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1. Hierarchical Nonlinear Optimization

Estimating two unknowns, normal and albedo, from re-
flected irradiance is a severely ill-posed problem in shape-
from-shading (SfS) methods [4, |5]. In order to solve the
nonlinear optimization problem of inverse rendering we for-
mulate a total energy function (Equation (3) in the main pa-
per) that seeks optimal depth and albedo x = {D,a} using
the Gauss-Newton optimization [3]] as follows:
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where 7, (x) is a residual function of each energy term, and
M is the total number of our energy term computed for each
valid pixel. Note that given depth value D at pixel (i, j), we
can calculate a 3D point p in the world space as follows:

where f., fy, and c,, c, are horizontal/vertical parameters
of the focal length and the principal point of the depth cam-
era, respectively. An unnormalized normal vector n’ can be
drived from the cross product of the horizontal/vertical par-
tial derivatives n’ (7, j)=(p(¢,j — 1) — p(i, 5+ 1)) x (p(i —
1,7) — p(i + 1,4)). Finally, we compute a unit normal
n(i,j) = |I2:8;§H from the normal vector n’.

This energy function can be written in the matrix form
as:

T
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where F(x) = [r1(x),- - ,7a(x)]T. The optimal solution
X can be obtained as follows:

% = argmin ||F(x)[|?. “)

We can approximate the vector field F(x) around xg41 us-
ing the first order of Taylor expansion:

F(xg+1) = F(xp) + J(xp)Axg, ®)
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where J is the Jacobian matrix of the residuals, and Axg =
Xg41 — Xg. Substituting F(x) in Equation (@) with in the
optimization problem with Equation (3)), the Taylor expan-
sion, our final optimization becomes a linear least-squares
problem.

AXp = argmin ||F(xg) + J(Xﬁ)AXﬁHQ (6)
Ax

Optimal AXg can be calculated by solving the following
linear system:

J(xp)" I (x5)A%5 = —J(x3)"F(xp). (7)

Since this linear system is very large, it needs to be solved
by an iterative method. We implement a GPU-friendly ver-
sion of the preconditioned conjugate gradient method [3]
with two sparse matrix-vector multiplication kernels [6] for
efficiently solving of the system.

2. Normal/Albedo Blending

Once we know the spatially-varying warp function W?,
we are ready to blend normals N'* and albedos A with the
transferred normals N and albedos A? at the current frame
t to the canonical texture space N* and A, respectively. For
each texel of a 3D point p in the canonical space of TSDFs,
we evaluate the spatial resolution and registration certainty
of each image pixel by computing blending weights follow-
ing the current methods [2} (1] as follows:

o U p)NY(p) + ¢(p)Nt(1)
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P/= Ut=1(p) + ¥ (p) ’

where 1 is a pixel that corresponds to point p via the warp-
ing function W at the current frame ¢. In addition, weight ¥
is the accumulated weight for normal/albedo blending at
the current frame: W' (p) = min(¥*1(p) + ¥(p), Ymax)s



where ¥,y 1s a predefined parameter that controls the upper
bound of the blending weight, ¢)(p) is the blending weight
for a given camera pose. The current blending weight ¥ (p)
can be computed by accounting for the area size, the camera
angle, and occlusion:

¢(p) = '(/)area(p) : ¢ang]e(p) ' wocc (p)7 9

following the weight formulae defined in [2].
We compute the area 1y, and the angle weight 1) as:

Yarea(P) = exp(—((1 — ( > )"n-0)/0uea)”), (10)

wangle(p) = eXp(—((l —n- 0)/Uangle)2)7

where z is the depth value of the p, zpi, is the minimum
depth of the reconstructed scene, o = (p — ¢)/||p — c|| is
the camera view VECtOr, Tarea and oangle are hyperparameters
that controls the smoothness of Gaussian weights, they are
set to 1.0 and 0.5, respectively, and 1), is a soft-occlusion
weight factor, following [2 [1].
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