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Figure 1: We compare a reference HDR video frame and a lossy compressed frame using our surround-aware CSF model. We compress the
original video by three orders of magnitude without perceivable artifacts.

Abstract
Despite advances in display technology, many existing applications rely on psychophysical datasets of human perception gath-
ered using older, sometimes outdated displays. As a result, there exists the underlying assumption that such measurements can
be carried over to the new viewing conditions of more modern technology. We have conducted a series of psychophysical exper-
iments to explore contrast sensitivity using a state-of-the-art HDR display, taking into account not only the spatial frequency
and luminance of the stimuli but also their surrounding luminance levels. From our data, we have derived a novel surround-
aware contrast sensitivity function (CSF), which predicts human contrast sensitivity more accurately. We additionally provide
a practical version that retains the benefits of our full model, while enabling easy backward compatibility and consistently
producing good results across many existing applications that make use of CSF models. We show examples of effective HDR
video compression using a transfer function derived from our CSF, tone-mapping, and improved accuracy in visual difference
prediction.

CCS Concepts
• Computing methodologies → Perception; Image compression;

1. Introduction

Display technology has advanced rapidly, making the viewing ex-
perience progressively more realistic. In particular, the dynamic
range and luminance levels of modern displays have been signif-
icantly expanded. Many perceptual studies have been conducted
on many different types of visual media, including monitor dis-
plays, projectors, printing materials, etc. These perceptual studies
are bounded by the characteristics of the experimental medium, a
dependency that is well understood [CIE04].

Despite the rapid development of display technology, gather-
ing psychophysical measurements using such modern displays has
barely kept up due mainly to limited accessibility to expensive dis-
play technology and calibration devices. Often new methods and
applications rely on ad-hoc modifications or simple adoption of ex-
isting data and models which were obtained with different media,
with the underlying strong assumption that they can be carried over
to the new viewing conditions.

Contrast sensitivity is a critical aspect of human vision, and has
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been the subject of many research studies over decades. Many
psychophysical studies have been conducted to discover the re-
sponse of the human visual system to patterns of varying spatial fre-
quencies and luminance levels; these studies, as argued before, are
bounded by the display technology used in their experiments. Most
of them report measurements using conventional displays ranging
from 0.1 to 100 cd/m2. To the best of our knowledge, there is no
reliable data of surround-aware contrast sensitivity on an HDR dis-
play, which takes into account both the luminance of the stimuli
and its surroundings.

We have conducted a series of psychophysical experiments to
explore the perceptual impact in contrast sensitivity under these
conditions, up to 1000 cd/m2. In particular, we are interested in the
impact of the surrounding luminance on the perceptibility of con-
trast for patterns of different spatial frequencies. We have measured
perceptual thresholds of spatial frequency under different combi-
nations of stimuli and surround luminance levels. From this, we
have developed a novel surround-aware contrast sensitivity func-
tion (CSF) that predicts human contrast sensitivity better than ex-
isting models. In addition, we provide a practical version of our
CSF, which retains the benefits of our complete model while facili-
tating the prediction of CSF values beyond our measurement range.

Our practical surround-aware CSF model can be plugged into
many applications that make use of existing CSF models. This
leads to more accurate results especially in images with large lu-
minance contrast, given the extended luminance and contrast range
explored in our experiments. We first demonstrate effective HDR
video compression by coupling our CSF model to a transfer func-
tion that converts HDR signals to the conventional video compres-
sion framework. We then present the results of HDR tone-mapping
by simply substituting the embedded traditional CSF model in a
state-of-the-art tone mapper with our surround-aware CSF. Last,
we demonstrate improved accuracy in visual difference prediction
using the HDR-VDP-2 framework [MKRH11]. Our dataset and im-
plementation of both surround-aware CSF models will be available
publicly.

2. Related Work

Measured CSFs. Experiments to determine contrast thresholds of
the HVS start at least as early as 1946 [Bla46]. Schade measured
and characterized the dependency of the CSF with respect to spa-
tial frequency by asking observers to judge the visibility of sinu-
soidal patterns, discovering the now well-known effect of sensi-
tivity dropping as the spatial frequency of the judged stimulus in-
creases [Sch56]. Later, various studies have demonstrated that sev-
eral factors and luminance conditions can influence the shape of
the CSF. Blakemore and Campbell discovered that after adapting
for several minutes to a sinusoidal contrast pattern of certain fre-
quency, sensitivity at similar frequencies decreases significantly,
while sensitivity to other frequencies remains unaffected [BC69].

