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Points vs. vectors w

* Vector v := motion between points in space

— lives in a space we call R’

— has the structure of a linear/vector space.

— addition and scalar multiplication have meaning
— zero vector is no motion

— cannot really translate motion

Points vs. vectors d”

* Point P :=a position in space
— lives in a space we mightcall A’
— has the structure of a so-called affine space.
— addition and scalar multiplication don’t make sense
— zero doesn’t make sense
— subtraction does make sense, gives us a vector
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Points and frames

* Subtraction of points:

p-G=7v
* Moving a point with a vector:
G+i=p

e Basis is three vectors

V= ZCibi

* How could we present translations?
— Affine transform (4-by-4 matrix)

— usage: transformation of objects and camera projection
(3D - 2D)

Points and frames d”

* for affine space we will use a frame
— start with a chosen origin point o

— add to it a linear combination combination of
vectors using coordinates ¢, to get to any desired

point p
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Affine frame w

* Movement of a point (original 6 = a point )

<
1
|

p=o0+
¢
. - [ = — — c,
p=0+2cl.bl: b, b, b, 0
i Cs
1

* Affine frame (made of three vectors and a
point): p=fc.
bbb oo =T

Defining an affine matrix d”

* point is specified with a 4-coordinates vector
— four numbers
— last one is always 1 [ a & ¢ |l T
—...or 0. (and we get a vector)

* let’s define an affine matrix as 4-by-4 matrix

a b ¢ d
e f g h
i j k1
00 0 1
* we are transforming a point to another with an
affine frame: .
p=fc.
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Transforming a point

e affine transform _ _

- = = c,
[b1b2b3o} =

C3
_1_
_abcd_Cl
- — e [ g h c,
bbb”}
[123(’1]/{103
| 00 0 1 || 1

Transforming a point y

e for short

o = . ri
p=fc=f Ac. where [bl b, b, o}=f

* transforming coordinate vectors (4 with a one as
the fourth entry)

o a b ¢ d C
c, | | e f & h | ¢
N N A Y B S | S
1 |00 o0 1| q

10




transforming a point

a

— — = e
[b', b, b, & }=[b, b, b, 5} ,

O~ - &

* This transformation is to apply the affine
transform to a frame as [ a b

. — e
[bl b, b, 5}:{191 b, b, 5}

S~ =

S = 0 O

i s B

N 4

* Alternatively, transforming the basis vectors

Linear transformation

* 3-by-3 transform matrix 2 4-by-4 affine
transform : <

Cl
— — — _ ¢
[blb2b30} =
C3
1_
bCO_C1
—- - e f g O c,
bbb~}
[1230 i j k0|
| 00 0 1 | 1
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Linear transformation <g

* affine transformation: !0
where, L is a 4-by-4 matrix; | is a 3-by-3 matrix.

* Alinear transform is applied to a point. This is
accomplished by applying the linear transform
to its offset vector.

Translation transform dy

* translation transformation to points

o
— - = c,
[bl b, b30}
C3
_1_
(100 ¢ | ¢ ]
o~ q o100+ | e
:>[blb2b30} ’
0 0 t c,
000 1 || 1
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Translation transform <g

* translation transformation to points
c,=c +1,
c, =, +1,
C; = ¢y +I,

* translation matrix

o]

* where, T is a 4-by-4 matrix; i is a 3-by-3 identity
matrix, t is 3-by-1 matrix for translation.

Affine transform matrix d’{

* An affine matrix can be factored into a linear
part and a translational part:

a b c¢ d 1 0 0 d a b ¢ 0
e f g h | |01 0 h e f g0
i j ok 1 00 1 L ||i j kO
0001 | LOOOLT]Ho0oo0o0 1
[ ¢t | | 1 t [ 0

01| |011] 01 A=TL
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Affine transform matrix w

* NB as matrix multiplication is not commutative,
the order of the multiplication TL matters!!!

TL#LT

* Since these matrices have the same size (4-by-
4), it is difficult to debug when you messed up

the order. Pay extra attention on it while you are
coding...

Rigid body transformation d”

* When the linear transform is a rotation, we call
this as rigid body transformation (rotation +
translation only).

A=T1R

* Arigid body transformation preserves dot

product between vectors, handedness of a
basis, and distance between points.

* |ts geometric topology is maintained while
transforming it.
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Affine transform acting on vectocd

* If fourth coordinate of c is zero, this just
transforms a vector to a vector.
— note that the fourth column is irrelevant
— a vector cannot be translated

Normals y

* Normal: a vector that is orthogonal to the
tangent plane of the surfaces at that point.

— the tangent plane is a plane of vectors that are
defined by subtracting (infinitesimally) nearby

surface points: = / ~ ~ N
n-(p,—p,)=0

N a
n=|b
X
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Normals d”

* We use normals for shading
* how do they transform

* suppose i rotate forward
— normal gets rotated forward
* suppose squash in the y direction

21

Changing a shape d’{

* Squashing a sphere makes its normals stretch
along the y axis instead of squashing.

« Sl

. ﬁ\\\l///H

- —_— e—

ViR g

* normal gets higher in the y direction

* what is the rule? nx nx'
ny |#| ny' |.

!

nzg nzg
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Transforming normals

* Since the normal 7 and very close pointsp, andp,

are on a surface: ii(p,—p,)=0
x1 x0
1 0

[ nx ny nz % } o =0.
z1 Z0

1 1

» After applying an affine transform A,

the normal of the transformed geometry x1
-1 vl

nx ny nz * |[A | A
z1

1

x0

y0

Z0
1

N 4

|
)
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Transforming normals

e Transformed normals:

[ nx' ny' nz' }z[ nx ny nz }l"].

* Transposing this expression:

24
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Transforming normals <g

* Remember /is a rotation matrix (orthonormal),
thus its inverse transpose is the same as the

original: 7t ] [e _sme}

sin@  cosf

LL =1(L'=L"),detL=1

* inverse transpose
— so inverse transpose/transpose inverse is the rule
— for rotation, transpose = inverse
— for scale, transpose = nothing

— in the code next week, we will send A and [t to the
vertex shader.
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Transforming normals d’{

* Renormalize to correct unit normals of squashed
shape:

\\T//

r H\\_\}///

— i -

.—,\\\HM

S il

I ny' |=| ny
nz' nz
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