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1. Inter-scale Bilateral Upsampling Formula-
tion

In addition to Section 3.2.1 in the main paper, we de-
scribe in more details the upsampling process. First, we
define the inter-scale bilateral weights as follows:
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where σI is the edge preservation parameter as mentioned in
the main paper. We use those weights to smooth the higher
resolution image in an edge aware manner:
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where w↑
l are the scale blending weights defined in Sec-

tion 3.2.1 in the main paper. N ↑
x,y are the direct neighbor

pixels of (x/2, y/2). Note that there can be four, six or
nine direct neighbors depending on the sampling location,
as Figure 4 in the main paper shows. Our algorithm outputs
the smoothed image Ĩ0.

2. Camera Selection with a Different Camera
Rig

Figure 1 shows the selected camera with a perfect pla-
nar rig. As expected, this layouts leads to a vertically sym-
metrical camera selection, as opposed to our real setup in
Figure 3 of the main paper.

3. Filter Kernel and Smoothness

Figure 5 in the main paper shows the impact of the edge
preservation parameter σI . Figure 2 shows additional filter-
ing examples with different smoothness parameters σs. As
expected, higher smoothness propagates more aggressively.

Back camera (c1)Left camera (c2) Right camera (c3)

Figure 1: Selected camera for each pixel in c0 with a perfect
planar rig as our test dataset.
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Figure 2: Filter shape and results with different smoothness
parameters.

4. Additional Comparisons

4.1. Impact of directional inpainting

When replacing the naı̈ve diffusion kernel [3] by the di-
rected version, the >0.1 bad pixel ratio and RMSE of the
inpainted areas fall from 23.98 % and 0.123 m-1 to 14.03 %
and 0.089 m-1, showing that our directional inpainting is
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significantly more reliable. This method brings the error
in the inpainted version comparable to error in the overall
distance map (12.51 % and 0.079 m-1).

4.2. Number of distance candidates

Table 1 shows that, thanks to a stable cost volume and
sub-candidate interpolation, only a small number of candi-
dates allows for good accuracy on our dataset.
#candidates 8 16 24 32 40 48
>0.1 bad pixel ratio (%) 17.90 12.75 12.52 12.51 12.49 12.47
1/distance RMSE (m-1) 0.093 0.079 0.080 0.079 0.080 0.080
Runtime on Xavier board (ms) 15 21 28 34 40 46

Table 1: Impact of the number of distance candidates.

4.3. Robustness

To evaluate the depth estimation’s robustness, we insert
Gaussian noise of standard deviation 0.02 to our synthetic
dataset. Table 2 shows that our method is barely affected
while some other are. In particular, SweepNet [5] and Lin
et al. [2], due to their weaker cost aggregation, are highly
impacted by non-ideal capture conditions. Figure 7 shows
the results on an example scene from our dataset, and can
be compared with non noisy inputs in Figure 8.

4.4. Real Camera Layouts

In the main paper, we ran comparisons with a planar
camera rig to follow the configuration of the other works
and allow for fair comparison. We additionally rendered our
dataset with our real camera rig positions. Table 3 shows
that a vertical and horizontal camera rig seems to grant no-
ticeable improvement to all other methods. It it worth not-
ing that CrownConv [1] improved significantly more than
OmniMVS [4]. This can be explained by its greater capa-
bilities to adapt to different camera rigs.

4.5. Qualitative Comparison

Figures 3, 4, 5, 6 show the real scenes from the main pa-
per in full resolution with comparison against Other depth
from fisheye images methods. We run SweepNet and Omn-
iMVS at 1024× 512 px due to memory requirements.

4.6. Real-Time Prototype Demo

Refer to the supplemental video for real-time prototype
demo.

∗ CrownConv inference runs with a fixed number of vertices (10242).
† no reference implementation is provided.
‡ part of the method runs on CPU.

Inverse distance (% | m-1) Panorama Runtime
>0.1 >0.4 MAE RMSE PSNR SSIM (ms)

CrownConv∗ [1] 57.34 4.45 0.149 0.194 33.77 0.953 5.2·102

OmniMVS† [4] 43.31 7.83 0.144 0.219 34.60 0.955 1.3·103

Sweepnet‡ [5] 53.15 6.80 0.161 0.255 32.94 0.948 1.0·105

Lin et al.† [2] 39.96 12.36 0.168 0.277 35.21 0.963 2.5·103

Ours 22.66 0.69 0.073 0.102 37.06 0.979 2.8·100

Table 2: Comparison of our spherical RGB-D results
against other methods on our rendered dataset with addi-
tive Gaussian noise. All methods are run on our desktop
test system and output a 1024×512 px distance map.

Inverse distance (% | m-1) Panorama Runtime
>0.1 >0.4 MAE RMSE PSNR SSIM (ms)

CrownConv∗ [1] 27.11 1.98 0.086 0.121 37.31 0.988 5.2·102

OmniMVS† [4] 28.72 4.83 0.101 0.165 36.99 0.986 1.3·103

Sweepnet‡ [5] 29.61 2.85 0.088 0.125 35.20 0.980 1.0·105

Lin et al.† [2] 33.44 5.69 0.130 0.304 36.05 0.980 2.5·103

Ours 14.35 0.25 0.052 0.076 37.75 0.989 2.8·100

Table 3: Comparison of our spherical RGB-D results
against other methods on our rendered dataset following our
camera positions. Note that our method reproject at the cen-
ter of the camera rig instead of at the center of the two refer-
ence cameras to compare fairly against the other methods.
This harms the quality of our stitched panorama.
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Figure 3: Results on real scene.
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Figure 4: Results on real scene.
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Figure 5: Results on real scene.
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Figure 6: Results on real scene.
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Figure 7: Results on our noisy synthetic dataset.
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Figure 8: Results on synthetic dataset without noise.

8



References
[1] Ren Komatsu, Hiromitsu Fujii, Yusuke Tamura, Atsushi Ya-

mashita, and Hajime Asama. 360◦ depth estimation from
multiple fisheye images with origami crown representation of
icosahedron. In IROS, 2020. 2

[2] Hong-Shiang Lin, Chao-Chin Chang, Hsu-Yu Chang, Yung-
Yu Chuang, Tzong-Li Lin, and Ming Ouhyoung. A low-cost
portable polycamera for stereoscopic 360◦ imaging. IEEE
Transactions on Circuits and Systems for Video Technology,
2018. 2

[3] Manuel Oliveira, Brian Bowen, Richard McKenna, and Yu-
Sung Chang. Fast digital image inpainting. VIIP, pages 261–
266, 01 2001. 1

[4] Changhee Won, Jongbin Ryu, and Jongwoo Lim. OmniMVS:
End-to-end learning for omnidirectional stereo matching. In
ICCV, 2019. 2

[5] Changhee Won, Jongbin Ryu, and Jongwoo Lim. SweepNet:
Wide-baseline omnidirectional depth estimation. In ICRA,
2019. 2

9