In addition to achromatic stimuli, there is a body of work devoted
to study the chromatic CSF [KML13, Kel83, HMTN10], however,
these studies are mostly restricted to very limited conditions and
luminance ranges. Wuerger et al. recently studied the chromatic
CSF at a wide range of luminance, but they still treat the cases that

luminance of the sinusoidal pattern and outside of the pattern has
the same value [WAK∗20, KAPO∗20]. Other studies include the
analysis of different visual conditions, such as visualization under
different eccentricities [RVN78], or neurological conditions, such
as arousal [LBLM14], in the shape of the CSF.

Analytical CSFs. Daly’s model is one of the most popular [Dal92],
and has been used in many applications; unfortunately details of the
derivation of the model are not provided. Barten developed a phys-
ical model [Bar92] to serve as background to his previously pro-
posed formula to evaluate image quality [Bar89]. This model pro-
vides a good fit for many historical CSF measurements; however,
later works have suggested that its validity may decrease out of
photopic (cone-mediated) vision [KML13]. Barten also proposed a
more sophisticated model taking into account a larger number of
physical quantities, which yielded a better fit with measured data
at the cost of becoming cumbersome to use as a standard [Bar99].
Mantiuk et al. developed a custom CSF model for predicting vis-
ible differences in images. They observed that the models pro-
posed by Barten and Daly did not yield accurate fits to their ex-
perimental data, and hypothesized that these functions may capture
conditions that are different from visual inspection of static im-
ages [MKRH11]. Recently, Mantiuk et al. [MKA∗20] proposed a
chromatic CSF model with consideration of a wide range of lu-
minance based on recent perceptual measurement datasets includ-
ing [WAK∗20, KAPO∗20]. Although all these models treat the in-
fluence of spatial frequency and stimulus luminance, they do not
focus on the joint influence of stimulus and surrounding luminance.

Background/Surround Impact. The effect of background or
surrounding luminance was studied for the first time in the
60s [Wes60, VNB67]. These first studies discovered that the con-
trast sensitivity function changes when it is measured at different
mean background intensities. This effect is particularly relevant for
modern display technology, which usually allows for high dynamic
range. Some recent works have focused on characterizing the ef-
fect of surrounding luminance [KK10, BKP14]; however, this ef-
fect was studied on isolation and for limited luminance ranges. In
general, little is known about the interplay between background
luminance and stimuli luminance in contrast sensitivity. Vangorp
et al. studied the effect of background or surrounding luminance
[VMGM15]. They measured and modeled the threshold-versus-
intensity (TVI), which denotes just-noticeable-difference of lumi-
nance between two small uniform-luminance patch, taking back-
ground luminance into account. They treated the two different lu-
minance values as variables of their model. However, their work is
based on TVI, which does not have spatial frequency as a variable
unlike CSF.

Barten’s [Bar03] is the only existing CSF model that takes into
account the influence of the surrounding luminance and its inter-
play with stimuli luminance. The model is an extension to his pre-
vious one [Bar92], taking into account measurements by Rogers
et al. [RC73], who measured contrast sensitivity on just three sub-
jects, while analyzing the visibility of airplane dashboards under
specific viewing conditions. Such measurements are therefore not
representative of an average user under typical viewing conditions
on a modern display. In contrast to this work, our measurements
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cover a large range of background and stimuli luminances, which
allows us to model contrast sensitivity both in mesopic and sco-
topic viewing conditions. Our experiments are performed with a
state-of-the-art HDR display with an array of independently con-
trolled high power LEDs as back lighting system, which has been
rigorously calibrated.

3. Measurement of Contrast Sensitivity

In order to measure a surround-aware contrast sensitivity function
for wide luminance ranges, we have conducted a perceptual experi-
ment using a state-of-the-art HDR display. Our experiment follows
the method of adjustment, in which subjects are presented with si-
nusoidal patterns at different luminance levels, and they have to
adjust the contrast until they start recognizing the spatial modula-
tion patterns. This method has been used extensively in the litera-
ture [GM68, BB71], and allows us to obtain absolute contrast dis-
crimination thresholds for each of our different stimuli. Figure 2
shows our experimental setup, and the stimulus for an example
trial.

