

CS482: Interactive Computer Graphics

Min H. Kim
KAIST School of Computing

Min H. Kim (KAIST)

CS482: Interactive Computer Graphics

AFFINE TRANSFORMATION

Min H. Kim (KAIST)

CS482: Interactive Computer Graphics

Points vs. vectors

- Vector \vec{v} := motion between points in space
 - lives in a space we call R^3
 - has the structure of a linear/vector space.
 - addition and scalar multiplication have meaning
 - zero vector is no motion
 - cannot really translate motion

Min H. Kim (KAIST)

CS482: Interactive Computer Graphic

3

Points vs. vectors

- Point $\tilde{p}:=$ a position in space
 - lives in a space we might call A^3
 - has the structure of a so-called affine space.
 - addition and scalar multiplication don't make sense
 - zero doesn't make sense
 - subtraction does make sense, gives us a vector

Min H. Kim (KAIST)

CS482: Interactive Computer Graphics

Points and frames

• Subtraction of points:

$$\tilde{p} - \tilde{q} = \vec{v}$$

• Moving a point with a vector:

$$\tilde{q} + \vec{v} = \tilde{p}$$

Basis is three vectors

$$\vec{v} = \sum_{i} c_i \vec{b}_i$$

- How could we present translations?
 - Affine transform (4-by-4 matrix)
 - usage: transformation of objects and camera projection $(3D \rightarrow 2D)$

Min H. Kim (KAIST)

CS482: Interactive Computer Graphic

5

Points and frames

- for affine space we will use a frame
 - start with a chosen origin point \tilde{o}
 - add to it a linear combination combination of vectors using coordinates $\ c_i$ to get to any desired point $\ \tilde{p}$

Min H. Kim (KAIST)

CS482: Interactive Computer Graphics

Affine frame

• Movement of a point (original $\tilde{o} \rightarrow$ a point \tilde{p})

$$\tilde{p} = \tilde{o} + \vec{v}$$
.

$$\tilde{p} = \tilde{o} + \sum_{i} c_{i} \vec{b_{i}} = \begin{bmatrix} \vec{b_{1}} & \vec{b_{2}} & \vec{b_{3}} & \tilde{o} \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ 1 \end{bmatrix}.$$

• Affine frame (made of three vectors and a point): $\tilde{p} = \vec{\mathbf{f}}^t \mathbf{c}$.

point):
$$\tilde{p} = \vec{\mathbf{f}}^t \mathbf{c}$$
.

$$\begin{bmatrix} \vec{b_1} & \vec{b_2} & \vec{b_3} & \tilde{o} \end{bmatrix} = \vec{\mathbf{f}}^t$$

Min H. Kim (KAIST

CS482: Interactive Computer Graphics

Defining an affine matrix

- point is specified with a 4-coordinates vector
 - four numbers
 - last one is always 1

$$\left[\begin{array}{cccc} c_1 & c_2 & c_3 & 1 \end{array}\right]^t$$

- \dots or 0. (and we get a vector)
- let's define an affine matrix as 4-by-4 matrix

$$\begin{bmatrix}
 a & b & c & d \\
 e & f & g & h \\
 i & j & k & l \\
 0 & 0 & 0 & 1
\end{bmatrix}$$

we are transforming a point to another with an affine frame:

 $\tilde{p} = \vec{\mathbf{f}}^t \mathbf{c}$.

Min H. Kim (KAIST)

CS482: Interactive Computer Graphics

Transforming a point

· affine transform

$$\left[\begin{array}{ccc} \overrightarrow{b_1} & \overrightarrow{b_2} & \overrightarrow{b_3} & \widetilde{o} \end{array}\right] \left[\begin{array}{c} c_1 \\ c_2 \\ c_3 \\ 1 \end{array}\right] \Rightarrow$$

Min H. Kim (KAIST

CS482: Interactive Computer Graphic

Transforming a point

for short

$$\tilde{p} = \vec{\mathbf{f}}^t \mathbf{c} \Longrightarrow \vec{\mathbf{f}}^t A \mathbf{c}$$
. where $\begin{bmatrix} \vec{b_1} & \vec{b_2} & \vec{b_3} & \tilde{o} \end{bmatrix} = \vec{\mathbf{f}}^t$

 transforming coordinate vectors (4 with a one as the fourth entry)

$$\begin{bmatrix} c'_1 \\ c'_2 \\ c'_3 \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ 1 \end{bmatrix}.$$

