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Modelling Surround-aware Contrast Sensitivity for HDR Displays
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This supplemental document provides additional technical de-
tails and additional results from the main paper.

1. Experimental Setup

1.1. Display calibration

We found that the luminance of the center region, where the stim-
uli are shown, is affected by the luminance level of the surrounding
area of the display, but not the other way around. We thus assume
that the output luminance Lo of the stimuli follows Lo = c

(
Li,Li

s

)
,

where Li and Li
s are the control signals of the intensity of the stimuli

and the surrounding area, respectively, and c is a calibration func-
tion. The output luminance of the surrounding area Lo

s can be writ-
ten as Lo

s = c
(

Li
s,L

i
s

)
. Using a Specbos Jeti 1200 spectroradiome-

ter, we measured the calibration functions c for all 25 different com-
binations of Li and Li

s, to accurately produce all our combinations
of stimuli luminance and surrounding luminance. The calibration
function we measured is shown in Figure 1.
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Figure 1: The measured calibration function. We measured Lo for
fine levels of Li and the five levels of Li

s.

We measured this function at fine levels of Li and the five lev-
els of Li

s. One notable effect is that the output luminance Lo does
not increase even when the control signal Li is changed in certain
range. The cause is not clear, but it seems to be a limitation of HDR
display technology which expresses extremely wide range of lumi-
nance.

After measuring these calibration functions, we regressed the
five calibration function curves for each Li

s as piecewise linear or
cubic functions, and generated our experiment stimuli by applying
the inverses of calibration functions to get intended luminance.

1.2. Stimuli

Each luminance value denotes the calibrated physical value, where
the value of each pixel I (x,y) can be expressed as:

I (x,y) =
Ls if deg(x,y)> Xo

2
L (1+C cos(360◦ ·ucpp (x+φ))) if deg(x,y)≤ Xo

2 , horizontal
L (1+C cos(360◦ ·ucpp (y+φ))) if deg(x,y)≤ Xo

2 , vertical
,

(1)

where w = 1920 and h = 1080 correspond to the pixel resolution,
wmm is the width of the screen in mm, d = 1250mm is the
distance of the observer, ucpp := u(Xowmm)/(2dw tan(Xo/2))
is the spatial frequency in cycles per pixel, φ denotes
the offset of the sinusoidal pattern, and deg(x,y) :=
tan−1 ((wmm/dw)max(|x−w/2| , |y−h/2|)) denotes the an-
gular position of pixel (x,y). Here, C means a contrast ratio of the
AC component to the DC component.

2. CSF Measurements

2.0.0.1. Horizontal vs. vertical CSF For our CSF measurement,
there are virtually the same trend for horizontal and vertical CSFs
(Figure 2). The geometric mean of the ratio of the horizontal CSF
with respect to the vertical CSF (Figure 3) is about 1.16, so the ver-
tical CSF is slightly higher than horizontal one on average, but the
difference is not significant. Figure 4 shows the averaged CSF of
the horizontal and vertical directions. Figure 5 compares our mea-
sured CSF with Barten’s [Bar03] surround-aware CSF model.

2.1. Discussion

2.1.0.1. Stimuli Patterns Recent works on measuring
CSF [MKRH11, LBLM14, WAK∗20] use Gabor patch which
smoothe the edge of the center area with sinusoidal pattern. The
Gabor patch prevents the participants from detecting the edge
of the center area rather than the sinusoidal pattern itself. The
reason why we separated the center and surrounding areas without
smoothing is that in our experiment smoothing the border between
two areas yields rapid spatial change of luminance such as the case
of L = 0.56cd/m2 and Ls = 1065.25cd/m2. This rapid luminance
change at the intermediate area may effect on our surround-aware
measurement. Thus, to make luminance of the surrounding area
have a uniform luminance level, we did not use smoothing between
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the two areas. Also, all of these works have measured the CSF
at cases of L = Ls. For our experiment, at almost cases there are
edges between the center area and the surrounding area since
L 6= Ls even if the center area has a zero contrast. Then detecting
edges does not disturb detecting the sinusoidal pattern. Thus, even
if we do not use Gabor patch, the effect will not be significant for
surround-aware CSF.