3.1. Experimental Setup

HDR Display. Our input images consist of grayscale HDR im-
ages with linear intensity encoded. We used a 47-inch SIM2 dis-
play (HDR47ES4MB) with a resolution of 1920× 1080 pixels, a
peak luminance of over 4000cd/m2, and a maximum luminance
for a full-white screen of approximately 1600cd/m2. Note that the
spatial resolution of the backlight LED unit in the display is lower
than that of the front LCD unit. However, the visual stimuli within
the field of view require the contrast levels achievable by the high-
resolution LCD unit alone; therefore, the resolution of the backlight
unit is not a limiting factor in our experiments. Subjects were pre-
sented with sinusoidal patterns of luminance L in a center region of
the screen, surrounded by a background of luminance Ls. Note that
L is the average luminance over the sinusoidal pattern.

Calibration. We found that the luminance of the center region
where the stimuli are shown is affected by the luminance of the sur-
rounding area of the display due to the characteristics of the HDR
display technology, but not the other way around. Thus, we mea-
sured calibration functions, which maps control signals at the cen-
ter region luminance to output luminance values at that region, for
each surrounding luminance levels. We used a Specbos Jeti 1200
spectroradiometer, and measured the calibration functions c(L,Ls)
for more than 150 fine levels of L for each of 5 levels of Ls, to accu-
rately produce all our combinations of stimuli luminance and sur-
rounding luminance. Then we have generated stimuli image files
with taking the inverse functions of these calibration functions to
produce intended pixel luminance. Refer to Section 1.1 in the sup-
plementary material for more details.

Stimuli. The area subtended by the sinusoidal patterns of the stim-
uli is set to Xo = 2◦ of visual angle that covers the fovea region
on the retina, which corresponds to 81× 81 pixels from a viewing
distance of d = 1.25m. The visual angle subtended by the screen
at that distance is 45.14◦ × 26.32◦, which is used to control the
adaptation level while focusing on the frequency stimuli.

Figure 2: (Left) Our experimental setup. (Right) The main vari-
ables of the stimuli are the stimulus luminance L, the surrounding
luminance Ls, the spatial frequency u, and the direction of the pat-
tern.

The spatial modulation of the sinusoidal pattern is the cosine
function of the pixel position, with a random offset φ. We sample
two directions of the stimulus D = {horizontal,vertical}, five stim-
ulus luminances L = {0.56, 2.69, 27.87, 282.91, 1065.25} cd/m2,
five surrounding luminances Ls = {0.55, 2.75, 28.53, 288.09,
1072.61} cd/m2, and five spatial frequencies u = {1.26, 2.52, 5.04,
10.08, 20.16} cpd. This yields a total of 250 (2×5×5×5) different
stimuli to exploit the entire available combinations of luminance
ranges on the display. To avoid the undersampling problem by the
display resolution, the values of u were chosen so that the periods
of the sinusoidal function are exactly 32, 16, 8, 4, and 2 pixels,
respectively.

3.2. Experimental Procedure

Thirteen subjects (10 males and 3 females) with an age range of 20
to 45 years took part in the study. They all reported trichromatic
normal or corrected-to-normal vision. Subjects performed the ex-
periment in a dark room. There was no illumination except for the
display device The experiment was divided in five sessions; in each
one, a single surrounding luminance value Ls was tested. The or-
der of the five sessions was randomized for each participant. Be-
fore starting the experiment, subjects spent five minutes adapting
to the dark room viewing conditions. Then, for each surrounding
luminance value tested, subjects adapted for two additional min-
utes. During each session subjects were presented with a total of
50 (2×5×5) combinations of (D,u,L) in random order to avoid or-
dering effects. In each trial the stimulus was initially fixed to zero
contrast. Subjects were asked to adjust the contrast of the stimuli
until they could barely perceive the displayed pattern. They could
use the right or left keyboard arrows to increase or decrease con-
trast in steps. In the case when the given stimuli has a zero contrast,
when the participants press the right arrow key, the first contrast
change is set to a precomputed extremely small value, which is
designed to be invisible ranging from 0.0003 to 0.0066. In subse-
quent key presses, the right arrow increases the stimulus contrast
with 1.3× contrast intervals. They then had to register whether the
shown pattern was horizontal or vertical by pushing the h or v keys,
respectively. To increase reliability of our measured values for sen-
sitivity, if a user identified a wrong direction, the same stimuli was
displayed again at a random order until the answer was correct.