Min H. Kim (KAIST)

CS482: Interactive Computer Graphic

transforming a point

• Alternatively, transforming the basis vectors

$$\left[\begin{array}{cccc} \overrightarrow{b_{1}'} & \overrightarrow{b_{2}'} & \overrightarrow{b_{3}'} & \overrightarrow{o}' \end{array}\right] = \left[\begin{array}{cccc} \overrightarrow{b_{1}} & \overrightarrow{b_{2}} & \overrightarrow{b_{3}} & \overrightarrow{o} \end{array}\right] \left[\begin{array}{cccc} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ 0 & 0 & 0 & 1 \end{array}\right].$$

• This transformation is to apply the affine

transform to a frame as
$$\begin{bmatrix} \vec{b_1} & \vec{b_2} & \vec{b_3} & \tilde{o} \end{bmatrix} \Rightarrow \begin{bmatrix} \vec{b_1} & \vec{b_2} & \vec{b_3} & \tilde{o} \end{bmatrix} \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Linear transformation

• 3-by-3 transform matrix → 4-by-4 affine transform

$$\left[\begin{array}{ccc} \overrightarrow{b_1} & \overrightarrow{b_2} & \overrightarrow{b_3} & \widetilde{o} \end{array}\right] \left[\begin{array}{c} c_1 \\ c_2 \\ c_3 \\ 1 \end{array}\right] \Rightarrow$$

$$\left[\begin{array}{cccc} \vec{b_1} & \vec{b_2} & \vec{b_3} & \tilde{o} \end{array}\right] \left[\begin{array}{cccc} a & b & c & 0 \\ e & f & g & 0 \\ i & j & k & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \left.\begin{array}{c} c_1 \\ c_2 \\ c_3 \\ 1 \end{array}\right].$$

Min H Kim (KAIST)

CS482: Interactive Computer Graphics

Linear transformation

• affine transformation:

$$L = \left[\begin{array}{cc} l & 0 \\ 0 & 1 \end{array} \right]$$

where, L is a 4-by-4 matrix; I is a 3-by-3 matrix.

 A linear transform is applied to a point. This is accomplished by applying the linear transform to its offset vector.

Min H. Kim (KAIST)

S482: Interactive Computer Graphic

Translation transform

• translation transformation to points

ranslation transformation
$$\left[\begin{array}{ccc} \vec{b_1} & \vec{b_2} & \vec{b_3} & \tilde{o} \end{array}\right] \left[\begin{array}{c} c_1 \\ c_2 \\ c_3 \\ 1 \end{array}\right]$$

$$\Rightarrow \left[\begin{array}{cccc} \overrightarrow{b_1} & \overrightarrow{b_2} & \overrightarrow{b_3} & \widetilde{o} \end{array} \right] \left[\begin{array}{cccc} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{array} \right] \left[\begin{array}{c} c_1 \\ c_2 \\ c_3 \\ 1 \end{array} \right].$$

Min H. Kim (KAIST)

CS482: Interactive Computer Graphics

Translation transform

• translation transformation to points

$$c_1 \Longrightarrow c_1 + t_x$$

$$c_2 \Longrightarrow c_2 + t_y$$

$$c_3 \Longrightarrow c_3 + t_z$$

• translation matrix

$$T = \left[\begin{array}{cc} \mathbf{i} & \mathbf{t} \\ 0 & 1 \end{array} \right]$$

• where, T is a 4-by-4 matrix; i is a 3-by-3 identity matrix, t is 3-by-1 matrix for translation.

Min H. Kim (KAIST)

CS482: Interactive Computer Graphics

15

Affine transform matrix

 An affine matrix can be factored into a linear part and a translational part:

$$\begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & d \\ 0 & 1 & 0 & h \\ 0 & 0 & 1 & l \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c & 0 \\ e & f & g & 0 \\ i & j & k & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

$$\begin{bmatrix} l & t \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} i & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} l & 0 \\ 0 & 1 \end{bmatrix} \qquad A = TL$$

Min H. Kim (KAIST)

CS482: Interactive Computer Graphic

Affine transform matrix

• NB as matrix multiplication is not commutative, the order of the multiplication *TL* matters!!!

$$TL \neq LT$$

Since these matrices have the same size (4-by-4), it is difficult to debug when you messed up the order. Pay extra attention on it while you are coding...