2.1.0.2. Method of adjustment Recent
works [RLN93, MKRH11, WAK∗20] on measuring CSF use
the method of constant stimuli instead of the method of ad-
justment, which we used. For the method of constant stimuli,
participants respond multiple-alternative-choices (mAFCs), such
as "vertical or horizontal" or "uniform or modulated pattern",
for each levels of contrast values. It is known as yielding more
accurate measurement for psychophysical experiment, but requires
several times more time than the method of adjustment. Since we
measure CSF for the four variables, D, u, L, and Ls, using the
method of constant stimuli requires extremely long time. Thus,
our experiment is done by the method of adjustment. To reduce
error of measurement, we hired 13 participants. Compared to
the psychophysical experiment often done with 6 or less partici-
pants [RC73, RLN93, MKRH11], 13 participants is sufficient to
reduce the error.

3. CSF modeling

3.1. Barten’s CSF model

Barten [Bar92] proposed a physical model of contrast sensitivity
taking various parameters into account as following:

So
B (u,L) =

Mopt (u)/k√√√√ 2
T

(
1

X2
o
+ 1

X2
max

+ u2
N2

max

)(
1

ηpE +
Φ0

1−e−(u/u0)
2

) ,
(2)

where Mopt (u) = e−2π
2
σ

2u2
is the optical modulation transfer func-

tion, σ =
√

σ2
0 +(Cabd)2 is the standard deviation of the line-

spread function, d = 5− 3tanh(0.4log10 L) is the pupil diameter

in mm, E = πd2

4 L
(

1− (d/9.7)2− (d/12.4)4
)

is the retinal illumi-
nance level in the Troland unit.

3.2. Modeling Relative Contrast Sensitivity

To model the relative contrast sensitivity R(u,L∗), first we ob-
served behavior of R(u,L∗) at the log-log scale. r denotes the log-
log scale function of R, so that

R
(
u,L∗

)
= 10r(u,l∗), (3)

where L∗ = Ls
L and l∗ = log10 L∗. Then Figure 6, which is consist-

ing of log-log scaled plots of the function R of L∗, shows the trend
of the function r of l∗. We observed r as a function of l∗ and found
two trends. The first one is a concave trend, and the second one is
that r decay more rapidly at l∗→∞ than l∗→−∞.

These trends we observed are related to the derivative dr
dl∗ , so we

constructed a model of dr
dl∗ fisrt and then integrated it. We found

that functions of the form −a
(

x+
√

x2 +d
)
+ b follows those

trends. Here, d should be nonnegative. Appending an offset coeffi-

cient of x, we put dr
dl∗ = −a

(
(l∗+ c)+

√
(l∗+ c)2 +d

)
+ b. By

integrating it and redefining some coefficients for simplicity, we get
the following expression:

r
(
u, l∗;a,b,c,d

)
=−a

(
l∗
)2

+bl∗−a
(
l∗+ c

)√
(l∗+ c)2 +d

−ad ln
(√

(l∗+ c)+d + l∗+ c
)

+a
[
c
√

c2 +d +d ln
(√

c2 +d + c
)]

(4)

where l∗ = log10 L∗. The constant of integration has been deter-
mined by the constraint r (l∗ = 0) = 0.

Now we only have to model u dependency of r. Defining all
parameters a, b, c, and d as functions of the spatial frequency u
would provide the most accurate results, at the risk of overfitting
our measurements. To avoid this overfitting, we first define

b′ := b+2ac, (5)

which represents the partial derivative of r with respect to l∗ so
that b′ = liml∗→−∞

dr
dl∗ (u, l∗). Parameters a, b′, c, and d can be

modeled as functions of spatial frequency u, shown in the left part
of Figure 7. We then model only b′ and c as functions of u, and fit
a and d as constants:

b′ (u;q1,q2,q3) =
q1

1+ eq2(log10 u−q3)
,

c(u; p1, p2) = p1 log10 u+ p2,
(6)

where q1,2,3 and p1,2 are model parameters for b′ and c, respec-
tively. These fitting results of parameters b′ and c are shown in the
top-right and bottom-right plots in Figure 7, respectively.

The parametric function model for relative contrast sensitivity
should have the following constraints to maintain its trend and to
be defined on any real numbers:

a≥ 0 and d ≥ 0. (7)

Note that as long as these constraints hold the trends of the model r,
such as concavity and asymptotic behavior, does not change so that
we can use this model to fit to our data. Figures 6 is the complete
version of Figure 4 in the main paper.