Validation. Fifteen random samples of the 250 stimuli were mea-
sured twice without any notification to participants. We com-
pute the root-mean-square-error (RMSE) of the two measure-
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Figure 3: Our surround-aware CSF models (solid line) compared with our measurement data (dashed line), for different surround luminances
Ls. Top: Our full CSF model. Bottom: Our practical CSF model.

ments in the decibel contrast unit, following Watson and Ahumada
Jr. [WA05] and Mantiuk et al. [MKRH11]. The average of differ-
ences of short-term repeatability over the entire pool of participants
is 4.70 dB. The inter-participant difference is 5.37 dB, i.e., the av-
erage of 1-sigma errors of each CSF measurement. This means that
the short-term repeatability error for each participant is less than
inter-participant error of our experiment.

Discussion of the number of participants. With the consideration
of the length of the experiments, we had to limit the number of
participants. However, note that similar experiments of color per-
ception have used even less participants in the past, for instance,
five and six in [MKRH11] and [KWK09], respectively. As stated
in a previous study [AGFC12], there are perceivable differences in
contrast vision. Despite the fact, our measurement dataset include
an aforementioned gender bias due to the hiring limitation of vol-
unteering participants.

4. Surround-aware Contrast Sensitivity

Our surround-aware CSF depends mainly on three variables: spa-
tial frequency u, stimulus luminance L, and surrounding luminance
Ls, and it can be expressed as S(u,L,Ls). We have not observed a
significant trend for the horizontal and vertical directions of the si-
nusoidal pattern; this is in accordance with previous work [Bar03].
Figure 3 shows our CSF measurements for the rest of conditions,
with the vertical and horizontal directions averaged, together with
the fitted models that we will describe in this section. Refer to Sec-
tion 2 in the supplementary material for the individual measured
data for the two directions. We found that, due to a hardware limita-
tion in the SIM2 display, quantization artifacts appear on the bright-
est sinusoidal patterns (L = 1065.25 cd/m2) when displayed against
the darkest surround levels (Ls = 0.55, 2.75 cd/m2). We therefore
discard these two cases for the modeling.

We have discovered a strong dependency of contrast sensitivity
on the surrounding luminance. As Figure 3 shows, when a darker
stimulus is surrounded by brighter luminance levels (L < Ls),
contrast sensitivity drops significantly across all spatial frequency
bands. This can be clearly appreciated specially in the first two
plots. In particular, the measured CSF of the darkest stimuli sur-
rounded by the brightest luminance level presents the lowest sen-
sitivity level. On the other hand, when the presented stimulus is
brighter than the surrounding luminance level (L > Ls), sensitivity
is barely affected by the surrounding luminance level. This can be
seen specially in the last three plots in the figure. These are the key
insights that we take into account in this section for modeling our
CSF.

4.1. A Full Surround-aware CSF Model

We base our derivation of a surround-aware CSF on the for-
mulation of Barten’s CSF model [Bar92], which is of one of
the common CSF models, widely used in several applications
such as video coding [MND13], medical imaging [DIC04], and
tone-mapping [FPSG96]. This will allow us to provide backward
compatibility for many existing applications. However, Barten’s
model [Bar92] is independent of the surround luminance Ls. To
take Ls into account, we introduce a relative scaling function
R = S (u,L,Ls)/S (u,L,Ls = L), which we term the relative con-
trast sensitivity. (In the following, we refer to S (u,L,Ls = L) as
S (u,L,L) for convenience.) Our surround-aware CSF model can
then be expressed as:

S (u,L,Ls) = R
(
u,L∗

)
SB (u,L) , (1)

where L∗ = Ls/L, and SB corresponds to Barten’s CSF model, opti-
mized to our measured data. Refer to Section 3.1 in the supplemen-
tary material for more details about Barten’s original CSF model.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



