
Supplemental Document:
Spatio-Focal Bidirectional Disparity Estimation from a Dual-Pixel Image

Donggun Kim Hyeonjoong Jang Inchul Kim Min H. Kim

KAIST

This supplemental document provides technical details of
the blur kernel experiment, network architecture, datasets,
and training. We also present additional results.

1. Blur Kernel Experiments

For our blur kernel measurements, we use a Canon EOS
5D Mark IV DSLR camera equipped with SIGMA Art
50mm f /1.4 lens, using the widest aperture (i.e., N = 1.4).
To generate point-light patterns, we display white dot pat-
terns with black background on a large LED display (Dell
P4317Q), place the camera 2 m away from the display, and
capture the dot pattern on the display (see Figure 1). In
Figure 2 of the main paper, we show how kernels change
their shape depending on the focus plane depth of a point
source. In this experiment, we fix the depth of the point
source and change the focus depth of the lens instead so that
we can avoid the source-camera registration problem. Note
that changing the depth of a source is virtually equivalent to
changing the focus position of optics. All dual-pixel images
in the first column of Figure 2 are captured in a dark room
to minimize the effect of ambient illumination. We then
separate the left and right pairs of the dual-pixel images by
Canon’s official software (Digital Photo Professional 4) us-
ing its Dual Pixel RAW Optimizer. We fix the same camera
setup and environment for all captures, then vary the focus
plane depth by controlling the lens’ focus distance. Figure 2
shows the results. Note that we convert three color channels
into a gray channel and tonemap it for better visualization.
The result shows that the blur kernel is isotropic when the
pixels are gathered from all diodes (the second column in
Figure 2), whereas it is split into two reflection-symmetric
anisotropic kernels (the third and fourth columns in Fig-
ure 2) when collected separately. In addition, the reflection-
symmetric kernels get inverted based on the in-focus plane
of depth. This blur kernel experiment shows that our model
in the main paper supports the optical characteristic of dual-
pixel imaging.

Figure 1. Our blur kernel experiment setup. We conduct all the
experiments in a dark room. We display a dot pattern on a large
display and place a DSLR at the right angle in front of the display.

2. Network Details

From the baseline binocular stereo network [6], we use a
single backbone to reduce the number of parameters. The
network takes two images as input and computes the cor-
relation pyramid and context information. Then, from the
generated correlation pyramid and context information, it
performs an iterative update of disparity using a gated re-
current unit (GRU). For all experiments, we use 22 GRU
update iterations for training and 32 GRU update iterations
for testing. And to handle the large blurriness in dual-
pixel images, we enlarge the correspondence search range
that can enough cover the blurriness. The correspondence
search range is enlarged by increasing the correlation pyra-
mid level and lookup range of correlation. In particular,
a correlation pyramid level of 5 and a lookup range of 8,
where the original backbone uses 4 and 4, respectively.

3. Dataset Details

SceneFlow [8]. This dataset is used in the pretraining stage
of our method. It provides synthetic stereo image pairs with
corresponding ground truth disparity. We use 31,100 image
pairs from the train splits of the two finalpass datasets of the
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Figure 2. We show our experiment data from our Canon DSLR
measurement. The bar on the left shows the camera and display’s
position. The blue and red colors mean positive and negative dis-
parities, respectively. The captured circle of confusions (CoCs)
with varying focus planes are displayed in the first column, and
each of the focus-plane positions is marked on the bar. We vary
focus plane depths by moving the focal element of the lens. We
then collect values on the scan lines at each half-height of the ker-
nels and plot them on the fifth column. The fifth column presents
that the left and right CoCs shown in the third and fourth columns
are anisotropic and reflection-symmetric, and their sum is equiv-
alent to that of the center where its CoC is isotropic (the second
column). Note that based on the in-focus depth (third row), the
direction of reflection-symmetry changes, which indicates that the
CoC is bidirectional, and so is the disparity in turn.

FlyingThings scene and the Monkaa scene. The size of the
image and the ground-truth disparity is 960× 540.

Sintel Stereo [3]. This dataset is used in the pretraining
stage of our method. It provides 1,100 synthetic stereo im-
age pairs with the corresponding ground-truth disparity for
each cleanpass and finalpass dataset. The size of the origi-
nal image and ground-truth disparity is 1024× 436.

Falling Things [17]. This dataset is used in the pretraining
stage of our method. It provides 61,500 synthetic stereo im-
age pairs with corresponding ground truth disparity. The
size of the original image and ground-truth disparity is
960× 540.

