
NormalFusion: Real-Time Acquisition of Surface Normals
for High-Resolution RGB-D Scanning

Supplemental Document

Hyunho Ha† Joo Ho Lee* Andreas Meuleman† Min H. Kim†

† KAIST * University of Tuebingen

1. Hierarchical Nonlinear Optimization
Estimating two unknowns, normal and albedo, from re-

flected irradiance is a severely ill-posed problem in shape-
from-shading (SfS) methods [4, 5]. In order to solve the
nonlinear optimization problem of inverse rendering we for-
mulate a total energy function (Equation (3) in the main pa-
per) that seeks optimal depth and albedo x = {D̂,a} using
the Gauss-Newton optimization [3] as follows:

E(x) =
∑M

α=1
rα(x)2, (1)

where rα(x) is a residual function of each energy term, and
M is the total number of our energy term computed for each
valid pixel. Note that given depth value D̂ at pixel (i, j), we
can calculate a 3D point p in the world space as follows:

p(i, j) =

[
(i− cx)

fx
,

(j − cy)

fy
, 1

]ᵀ
· D̂(i, j), (2)

where fx, fy , and cx, cy are horizontal/vertical parameters
of the focal length and the principal point of the depth cam-
era, respectively. An unnormalized normal vector n′ can be
drived from the cross product of the horizontal/vertical par-
tial derivatives n′(i, j)=(p(i, j−1)−p(i, j+1))× (p(i−
1, j) − p(i + 1, j)). Finally, we compute a unit normal
n(i, j) = n′(i,j)

||n′(i,j)|| from the normal vector n′.
This energy function can be written in the matrix form

as:
E(x) = ||F(x)||2, (3)

where F(x) = [r1(x), · · · , rM (x)]
ᵀ. The optimal solution

x̃ can be obtained as follows:

x̃ = argmin
x
||F(x)||2. (4)

We can approximate the vector field F(x) around xβ+1 us-
ing the first order of Taylor expansion:

F(xβ+1) ≈ F(xβ) + J(xβ)∆xβ , (5)

where J is the Jacobian matrix of the residuals, and ∆xβ =
xβ+1 − xβ . Substituting F(x) in Equation (4) with in the
optimization problem with Equation (5), the Taylor expan-
sion, our final optimization becomes a linear least-squares
problem.

∆x̃β = arg min
∆x

||F(xβ) + J(xβ)∆xβ ||2 (6)

Optimal ∆x̃β can be calculated by solving the following
linear system:

J(xβ)TJ(xβ)∆x̃β = −J(xβ)TF(xβ). (7)

Since this linear system is very large, it needs to be solved
by an iterative method. We implement a GPU-friendly ver-
sion of the preconditioned conjugate gradient method [3]
with two sparse matrix-vector multiplication kernels [6] for
efficiently solving of the system.

2. Normal/Albedo Blending
Once we know the spatially-varying warp function Wt,

we are ready to blend normals N̂ t and albedos Ât with the
transferred normals Ṅ t and albedos Ȧt at the current frame
t to the canonical texture space N̄ t and Āt, respectively. For
each texel of a 3D point p in the canonical space of TSDFs,
we evaluate the spatial resolution and registration certainty
of each image pixel by computing blending weights follow-
ing the current methods [2, 1] as follows:

N̄ t(p) =
Ψt−1(p)Ṅ t(p) + ψ(p)N̂ t(ũ)

Ψt−1(p) + ψ(p)
,

Āt(p) =
Ψt−1(p)Ȧt(p) + ψ(p)Ât(ũ)

Ψt−1(p) + ψ(p)
,

(8)

where ũ is a pixel that corresponds to point p via the warp-
ing function W at the current frame t. In addition, weight Ψ
is the accumulated weight for normal/albedo blending at
the current frame: Ψt(p) = min(Ψt−1(p) + ψ(p), ψmax),

1

where ψmax is a predefined parameter that controls the upper
bound of the blending weight, ψ(p) is the blending weight
for a given camera pose. The current blending weight ψ(p)
can be computed by accounting for the area size, the camera
angle, and occlusion:

ψ(p) = ψarea(p) · ψangle(p) · ψocc(p), (9)

following the weight formulae defined in [2].
We compute the area ψarea and the angle weight ψangle as:

ψarea(p) = exp(−((1− (
zmin

z
)2n · o)/σarea)

2),

ψangle(p) = exp(−((1− n · o)/σangle)
2),

(10)

where z is the depth value of the p, zmin is the minimum
depth of the reconstructed scene, o = (p− c)/||p− c|| is
the camera view vector, σarea and σangle are hyperparameters
that controls the smoothness of Gaussian weights, they are
set to 1.0 and 0.5, respectively, and ψocc is a soft-occlusion
weight factor, following [2, 1].

References
[1] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Co-

hen. Unstructured lumigraph rendering. In Proceedings of the
28th Annual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH ’01, pages 425–432, 2001.

[2] Joo Ho Lee, Hyunho Ha, Yue Dong, Xin Tong, and Min H
Kim. Texturefusion: High-quality texture acquisition for real-
time rgb-d scanning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1272–1280, 2020.

[3] Daniel Weber, Jan Bender, Markus Schnoes, André Stork, and
Dieter Fellner. Efficient gpu data structures and methods to
solve sparse linear systems in dynamics applications. In Com-
puter Graphics Forum, volume 32, pages 16–26. Wiley Online
Library, 2013.

[4] Chenglei Wu, Michael Zollhöfer, Matthias Nießner, Marc
Stamminger, Shahram Izadi, and Christian Theobalt. Real-
time shading-based refinement for consumer depth cameras.
ACM Transactions on Graphics (ToG), 33(6):1–10, 2014.

[5] Michael Zollhöfer, Angela Dai, Matthias Innmann, Chen-
glei Wu, Marc Stamminger, Christian Theobalt, and Matthias
Nießner. Shading-based refinement on volumetric signed
distance functions. ACM Transactions on Graphics (TOG),
34(4):1–14, 2015.

[6] Michael Zollhöfer, Matthias Nießner, Shahram Izadi,
Christoph Rehmann, Christopher Zach, Matthew Fisher,
Chenglei Wu, Andrew Fitzgibbon, Charles Loop, Christian
Theobalt, et al. Real-time non-rigid reconstruction using
an rgb-d camera. ACM Transactions on Graphics (ToG),
33(4):1–12, 2014.

2