Min H. Kim (KAIST)

CS482: Interactive Computer Graphics

17

Rigid body transformation

 When the linear transform is a rotation, we call this as rigid body transformation (rotation + translation only).

$$A = TR$$

- A rigid body transformation preserves dot product between vectors, handedness of a basis, and distance between points.
- Its geometric topology is maintained while transforming it.

Min H. Kim (KAIST)

CS482: Interactive Computer Graphics

Affine transform acting on vector

- If fourth coordinate of **c** is zero, this just transforms a vector to a vector.
 - note that the fourth column is irrelevant
 - a vector cannot be translated

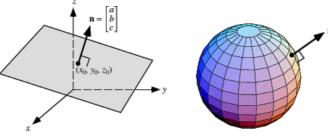
Min H. Kim (KAIST)

CS482: Interactive Computer Graphic

10

Normals

- Normal: a vector that is orthogonal to the tangent plane of the surfaces at that point.
 - the tangent plane is a plane of vectors that are defined by subtracting (infinitesimally) nearby surface points: $\vec{n} \cdot (\tilde{p}_1 \tilde{p}_2) = 0$



Min H. Kim (KAIST)

CS482: Interactive Computer Graphics

Normals

- We use normals for shading
- how do they transform
- suppose *i* rotate forward
 - normal gets rotated forward
- suppose squash in the y direction

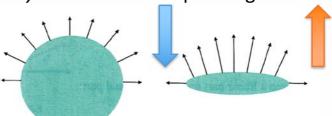
Min H. Kim (KAIST)

CS482: Interactive Computer Graphic

- -

Changing a shape

• Squashing a sphere makes its normals stretch along the *y* axis instead of squashing.



- normal gets higher in the y direction
- what is the rule?

$$\begin{bmatrix} nx \\ ny \\ nz \end{bmatrix} \neq \begin{bmatrix} nx' \\ ny' \\ nz' \end{bmatrix}.$$

Min H. Kim (KAIST)

CS482: Interactive Computer Graphics

Transforming normals

• Since the normal \vec{n} and very close points \tilde{p}_1 and \tilde{p}_2 are on a surface: $\vec{n} \cdot (\tilde{p}_1 - \tilde{p}_2) = 0$

$$\begin{bmatrix} nx & ny & nz & * \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \\ 1 \end{bmatrix} - \begin{bmatrix} x0 \\ y0 \\ z0 \\ 1 \end{bmatrix} = 0.$$

• After applying an affine transform A,

the normal of the transformed geometry
$$\left(\begin{bmatrix} nx & ny & nz & * \end{bmatrix} A^{-1} \right) \left(A \begin{bmatrix} x1 \\ y1 \\ z1 \\ 1 \end{bmatrix} - \begin{bmatrix} x0 \\ y0 \\ z0 \\ 1 \end{bmatrix} \right) = 0.$$

Min H. Kim (KAIST)

S482: Interactive Computer Graphic

2

Transforming normals

• Transformed normals:

$$\left[\begin{array}{ccc} nx' & ny' & nz' \end{array}\right] = \left[\begin{array}{ccc} nx & ny & nz \end{array}\right] \boldsymbol{l}^{-1}.$$

• Transposing this expression:

$$\begin{bmatrix} nx' \\ ny' \\ nz' \end{bmatrix} = l^{-t} \begin{bmatrix} nx \\ ny \\ nz \end{bmatrix}.$$

Min H. Kim (KAIST)

CS482: Interactive Computer Graphics

Transforming normals

• Remember l is a <u>rotation matrix (orthonormal</u>), thus its inverse transpose is the same as the original: $l^{-t} = l$.

$$LL^{t} = I(L^{t} = L^{-1}), \det L = 1$$

 $\sin\theta \cos\theta$

- inverse transpose
 - so inverse transpose/transpose inverse is the rule
 - for rotation, transpose = inverse
 - for scale, transpose = nothing
 - in the code next week, we will send A and I^{-t} to the vertex shader.

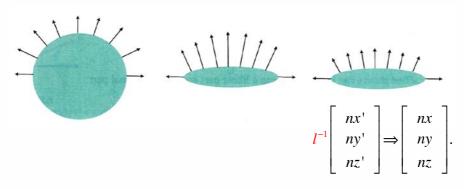
Min H. Kim (KAIST)

CS482: Interactive Computer Graphics

25

Transforming normals

 Renormalize to correct unit normals of squashed shape:



Min H. Kim (KAIST)

CS482: Interactive Computer Graphics