Tartan Air [19]. This dataset is used in the pretraining
stage of our method. It provides 306,600 synthetic stereo
image pairs with corresponding ground truth disparity. The
size of the original image and ground truth disparity is 640×
480.

Aubolaim et al. [1]. This dataset is used in our self-
supervised learning. Originally this dataset is created for
deblurring, containing 350 training dual-pixel image pairs,
including blurry and corresponding clean images. We only
use the blurred image to train and test our method. The size
of the original image is 1680× 1120, and we use half of the
size as input for training, and testing with the original size,
removing some border pixels following the Punnappurath et
al. [12].

Punnappurath et al. [12]. This dataset is only used in
our testing. It provides 100 dual-pixel left and right image
pairs with corresponding ground-truth inverse depth. The
ground-truth inverse depth is estimated by a depth-from-
defocus method using commercial software (HeliconSoft).
In this dataset, there are 10 scenes, and each scene has 10
different focus plane depths, resulting in 100 images in to-
tal. The size of the original image and its ground truth in-
verse depth is 5180 × 2940. For testing, we use half of the
size of an image and remove some border pixels following
the original paper’s procedure [12].

4. Training Details

We implement our method using PyTorch [11]. We train
each stage with different schemes. In the pretraining stage,
we perform training for 40,000 iterations with a batch size
of 40. Same as baseline method [6], we use one cycle learn-
ing rate scheduling policy [13] with a peak learning rate of
1.0e−4 and optimize using the AdamW optimizer [7]. We
use a mixture of multiple synthetic stereo datasets, Scene-
Flow [8], Sintel stereo [3], Falling Things [17], and Tartan
Air [19]. These stereo datasets provide left and right binoc-
ular stereo images along with corresponding unidirectional
disparity maps. For those having blur information, we in-
clude blurry data (named final pass) to learn blurred dual-
pixel images. For the random crop augmentation, we use a
crop size of 640× 348.

In the second stage, our self-supervised learning, we
train our model for 1,500 iterations with a batch size of 8.
The learning rate scheduling policy and optimizer remain
the same as the first step, but with a reduced peak learning
rate of 1.0e−5. Since the second stage is self-supervised, we
only need dual-pixel left and right image pairs for training.
We use DSLR dual-pixel images from Abuolaim et al. [1].
Note that this dataset includes enough coverage of large de-
focus blur for the typical dual-pixel using scenario, which
enables the robustness of our method with blurry input. For
all of these images, we use the 1/2 size of the images from
the raw dataset. In this step, we crop the input image to
have 800 × 512. For testing, the input image is bilinearly
resized to a width of 640, and the output disparity is resized
and scaled to fit the input image.
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Table 1. Quantitative evaluation result of our method trained with
and without occlusion mask in the photometric loss. The same
evaluation metrics presented in the main paper are used. We do
not observe clear improvement even with an occlusion mask.

AI(1)↓ AI(2)↓ 1− |ρs|↓
Ours, w/o occlusion mask 0.0391 0.0682 0.2619
Ours, occlusion mask [20] 0.0391 0.0681 0.2620
Ours, occlusion mask [16] 0.0391 0.0681 0.2621

5. Creating Synthetic Dual-pixel image
Before developing the proposed self-supervised learning
approach, we exploit the potential of supervised learning by
evaluating two possible ways to create a dual-pixel dataset.
First, any RGB-D dataset can be used to create a dual-pixel
dataset [2]. Naïve shifting of depth layers lacks the blur
effects; also, artificial blurring without camera information
is not physically faithful. Second, we can create synthetic
dual-pixel rendering images by modifying the center of pro-
jection. It requires a custom camera model that simulates
light transport with respect to lens and dual-pixel on top of
a conventional path-tracing light simulation. In this way,
we create a synthetic dual-pixel image shown in Figure 1
of the main paper. However, this is an arduous task to do.
Therefore, we have decided to use a self-supervised learn-
ing approach rather than generating the supervised dual-
pixel dataset with this laborious approach.
Main paper Figure 1. We generate the dual-pixel im-
age using the dual-pixel light transport path tracing method
mentioned above. We start from the micro-lens array-based
light field camera model [4]. Note that a dual-pixel im-
age can be considered as a two-sampled light field cam-
era [10,18], since split pixels under micro-lens is equivalent
to separating the aperture in a micro-lens array-based light
field camera [9]. Based on this, we first render the light field
with 2N × 2N sub-aperture images by properly modifying
each sub-aperture image’s center of projection. Then, by
accumulating each half (2N × N ) of the sub-aperture im-
ages [14], we obtain the corresponding left/right dual-pixel
image. We perform this process with Blender’s Cycles path
tracer with python script where N = 8.

