learning
based depth estimation framework for 4d densely and sparsely
sampled light fields. In Proceedings of the 44th International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2019. 2

[11] Changil Kim, Henning Zimmer, Yael Pritch, Alexander Sorkine-
Hornung, and Markus H Gross. Scene reconstruction from high
spatio-angular resolution light fields. ACM Trans. Graph., 32(4):73–
1, 2013. 3

[12] Christine Guillemot Matthieu Hog, Neus Sabater. Super-rays for
efficient light field processing. IEEE Journal of Selected Topics in
Signal Processing, PP(99):1–1, 2017. 2

[13] Hajime Mihara, Takuya Funatomi, Kenichiro Tanaka, Hiroyuki
Kubo, Yasuhiro Mukaigawa, and Hajime Nagahara. 4d light field
segmentation with spatial and angular consistencies. In Proceedings
of the International Conference on Computational Photography
(ICCP), 2016. 2

[14] Peer Neubert and Peter Protzel. Superpixel benchmark and com-
parison. In Proc. Forum Bildverarbeitung, volume 6, 2012. 6

[15] Mark A Ruzon and Carlo Tomasi. Color edge detection with the
compass operator. In Computer Vision and Pattern Recognition,
1999. IEEE Computer Society Conference On., volume 2, pages
160–166. IEEE, 1999. 3

[16] Alexander Schick, Mika Fischer, and Rainer Stiefelhagen. Mea-
suring and evaluating the compactness of superpixels. In Proceed-
ings of the 21st international conference on pattern recognition
(ICPR2012), pages 930–934. IEEE, 2012. 6

[17] David Stutz. Superpixel segmentation: An evaluation. In Juergen
Gall, Peter Gehler, and Bastian Leibe, editors, Pattern Recognition,
volume 9358 of Lecture Notes in Computer Science, pages 555 –
562. Springer International Publishing, 2015. 1

[18] David Stutz, Alexander Hermans, and Bastian Leibe. Superpixels:
an evaluation of the state-of-the-art. Computer Vision and Image
Understanding, 166:1–27, 2018. 1

[19] Ivana Tošić and Kathrin Berkner. Light field scale-depth space
transform for dense depth estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Work-
shops, pages 435–442, 2014. 2

[20] Ting-Chun Wang, Alexei A Efros, and Ravi Ramamoorthi.
Occlusion-aware depth estimation using light-field cameras. In
Proceedings of the IEEE International Conference on Computer
Vision, pages 3487–3495, 2015. 1, 2, 5, 6, 8

[21] Ting-Chun Wang, Alexei A Efros, and Ravi Ramamoorthi. Depth
estimation with occlusion modeling using light-field cameras.
IEEE transactions on pattern analysis and machine intelligence,
38(11):2170–2181, 2016. 1, 2, 5, 6, 8

[22] Sven Wanner, Stephan Meister, and Bastian Goldluecke. Datasets
and benchmarks for densely sampled 4d light fields. In VMV, pages
225–226. Citeseer, 2013. 2, 5, 7, 8

[23] Sven Wanner, Christoph Straehle, and Bastian Goldluecke. Globally
consistent multi-label assignment on the ray space of 4d light fields.
In IEEE CVPR, 2013. 2

[24] David Weikersdorfer, David Gossow, and Michael Beetz. Depth-
adaptive superpixels. In Proceedings of the 21st International
Conference on Pattern Recognition (ICPR), pages 2087–2090.
IEEE, 2012. 5

[25] Hao Zhu, Qi Zhang, and Qing Wang. 4D light field superpixel and
segmentation. In IEEE CVPR, 2017. 1, 2, 5, 6, 8

[26] Martin Řeřábek and Touradj Ebrahimi. New light field image
dataset. In Proceedings of the 8th International Conference on
Quality of Multimedia Experience (QoMEX), 2016. 5, 8