S. Yi, D.S. Jeon, A. Serrano, S.-Y. Jeong, H.-Y. Kim, D. Gutierrez, & M.H. Kim / Modeling Surround-aware Contrast Sensitivity

-4 -2 0 2 4

log10 Ls/L

-2

-1.5

-1

-0.5

0

0.5

lo
g

10
 S

(u
,L

,L
s)/

S
(u

,L
,L

)

u=1.26

-4 -2 0 2 4

log10 Ls/L

-2

-1.5

-1

-0.5

0

0.5
u=2.52

-4 -2 0 2 4

log10 Ls/L

-2

-1.5

-1

-0.5

0

0.5
u=5.04

-4 -2 0 2 4

log10 Ls/L

-2

-1.5

-1

-0.5

0

0.5
u=10.08

-4 -2 0 2 4
log10 Ls/L

-2

-1.5

-1

-0.5

0

0.5
u=20.16

L=1065.13
L=282.88
L=27.86
L=2.68
L=0.56
Ours (R  )pOurs (R)

R model Rp model

Figure 4: The first four plots show our relative sensitivity R(u,L∗) as a function of the ratio between surround luminance Ls and stimulus
luminance L. From left to right (increasing spatial frequency u), it can be seen how the slope flattens for negative values of Ls/L. The
rightmost plot shows our practical relative sensitivity Rp(L∗), which does not depend on u.

The function R can be regressed from our measurements as:

R
(
u,L∗

)
=

Sdata (u,L,Ls)

Sdata (u,L,L)
. (2)

We observe a nonlinear trend of the relative factor R with respect
to the luminance ratio L∗ as shown in Figure 4. Choosing adequate
modeling functions to describe our observed behavior and fitting
them to our data (refer to Section 3.2 in the supplementary material
for complete model derivation details), our resulting model for the
relative contrast sensitivity becomes:

R
(
u,L∗

)
= 10r(u,log10 L∗), (3)

with r given by the following expression:

r
(
u, l∗;a,b,c,d

)
=−a

(
l∗
)2

+bl∗−a
(
l∗+ c

)√
(l∗+ c)2 +d

−ad ln
(√

(l∗+ c)+d + l∗+ c
)

+a
[
c
√

c2 +d +d ln
(√

c2 +d + c
)]

, (4)

where l∗ = log10 L∗. Defining all parameters a, b, c, and d as func-
tions of the spatial frequency u would provide the most accurate
results, at the risk of overfitting our measurements. To avoid this
overfitting, we first define b′ := b+2ac, which represents the partial
derivative of r with respect to l∗ so that b′ = liml∗→−∞

dr
dl∗ (u, l∗).

We then model only b′ and c as functions of u, and fit a and d as
constants:

b′ (u;q1,q2,q3) =
q1

1+ eq2(log10 u−q3)
,

c(u; p1, p2) = p1 log10 u+ p2,
(5)

where q1,2,3 and p1,2 are model parameters for b′ and c, respec-
tively. The first four plots in Figure 4 show how the the slope of
the sensitivity flattens as frequency increases, for negative values
of log10 (Ls/L).

In our regression results, the parameter d is always close to zero
(approximately d ; 2× 10−14); we thus set d = 0 so that r be-
comes:

r
(
u, l∗;a,b,c

)
=−a

(
l∗
)2

+bl∗−a
(
l∗+ c

)∣∣l∗+ c
∣∣+ac |c| .

(6)
The optimized parameters are presented in Table 1.

R model a p1 p2 q1 q2 q3 σ0 η k
0.07935 -0.6363 0.2157 2246 0.65 -15.56 0.0103 0.0148 10.1826

Rp model a b c λ

0.076 0.073 -0.13 0.24

Table 1: Optimized parameters for our full surround-aware R
(Section 4.1), and our practical Rp (Section 4.2). Here, σ0, η, and
k are parameters from the original Barten’s 1992 model. Refer to
Section 3 in the supplementary material for more details.