As shown in Figure 6, our relative sensitivity R(u,L∗) as a func-
tion of the ratio between surround luminance Ls and stimulus lu-
minance L. From left to right (increasing spatial frequency u), it
can be seen how the slope flattens for negative values of L∗. The
plots on the bottom line shows our practical relative sensitivity
Rp(L∗), which does not depend on u. However, from regression,
we obtained a negative b′ = −0.020 value for the highest level of
u=20.16 cpd., which yields a property that r (x) has negative slopes
at x < 0 (L∗ < 1). This property highly contradicts the crispening
effect [Whi86] that the luminance resolving power of human eyes
is maximized when the adaptation luminance level is close to the
target luminance. If b′ is negative, our CSF formulae becomes the
infinite sensitivity when Ls is zero, which does not make a sense.
Also, the estimated negative value of b′ (u = 20.16cpd.) =−0.020
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Figure 2: Our surrounded CSF measurement in the horizontal direction. The length of one side of the error bar indicates one standard
deviation of participants’ responses.
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Figure 3: Our surrounded CSF measurement in the vertical direction.
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Figure 4: Our surrounded CSF measurement averaged in both horizontal and vertical directions.

Figure 5: Our surrounded CSF measurements compared with Barten’s [Bar03] model.
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Figure 6: Comparison of our regressed functions. (Top) Modeling the relative CSF about Ls as a function R of spatial frequency u and the
luminance ratio L∗. (Bottom) Modeling the relative CSF about Ls as a function Rp of the luminance ratio L∗.
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Figure 7: Parameters a, b′, c, and d, which determines the model r
described in Equation (4). b′ is defined in Equation (5). The model
r is fitted to the measured relative sensitivity data for each spatial
frequency u separately. Then parameter values a, b′, c, and d can
be obtained for each u.

is not significant since its 95% confidence interval (−0.062,0.022)
still contains a positive region, so we have decided that the nega-
tive value of b′ (u = 20.16cpd.) =−0.020 is an overestimation. By
these two reasons, b′ < 0 contradicts to the crispening effect and
the estimated negative b′ value is not significant, we have decided
to model b′ (u) as a function which only has positive value.

4. HDR Image/Video Applications
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Figure 8: (a) Standard HDR video coding pipeline specified in
[IR17].

4.1. HDR Video Compression

The entire pipeline of video compression standardized by [IR17] is
shown in Figure 8. Among this entire pipeline, we derived a trans-
fer function from our practical CSF model. Following the process
proposed by Miller et al. [MND13], we first remove u dependency
of CSF to obtain a function only depend on luminance by taking the
maximum of CSF about u, i.e., S (L) := maxu S (u,L). Second, we
define the distance between two slightly different luminance values
L1 and L2 as d (L1,L2) := |L1−L2|/(L1 +L2) · S ((L1 +L2)/2),
which yields d (L1,L2) = 1 whenever L1 and L2 have just notice-
able difference. Lastly, our CSF-based transfer function F is de-
signed to approximately satisfy |F (L+∆L)−F ()| ∝ d (L+∆L,L)
for any luminance value L and very small luminance value ∆L. In
summary, one can define a perceptual distance between the lumi-
nance values from the CSF and the CSF-based transfer function is
defined as a function that maps luminance values into a perceptu-
ally uniform space, given a surround luminance level. We compute
transfer functions for each surround luminance level, yielding an
adaptive transfer function.
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Figure 9: Subjective maps from [CAMS11] (Top), predicted probability maps obtained by HDR-VDP 2-2 (Middle) and ours (Bottom).

Table 1: Correlation coefficients between subjective maps and pre-
dicted probability maps from each method. Except two scenes, ours
reports higher values. Also, Ours yields the higher correlation co-
efficient on average.

Scene # 1 # 2 # 3 # 4 # 5 # 6 Average
HDR-VDP 2-2 0.5894 0.3234 0.4149 -0.0883 0.7954 0.2491 0.3807

Ours 0.6346 0.5273 0.7943 -0.444 0.7721 0.3298 0.5023

4.2. HDR Visual Difference Prediction

We report additional results of HDR visual difference prediction
here. Except three LDR scenes in [CAMS11]’s dataset, we are
testing six HDR scenes to compare their subjective maps, HDR-
VDP 2-2 [NMDSLC15] and ours, as reported in Figure 9. We also
computes correlation coefficients between subjective maps and pre-
dicted probability maps from each method as shown in Table 1.
Except two scenes, our CSF yields higher values of correlation co-
efficients.
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