6. Occlusion Mask in Photometric Loss
It is a common practice to use an occlusion mask in the
learning-based stereo and optical flow methods [5, 15, 16,
20]. However, we observe that the occlusion mask shows
an insignificant effect on the dual-pixel disparity estimation,
since the edges are blurred if it has disparity, and the hor-
izontal shift is much smaller compared with the traditional
binocular stereo case. Figure 3 shows the occlusion mask
estimation examples on traditional binocular stereo images
and dual-pixel images. We show two occlusion mask es-
timation methods: range map [20] and forward-backward
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Figure 3. Occlusion mask estimation on binocular stereo and
dual-pixel. We show two occlusion mask estimation methods:
range map [20] and forward-backward consistency check [16].
(a) Binocular stereo image from SceneFlow dataset [8]. We show
the ground truth disparity, and the occlusion mask is estimated
from it. (b) Dual-pixel image from Punnappurath et al. [12]. The
disparity is estimated by our method, and its occlusion mask is es-
timated from our disparity. Unlike the binocular stereo, the mask
has nearly no occlusions, so excluding it does not affect our dis-
parity estimation.

consistency check [16]. As shown in Figure 3, there are
a significant amount of occluded pixels in the binocular
stereo pair, whereas nearly no occluded pixels are observed
in the dual-pixel setup. We also show this quantitatively
in Table 1, as the occlusion mask shows no impact on our
method. For this reason, we do not include the occlusion
mask estimation in photometric loss to simplify the learn-
ing process.

7. Additional Bidirectional Results

Figures 4 and 5 show additional bidirectional disparity es-
timation results. We compare our method with the oth-
ers: Wadhwa et al. [18] and Punnappurath et al. [12]. The
results show that our method successfully estimate bidirec-
tional disparities with dual-pixel images.

8. Additional Unidirectional Results

Figures 6 and 7 show additional inverse depth estimation
results. We compare our method with the others: Wad-
hwa et al. [18], Punnappurath et al. [12], and Pan et al. [10].
Our method is consistent at homogeneous depth regions
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Figure 4. Additional bidirectional disparity estimation results with varying focus plane depth on multiple scenes. In our setup, the
bidirectional disparity’s sign is positive if its direction is from left to right (color-coded with blue), and negative the other way around (red).
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Figure 5. Additional bidirectional disparity estimation results with varying focus plane depth on multiple scenes.

5



GT
W

ad
hw

a e
t a

l.
Pu

nn
ap

pu
ra

th
 et

 a
l.

Pa
n 

et
 a

l.
Ou

rs

Far

Near

Far

Near

Far

Near

Figure 6. Additional inverse depth estimation results on different scenes.
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Figure 7. Additional inverse depth estimation results on moving focus plane depth. Also, even when the focus plane changes (from left to
right columns), our method shows consistent disparity outputs.

and shows better edge quality. Also, even the focus plane
changes (see Figure 7 from left to right columns), our
method shows consistent disparity outputs.

9. Results on Google Pixel dataset

As mentioned in the Discussion section in the main pa-
per, different from the DSLR dataset, the image blur ker-
nels in the Google Pixel smartphone dataset [21] do not
hold the reflection symmetry. Even though the reflection
symmetry does not hold, which is the key observation of
our method, we compare the depth estimation accuracy of
our method on the Google Pixel smartphone dataset with
other methods [10,12,18,21]. When the optical aberrations
in the dataset are not corrected by calibration, our method

outperforms the other methods tested with the uncalibrated
dataset. On the other hand, it is not surprising that when a
physically-based optical calibration is applied to the dataset,
Xin et al. [21] shows the highest performance. See Table 2
for the result.

Table 2. Unidirectional depth evaluation results on the Google
Pixel smartphone dataset. The same metrics are used as those in
the main paper Table 2. The lower, the better.

Calibration Method AI(1)↓ AI(2)↓ 1−|ρs|↓

Uncalibrated

Wadhwa et al. [18] 0.1304 0.1694 0.5366
Punnappurath et al. [12] 0.1437 0.1869 0.6359
Pan et al. [10] 0.1358 0.1825 0.6186
Ours 0.1246 0.1586 0.4688

Calibrated Xin et al. [21] 0.0488 0.0773 0.1189
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