4.2. A Practical Surround-aware CSF Model

For many applications (e.g., HDR video coding, tone mapping, or
visual difference predictors), an univariate CSF model S (L), drop-
ping dependency of u, is typically used to adjust the perceived lumi-
nance level L for a specific frequency band u or a maximum argu-
ment of u. In our full model S (u,L,Ls), both R(u,L∗) and SB(u,L)
does depend on the frequency u. However, in such practical appli-
cations, a simpler model facilitates the prediction of CSF values
beyond the original measurement range, with less potential risks of
overfitting than more complex models. We thus propose a practi-
cal relative contrast sensitivity model Sp (u,L,Ls) by dropping the
dependency with the frequency u in R(u,L∗), yielding a simpler
Rp(L∗).

Moreover several existing CSF models, such as Barten’s [Bar92]
or Daly’s [Dal92] model, are used commonly in various applica-
tions [MKRH11,MDK08,MND13]. However, these models do not
take into account the effect of the surrounding luminance Ls. A
desirable property of our model is backward compatibility, so that
it can be easily incorporated into such existing perception-based
models and applications. We can achieve this compatibility by de-
signing new relative contrast sensitivity that does only require a
scaling factor λ to adapt existing models to our measurements.

Taking the two previous considerations into account, this new
practical model can be written as:

Sp (u,L,Ls) = λRp
(
L∗;a,b,c

)
So

B (u,L) , (7)

where Rp (L∗;a,b,c) is the u-independent, practical relative
sensitivity function, So

B (u,L) refers to Barten’s original CSF
model [Bar92] without optimization to our measured data, and λ is
a multiplicative scalar parameter that adjusts the scale of So

B (u,L).
Note that Rp is still Ls dependent, so it yields a surround-aware
CSF, but has less potential risks of overfitting beyond the original
measurement range of u. Also, So

B provides a backward compatibil-
ity to the conventional CSF model. The values of the parameters a,
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b, c, and λ are written in the bottom row of Table 1. Note that, de-
spite our simpler Rp function, frequency-dependent effects are still
captured by So

B.

4.3. Validation of the Models

To validate the accuracy of our models, we evaluate generalization
errors by randomly separating the entire measurements into train-
ing and test datasets. We have used 85% of our data for training,
and 15% for testing.

Our resulting full CSF model is shown in Figure 3 (top). The
training and test errors of our fitting are RMSE=2.69 dB and
RMSE=3.93 dB, respectively. The fitting results of our practical
CSF model are shown in Figure 3 (bottom). Its training and test
errors are RMSE=3.16 dB and RMSE=4.11 dB, respectively.

To avoid the risk of overfitting, we carefully designed our model
with combinations of monotonically increasing or decreasing func-
tions for each parameter, rather than using a high-order polynomial
regression. For instance, we model our relative sensitivity function
Equation (4) as a linear function when the luminance ratio de-
creases in the log-log domain and model it as a simple quadratic
function when the luminance ratio increseas. Moreover, in Equa-
tion (5) we include additional parameters to b and c using monoton-
ically decreasing functions. The choice of our model components
enforces the local smoothness in the predicted values, implicitly
avoiding overfitting.

Note that, although our practical model is slightly less accurate
than the full model according to the training error, the generaliza-
tion error of the practical model (∆RMSE=RMSEtest - RMSEtrain)
is smaller for the practical model (∆RMSE=0.95 dB), compared
with the full model (∆RMSE=1.34 dB). This means that our practi-
cal model can be better generalized and thus provides a good trade-
off between accuracy and ease of use with less parameters.

Comparison. We show in Figure 5 our measured CSF at L = Ls
compared with Barten [Bar92], Daly [Dal92]’s, and Mantiuk et
al. [MKRH11]’s CSF models. Note that these previous models
do not account for surrounding luminance, therefore, we can only
compare to them for the particular case L = Ls. First, we observe
that the measured sensitivity saturates for each frequency as the lu-
minance of the stimulus increases. This is in accordance with previ-
ous models [Dal92,Bar92,MKRH11]. Second, we also find that the
measured sensitivity tends to increase as the luminance level of the
stimuli rises, with the exception of L = 28.53 cd/m2. This luminance
level produces the highest sensitivities for low spatial frequencies
(u= 1.26, 2.52, 5.04 cpd), as also observed in the data collected by
Mantiuk et al. [MKRH11] (Figure 5, bottom). Both Mantiuk et al.’s
and our observations found the highest sensitivity levels of low
frequency bands to span luminance levels between 20cd/m2 and
28.53cd/m2. This may be related to the interplay between cones
and rods at mesopic vision levels (10−1 to 101 cd/m2 [Ska16]).

