TextureFusion
High-quality Texture Acquisition for Real-time RGB-D Scanning

CVPR 2020 Oral

Joo Ho Lee† Ha Hyunho† Yue Dong§ Xin Tong§ Min H. Kim†

† KAIST § MSRA
High-quality texture acquisition for real-time RGB-D scanning

Voxel representation

TextureFusion (ours)
Per-voxel color representation

Color per voxel*

Higher resolution → lower performance

Blurriness of texture

Traditional texture mapping

• Two-fold reconstruction process

• Global optimization of multiple views

• **Real-time computation impossible!**

Patchmatch based optimization
[Bi et al. 2017]

Color optimization
[Zhou and Koltun 2014]
Key insight

• Keep 2D topology of texture without meshing in REAL-TIME!
Tile-based texture data structure

```
struct texel {
    uchar color[3];
    uchar weight;
}
```
Real-time texture integration framework

Input

Depth map D_t Image I_t

Previous

Geometry S_{t-1} Texture Q_{t-1}

Frame integration

Current

Geometry S_t Texture Q_t
Real-time texture integration framework

S_{t-1}

Q_{t-1}
Real-time texture integration framework

Previous

geometry S_{t-1}

texture Q_{t-1}

Depthmap D_t

Surface integration

Current

geometry S_t
Real-time texture integration framework

Previous

geometry S_{t-1}

texture Q_{t-1}

Depthmap D_t

Surface integration

Current

geometry S_t

Not valid
Real-time texture integration framework

Surface integration

Geometric correspondence

Texture transfer

Depthmap D_t

Previous

geometry S_{t-1}
texture Q_{t-1}

Current

geometry S_t
texture Q_t
Real-time texture integration framework

- Previous
 - Geometry S_{t-1}
 - Texture Q_{t-1}

- Current
 - Geometry S_t
 - Texture Q_t

- Depthmap D_t
- Surface integration
- Geometric correspondence
- Texture transfer
- Texture transfer \tilde{Q}_t
- Valid
Texture-image misalignment

- Camera pose estimation using the geometric information
- Not guarantee the photometric consistency of the integrated texture map

Image projection without warp
Texture-image correspondence search

- Estimate a spatially-varying camera motion field

Current pose

New pose

3D surface point

Camera motion grid
Spatially-varying perspective correction

- Maximize the photometric consistency of local 3D surface patches in the current texture map
Hierarchical optimization of motion field

0-level motion estimation

2-level motion grid \(\{ \tau_i^0 \} \)

Initialization

1-level motion estimation

1-level motion grid \(\{ \tau_i^1 \} \)

Initialization

2-level motion estimation

0-level motion grid \(\{ \tau_i^2 \} \)
Real-time texture integration framework

- Previous
 - Geometry S_{t-1}
 - Texture Q_{t-1}
- Depthmap D_t
- Surface integration
- Texture transfer
- Current
 - Geometry S_t
 - Texture Q_t
- Image I_t
- Texture warp & integration
Real-time RGB-D scanning with our texture fusion
Conclusions

Texture reconstruction framework

Tile-based texture data structure

Code available: https://github.com/KAIST-VCLAB/texturefusion

Narrated by Mustafa Yaldiz