To our knowledge, there is only one other CSF model that takes
into account the influence of the surrounding luminance Ls [Bar03].
Barten’s surround-aware CSF is based on measurements from a
technical report by Rogers and Carel [RC73], who measured just
three subjects while analyzing dashboard visibility in airplanes.
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Figure 5: Our surround-aware CSF measurements from the low-
est to brightest luminance levels of stimuli. The length of one
side of the error bar indicates one standard deviation of partic-
ipants’ responses. Our measured CSFs at L = Ls compared with
Barten [Bar92]’s, Daly [Dal92]’s, Mantiuk et al. [MKRH11]’s,
and our full CSF models. Dashed lines represent our measurement
and solid lines represent the CSF models. The CSF scales of each
model are different and thus are adjusted manually to compare both
trends. The “3” marks mean that such properties partially hold,
explicitly, Mantiuk et al. [MKRH11]’s CSF model and our mea-
sured CSF increase as L increases except for L = 20− 30cd/m2,
while “4” indicates consistent agreements.

Both Barten’s 2003 model and our practical model rely on Barten’s
1992 model, and in particular on the function So

B. The key differ-
ence is the inclusion in our model of the relative contrast sensi-
tivity term Rp(L∗). As shown in Figure 6, as Ls/L decreases, our
model decays linearly with a small slope in log-log scale, whereas
Barten’s model decays quadratically. The data from the airplane
dashboard experiment [RC73] differs significantly from our data
using a modern HDR display when the surround luminance Ls is
low: we will show in the following section that this key difference
has a strong impact in resulting applications.

5. Applications of the CSF Model

Our practical CSF can be plugged into many HDR display appli-
cations that rely on a CSF model. We illustrate examples of HDR
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Figure 6: Comparison of our relative sensitivity Rp of our prac-
tical model and Barten’s [Bar03], as function of Ls/L. As the lu-
minance ratio decreases, our model decays linearly with a small
slope, whereas Barten’s model decays quadratically. We speculate
that this is due to the two different viewing conditions used to gather
data in both models: HDR display (ours) vs. airplane dashboard
(Barten).

video compression, tone-mapping and prediction of visual differ-
ences using our practical CSF†.

5.1. HDR Video Compression

Current compression methods rely on the traditional integer-based
framework; this requires that float-based HDR video content be
converted to integers before compression. Quantization artifacts
are thus inevitable in the existing video compression workflow de-
scribed by the ITU-R recommendation [ITU17]. The transfer func-
tion of the ITU-R standard compression pipeline is derived from
Barten’s CSF model [Bar92], and determines which luminance lev-
els are allocated larger bit rates to avoid visible quantization arti-
facts. Miller et al. [MND13] later presented the perceptual quan-
tizer (PQ), which has been used as a standard transfer function in
HDR video coding. The values of the PQ transfer function are again
derived from Barten’s CSF model [Bar92]. Here, we demonstrate
how HDR video compression can also benefit from our new CSF
model.

We work on YCbCr space for color space conversion, 10-bit
quantization, 4:2:0 chroma subsampling, and HEVC encoding. For
determining the compression level, we adjust the quantization pa-
rameter (QP) in HEVC encoding, which takes integer values 0-51.
For more details, including the derivation of a transfer function
from our CSF, please refer to Section 4.1 in the supplementary ma-
terial. Figure 7 compares the results of our video compression with
the standard video compression (ITU-R), and using Barten’s sub-
sequent model [Bar03]. Using our CSF allows to preserve details

† For all applications, the surrounding luminance Ls of scenes is estimated
as the geometric mean of the pixel values of the input HDR image.

Figure 7: HDR video compression results, using Barten’s models
( [Bar92] and [Bar03]), and our surround-aware CSF. Our novel
CSF allows to preserve details better, thus reducing visible arti-
facts. Refer to the supplementary video.

better, thus reducing visible artifacts. Another example frame of our
compression is shown in Figure 1. We compress the original video
by three orders of magnitude without perceivable artifacts (from
2,491,838 to 2,099 kbps, for QP=22). Refer to the supplementary
material for the video examples.

5.2. HDR Tone Mapping

Tone mapping is related to human contrast sensitivity as it tries
to preserve the perception of HDR content after remapping to a
low-luminance display [RWPD05]. Many tone-mapping operators
adopt existing CSFs such as Daly’s [Dal92] or Barten’s [Bar92]. As
a proof-of-concept application, we apply our practical CSF model
to Mantiuk’s operator [MDK08], which relies on Daly’s CSF to
estimate contrast sensitivity. This is one of the most widely used
tone-mapping operators, and has been ranked by a recent survey as
one of the best performing algorithms [EMU17]. Additionally, we
also apply Barten’s CSF model to this tone-mapper to show that our
surround-aware CSF is more suitable for this task. Figure 8 shows
how Barten’s model [Bar03] fails to produce good tone mapping
results, due to its excessive drop in contrast sensitivity for scenes
with dark surround luminance (shown in Figure 6). Figure 9 shows
the results, compared to the latest implementation of Mantiuk’s op-
erator [Man20]. As discussed in Section 3, for dark surrounding en-
vironments our CSF presents a lower sensitivity than Daly’s CSF,
therefore it preserves contrasts better, resulting in cleaner images
with less residual haze.
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Figure 8: Comparison of tone mapping results using Barten’s
surround-aware CSF [Bar03] and our practical model. Barten’s
CSF heavily drops for scenes with dark surround luminances
(Fig. 6), yielding results with very low contrast.

Figure 9: Tone mapped images using Mantiuk’s [MDK08] original
tone mapping operator (left), and plugging our CSF model (right).
For scenes with dark surround luminances, our CSF presents a
low sensitivity, therefore it compresses contrast better leading to
cleaner images with less residual haze (better seen in the digital
version).

5.3. HDR Visual Difference Prediction

Many existing metrics to predict visible differences between im-
ages rely on a model of the human visual system (HVS), includ-
ing contrast sensitivity (e.g., [Dal93, Lub95, WA05, MDMS05]).
According to a survey by Hanhart et al. [HBP∗15], HDR-VDP-
2 [MKRH11] is one of the most reliable metrics. However, it is
based on a CSF which does not take into account the effect of
surrounding luminance. We integrate our CSF model in the last
version of this metric (HDR-VDP-2.2 [NMDSLC15]), substituting
their original CSF with our surround-aware model. Figure 10 shows
the result, using images from Cadík et al.’s dataset [CAMS11]. This
dataset contains six images with distortion maps manually anno-
tated by users, which allows to qualitatively compare the results
predicted by the metrics. For images with high surround luminance,
our predicted map approximates more closely the subjective map
annotated by users (Figure 10, top). This is due to the wider lumi-
nance range of our experiments, which allows to model the CSF
more precisely in those cases. In low-contrast images, our results
largely converge with existing methods, as expected (Figure 10,
bottom).

Figure 10: Predicted probability map for detection of visual dif-
ferences with HDR-VDP-2.2 (left) and our modified version using
our CSF model (center). The rightmost image shows the subjective
map of visual differences as annotated by users [CAMS11], where
purple and cyan color indicates higher and lower perceived differ-
ence, respectively. Our results are more in accordance with users’
annotations for high levels of surround luminance (top), while pro-
viding similar results to state of the art predictors in other cases.

6. Conclusions

We have reported a series of psychophysical experiments using
a state-of-the-art HDR display, from which we have derived a
novel surround-aware contrast sensitivity function. Our work sig-
nificantly updates existing old datasets (which involved only three
users and very different viewing conditions [RC73]), and previ-
ous attempts to characterize the effect of surrounding luminance
(which involved very limited luminance ranges [KK10, BKP14]).
From our full CSF model, we have derived a second, more practi-
cal CSF which can be plugged in many existing HDR applications,
and consistently provides good results across a wide range of such
applications. We have shown examples of video compression, tone
mapping, and prediction of visual differences. Our CSF leads to im-
proved results in images with large luminance contrasts, which is
a direct consequence of the extended luminance and contrast range
covered in our perceptual experiments.
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